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Abstract—In this paper, we introduce a local image descriptor, DAISY, which is very efficient to compute densely. We also present an

EM-based algorithm to compute dense depth and occlusion maps from wide-baseline image pairs using this descriptor. This yields

much better results in wide-baseline situations than the pixel and correlation-based algorithms that are commonly used in narrow-

baseline stereo. Also, using a descriptor makes our algorithm robust against many photometric and geometric transformations. Our

descriptor is inspired from earlier ones such as SIFT and GLOH but can be computed much faster for our purposes. Unlike SURF,

which can also be computed efficiently at every pixel, it does not introduce artifacts that degrade the matching performance when used

densely. It is important to note that our approach is the first algorithm that attempts to estimate dense depth maps from wide-baseline

image pairs, and we show that it is a good one at that with many experiments for depth estimation accuracy, occlusion detection, and

comparing it against other descriptors on laser-scanned ground truth scenes. We also tested our approach on a variety of indoor and

outdoor scenes with different photometric and geometric transformations and our experiments support our claim to being robust

against these.

Index Terms—Image processing and computer vision, dense depth map estimation, local descriptors.
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1 INTRODUCTION

THOUGH dense short-baseline stereo matching is well
understood [9], [25], its wide-baseline counterpart is, in

contrast, much more challenging due to large perspective
distortions and increased occluded areas. It is nevertheless
worth addressing because it can yield more accurate depth
estimates while requiring fewer images to reconstruct a
complete scene. Also, it may be necessary to compute
depth from two widely separated cameras such as a
surveillance application in which installing cameras side-
by-side is not feasible.

Large correlation windows are not appropriate for wide-
baseline matching because they are not robust to perspective
distortions and tend to straddle areas of different depths or
partial occlusions. Thus, most researchers favor simple pixel
differencing [6], [16], [24] or correlation over very small
windows [26]. They then rely on optimization techniques
such as graph-cuts [16] or PDE-based diffusion operators
[27] to enforce spatial consistency. The drawback of using
small image patches is that reliable image information can
only be obtained where the image texture is of sufficient
quality. Furthermore, the matching becomes very sensitive
to illumination changes and repetitive patterns.

An alternative to performing dense wide-baseline match-
ing is to first match a few feature points, triangulate them,
and then locally rectify the images. This approach, however,

potentially is not without problems. If some matches are
wrong and are not detected as such, gross reconstruction
errors will occur. Furthermore, image rectification in the
triangles may not be sufficient if the scene within cannot be
treated as locally planar.

We instead advocate replacing correlation windows with
local region descriptors, which lets us take advantage of
powerful global optimization schemes such as graph-cuts to
force spatial consistency. Existing local region descriptors
such as SIFT [19] or GLOH [21] have been designed for
robustness to perspective and lighting changes and have
proven successful for sparse wide-baseline matching.
However, they are much more computationally demanding
than simple correlation. Thus, for dense wide-baseline
matching purposes, local region descriptors have so far
only been used to match a few seed points [33] or to provide
constraints on the reconstruction [27].

We therefore introduce a new descriptor that retains the
robustness of SIFT and GLOH and can be computed quickly
at every single image pixel. Its shape is closely related to
that of [32], which has been shown to be optimal for sparse
matching but is not designed for efficiency. We use our
descriptor for dense matching and view-based synthesis
using stereo pairs having various image transforms or for
pairs with too large a baseline for standard correlation-
based techniques to work, as shown in Figs. 1, 2, 3, and 4.
For example, on a standard laptop, it takes less than
4 seconds to perform the computations using our descriptor
over all the pixels of an 800� 600 image, whereas it takes
over 250 seconds using SIFT. Furthermore, it gives better
results than SIFT, SURF, NCC, and pixel differencing, as
will be shown by comparing the resulting depth maps to
laser-scanned data.

To be specific, SIFT and GLOH owe much of their strength
to the use of gradient orientation histograms, which are
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relatively robust to distortions. The more recent SURF
descriptor [4] approximates them by using integral images
to compute the histograms bins. This method is computa-
tionally effective with respect to computing the descriptor’s
value at every pixel, but does away with SIFT’s spatial
weighting scheme. All gradients contribute equally to their
respective bins, which results in damaging artifacts when
used for dense computation. The key insight of this paper is
that computational efficiency can be achieved without
performance loss by convolving orientation maps to com-
pute the bin values using Gaussian kernels. This lets us
match relatively large patches—31� 31—at an acceptable
computational cost and improve robustness in unoccluded

areas over techniques that use smaller patches. Using large

areas requires handling occlusion boundaries properly,
though, and we address this issue by using different masks

at each location and selecting the best one by using an
Expectation Maximization (EM) framework. This is inspired

by the earlier works of [13], [14], [15] where multiple or
adaptive correlation windows are used.

After discussing related work in Section 2, we introduce

our new local descriptor and present an efficient way to
compute it in Section 3. In Section 4, we detail our
EM-based occlusion handling framework. Finally, in Sec-

tion 5, we present results and compare our descriptor to
SIFT, SURF, NCC, and pixel differencing.
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Fig. 2. Scale Change: We used the first two images of the upper row for computing the depth map from the second image’s point of view. The depth
maps are computed using NCC, SIFT, and DAISY, and they are displayed in the lower row in that order. The last image in the first row shows the
resynthesized image using the DAISY’s depth estimate. Although scale change is not explicitly addressed in any way and we used the same
parameters for the descriptors of two images, we obtain a very acceptable depth map.

Fig. 1. Contrast Change: The first two images are used as input. We manually increased the contrast of the first image and tried to estimate the depth
from the second image’s point of view. We used NCC, SIFT, and DAISY, and their reconstructions are displayed in the second row, respectively. We
also resynthesized the second image using the depth map of DAISY and the first image’s intensities and show it at the end of the first row.
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2 RELATED WORK

Even though multiview 3D surface reconstruction has been

investigated for many decades [9], [25], it is still far from

being completely solved due to many sources of errors,

such as perspective distortion, occlusions, and textureless

areas. Most state-of-the-art methods rely on first using local

measures to estimate the similarity of pixels across images

and then on imposing global shape constraints using

dynamic programming [3], level sets [11], space carving

[17], graph-cuts [16], [24], [8], PDE [1], [27], or EM [26]. In

this paper, we do not focus on the method used to impose

the global constraints and use a standard one [8]. Instead,

we concentrate on the similarity measure all of these

algorithms rely on.
In a short-baseline setup, reconstructed surfaces are often

assumed near frontoparallel, so the similarity between pixels

can be measured by cross-correlating square windows. This

is less prone to errors compared to pixel differencing and

allows normalization against illumination changes.
In a wide-baseline setup, however, large correlation

windows are especially affected by perspective distortions
and occlusions. Thus, wide-baseline methods [1], [16], [26],
[27] tend to rely on very small correlation windows or
revert to pointwise similarity measures, which loose the
discriminative power larger windows could provide. This
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Fig. 4. Rotation around a point: We used the first two images of the upper row for computing the depth map from the third image’s point of view. The

depth maps are computed using NCC and DAISY, and they are displayed in the lower row in that order. The last image in the second row shows the
resynthesized image using the DAISY’s depth estimate.

Fig. 3. Image Quality: We used the first two images of the upper row, which are obtained by a webcam, for computing the depth map from the second
image’s point of view. The depth maps are computed using NCC, SIFT, and DAISY, and they are displayed in the lower row in that order. The last
image in the first row shows the resynthesized image using the DAISY’s depth estimate. Despite the somewhat blurry, low-quality nature of the
images, we can still compute a good depth map.
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loss can be compensated for by using multiple [2], [27] or
high-resolution [27] images. The latter is particularly
effective because areas that appear uniform at a small scale
are often quite textured when imaged at a larger one.
However, even then, lighting changes remain difficult to
handle. For example, Strecha et al. [27] show results either
for wide baseline without light changes, or with light
changes but under a shorter baseline.

As we shall see, our feature descriptor reduces the need
for higher resolution images and achieve comparable results
using fewer number of images. It does so by considering
large image patches while remaining stable under perspec-
tive distortions. Earlier approaches to this problem relied on
warping the correlation windows [10]. However, the warps
were estimated from a first reconstruction obtained using
classical windows, which is usually not practical in wide-
baseline situations. In contrast, our method does not require
an initial reconstruction. Additionally, in a recent publica-
tion [32], a descriptor which is very similar to ours in shape
has been shown to outperform many state-of-the-art feature
descriptors for sparse point matching. However, unlike this
descriptor, ours is designed for fast and efficient computa-
tion at every pixel in the image.

Local image descriptors have already been used in dense
matching, though in a more traditional way, to match only
sparse pixels that are feature points [31], [19]. In [27], [33],
these matched points are used as anchors for computing the
full reconstruction. Yao and Cham [33] propagate the
disparities of the matched feature points to their neighbors,
while Strecha et al. [27] use them to initialize an iterative
estimation of the depth maps.

To summarize, local descriptors have already proved
their worth for dense wide-baseline matching, but only in a
limited way. This is due in part to their high computational
cost and in part to their sensitivity to occlusions. The
technique we propose addresses both issues.

3 OUR LOCAL DESCRIPTOR

In this section, we briefly describe SIFT [19] and GLOH [21]
and then introduce our DAISY descriptor. We discuss both

its relationship with them and its greater effectiveness for
dense computations.

The SIFT and GLOH descriptors involve 3D histograms in
which two dimensions correspond to image spatial dimen-
sions and the additional dimension to the image gradient
direction. They are computed over local regions, usually
centered on feature points but sometimes also densely
sampled for object recognition tasks [12], [18]. Each pixel
belonging to the local region contributes to the histogram
depending on its location in the local region, and on the
orientation and the norm of the image gradient at its location.
As depicted by Fig. 5a, when an image gradient vector
computed at a pixel location is integrated to the 3D histogram,
its contribution is spread over 2� 2� 2 ¼ 8 bins to avoid
boundary effects. More precisely, each bin is incremented
by the value of the gradient norm multiplied by a weight
inversely related to the distances (i.e., as the distance
increases, weight decreases) between the pixel location
and the bin boundaries, and also to the distance between
the pixel location and the one of the key point. As a
result, each bin contains a weighted sum of the norms of
the image gradients around its center, where the weights
roughly depend on the distance to the bin center.

In this work, our goal is to reformulate these descriptors so
that they can be efficiently computed at every pixel location.
Intuitively, this means computing the histograms only once
per region and reusing them for all neighboring pixels.

To this end, we replace the weighted sums of gradient
norms by convolutions of the gradients in specific direc-
tions with several Gaussian filters. We will see that this
gives the same kind of invariance as the SIFT and GLOH
histogram building, but is much faster for dense-matching
purposes and allows the computation of the descriptors in
all directions with little overhead.

Even though SIFT, GLOH, and DAISY involve different
weighting schemes for the orientation gradients, the
computed histograms can be expected to be very similar
which gives a new insight on what makes SIFT work:
Convolving with a kernel simultaneously dampens the
noise and gives a measure of invariance to translation. This
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Fig. 5. Relationship between SIFT and DAISY: (a) SIFT is a 3D histogram computed over a local area where each pixel location contributes to bins
depending on its location and the orientation of its image gradient, the importance of the contribution being proportional to the norm of the gradient.
Each gradient vector is spread over 2� 2� 2 bins to avoid boundary effects, and its contribution to each bin is weighted by the distances between
the pixel location and the bin boundaries. (b) DAISY computes similar values but in a dense way. Each gradient vector also contributes to several of
the elements of the description vector, but the sum of the weighted contributions is computed by convolution for better computation times. We first
compute orientation maps from the original images, which are then convolved to obtain the convolved orientation maps G�i

o . The values of the G�i
o

correspond to the values in the SIFT bins, and will be used to build DAISY. By chaining the convolutions, the G�i
o can be obtained very efficiently.



is also better than integral image-like computations of
histograms [22] in which all gradient vectors have the same
contribution. We can very efficiently reduce the influence of
gradient norms from distant locations.

Fig. 6 depicts the resulting descriptor. Note that its shape
resembles that of a descriptor [32] that has been shown to
outperform many state-of-the-art ones. However, unlike
that descriptor, DAISY is also designed for effective dense
computation. The parameters that control its shape are
listed in Table 1. We will discuss in Section 5 how they
should be chosen.

There is a strong connection between DAISY and geo-
metric blur [5]. In this work, the authors recommended using
smaller blur kernels near the center and larger away from it
and reported successful results using oriented edge filter
responses. DAISY follows this recommendation by using
larger Gaussian kernels in its outer rings but replaces the
edge filters by simple convolutions for the sake of efficiency.

3.1 The DAISY Descriptor

We now give a more formal definition of our DAISY
descriptor. For a given input image, we first compute
H number of orientation maps, Gi, 1 � i � H, one for each
quantized direction, where Goðu; vÞ equals the image
gradient norm at location ðu; vÞ for direction o if it is bigger
than zero, else it is equal to zero. This preserves the polarity
of the intensity changes. Formally, orientation maps are
written as Go ¼ ð@I

@oÞ
þ, where I is the input image, o is the

orientation of the derivative, and ð:Þþ is the operator such
that ðaÞþ ¼ maxða; 0Þ.

Each orientation map is then convolved several times
with Gaussian kernels of different � values to obtain
convolved orientation maps for different sized regions as
G�
o ¼ G� � ð@I

@oÞ
þ with G� a Gaussian kernel. Different �s are

used to control the size of the region.
Our primary motivation here is to reduce the computa-

tional requirements and convolutions can be implemented
very efficiently especially when using Gaussian filters,
which are separable. Moreover, we can compute the
orientation maps for different sizes at low cost because
convolutions with a large Gaussian kernel can be obtained
from several consecutive convolutions with smaller kernels.
More specifically, given G�1

o , we can efficiently compute
G�2
o with �2 > �1 as

G�2
o ¼ G�2

�
�
@I

@o

�þ
¼ G� �G�1

�
�
@I

@o

�þ
¼ G� �G�1

o ;

with � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

2 � �2
1

p
. This computational flow, the incre-

mental computation of the convolved orientation maps from
an input image, is summarized in Fig. 5b.

To make the link with SIFT and GLOH, note that each
pixel location of the convolved orientation maps contains a
value very similar to the value of a bin in SIFT or GLOH
that is a weighted sum of gradient norms computed over a
small neighborhood. We use a Gaussian kernel whereas
SIFT and GLOH rely on a triangular shaped kernel. It can
also be linked to tensor voting in [20] by thinking of each
location in our orientation maps as a voting component and
of our aggregation kernel as the voting weights.

As depicted by Fig. 6, at each pixel location, DAISY
consists of a vector made of values from the convolved
orientation maps located on concentric circles centered on
the location, and where the amount of Gaussian smoothing
is proportional to the radii of the circles. As can be seen
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Fig. 6. The DAISY descriptor: Each circle represents a region where the
radius is proportional to the standard deviations of the Gaussian kernels
and the “þ” sign represents the locations where we sample the
convolved orientation maps center being a pixel location where we
compute the descriptor. By overlapping the regions, we achieve smooth
transitions between the regions and a degree of rotational robustness.
The radii of the outer regions are increased to have an equal sampling of
the rotational axis, which is necessary for robustness against rotation.

TABLE 1
DAISY Parameters



from the figure, this gives the descriptor the appearance of a
flower, hence its name.

Let h�ðu; vÞ represent the vector made of the values at
location ðu; vÞ in the orientation maps after convolution by a
Gaussian kernel of standard deviation �.

h�ðu; vÞ ¼
�
G�

1 ðu; vÞ; . . . ;G�
Hðu; vÞ

�>
; ð1Þ

where G�
1 , G�

2 , and G�
H denote the �-convolved orientation

maps in different directions. We normalize these vectors to
unit norm, and denote the normalized vectors by eh�ðu; vÞ.
The normalization is performed in each histogram inde-
pendently to be able to represent the pixels near occlusions
as correct as possible. If we were to normalize the descriptor
as a whole, then the descriptors of the same point that is
close to an occlusion would be very different when imaged
from different viewpoints.

Problems might arise in homogeneous regions since we
normalize each histogram independently. However, con-
sider that we are designing this descriptor for a stereo
application. In a worst-case scenario, DAISY will not
perform any worse than a standard region-based metric
like NCC. However, this will not happen as often because
we use a relatively large descriptor. Furthermore, the global
optimization algorithm discussed in Section 4 will often fix
the resulting errors. If one truly wants the robustness of
large regions, one solution to this might be computing
unnormalized descriptors and normalizing the visible parts
of the descriptor globally before dissimilarity computation.
This, however, will increase the computation time of the
matching stage with two additional normalization opera-
tions for each possible depth per pixel. For applications
other than stereo, the normalization should probably be
changed depending on the specifics of the application, but
this is beyond the scope of this paper.

If Q represents the number of different circular layers,
then the full DAISY descriptor Dðu0; v0Þ for location ðu0; v0Þ
is defined as the concatenation of eh vectors:

Dðu0; v0Þ ¼�eh>�1
ðu0; v0Þ;eh>�1
ðl1ðu0; v0; R1ÞÞ; . . . ; eh>�1

ðlT ðu0; v0; R1ÞÞ;eh>�2
ðl1ðu0; v0; R2ÞÞ; . . . ; eh>�2

ðlT ðu0; v0; R2ÞÞ;
� � �eh>�Q
ðl1ðu0; v0; RQÞÞ; . . . ; eh>�Q

ðlT ðu0; v0; RQÞÞ
�>
;

where ljðu; v; RÞ is the location with distance R from ðu; vÞ
in the direction given by j when the directions are
quantized into the T values of Table 1.

We use a circular grid instead of SIFT’s regular one since
it has been shown to have better localization properties [21].
In that sense, our descriptor is closer to GLOH without
PCA than to SIFT. Combining an isotropic Gaussian kernel
with a circular grid also makes our descriptor naturally
resistant to rotational perturbations. The overlapping
regions ensure a smoothly changing descriptor along the
rotation axis and, by increasing the overlap, we can make it
more robust up to the point where the descriptor starts
losing its discriminative power.

As mentioned earlier, one important advantage of the
circular design and using isotropic kernels is that, when we

want to compute the descriptor in a different orientation,
there is no need to recompute the convolved orientation
maps; they are still valid and we can recompute the
descriptor by simply rotating the sampling grid. The
histograms will then also need to be shifted circularly to
account for the change in relative gradient orientations but
this only represents a very small overhead.

We mentioned earlier that the variance of the Gaussian
kernels is chosen to be proportional to the size of the
regions in the descriptor. Specifically, they are taken to be

�i ¼
Rðiþ 1Þ

2Q
; ð2Þ

where i represents the ith layer in the circular grid (see Fig. 6).
Histogram locations are expressed in polar coordinates as

ri ¼
Rðiþ 1Þ

Q
;

�j ¼
2�j

T
:

3.2 Computational Complexity

The efficiency of DAISY comes from the fact that most
computations are separable convolutions and that we avoid
computing more than once the histograms common to
nearby descriptors. In this section, we give a formal
complexity analysis of both DAISY and SIFT and, then,
compare them.

3.2.1 Computing DAISY

Recall from Table 1 that DAISY is parameterized with its
radius R, number of rings Q, number of histograms in a ring
T , and the number of bins in each histogram H. Assuming
that the image has P pixels, we begin by computing the
orientation layers. In practice, we do not compute gradient
norms for each direction separately since they can be
computed from the horizontal and vertical ones as

G� ¼
�

cos �
@I

@x
þ sin �

@I

@y

�þ
: ð3Þ

Therefore, for horizontal and vertical gradients, we
perform two 1D convolutions with kernels ½1;�1� and
½1;�1�T , respectively, requiring 2P additions to calculate in
both directions. Orientation layers are, then, computed from
these according to (3) with 2P multiplications and
P additions for each layer. Then, for each radius quantiza-
tion level, Q, we perform H convolutions. This is done
again as two successive 1D convolutions instead of a single
2D one, thanks to the separability of Gaussian kernels.

Given those gradients, we sample the convolved orienta-
tion layers at Q� T þ 1 locations for every pixel. For
orientations other than 0, an additional shifting operation is
required to account for it.

Sampling can be performed by either interpolation or by
rounding point locations to the nearest integer. We found
that using either method returns roughly equivalent results.
Nevertheless, we include both options in the source code
we supply [30].

To summarize, computing all the descriptors of an image
requires 2H �Qþ 1 1D convolutions, P � ðQ� T þ 1Þ
samplings, 2P �H multiplications, and P �H additions.
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3.2.2 Computing SIFT

To compute a SIFT descriptor, the image gradient magni-

tudes and orientations are sampled around the point

location at an appropriate scale. Because of the noncircularly

symmetric support region and the kernel employed in SIFT,

the sampling has to be done at all of the sample locations

within the descriptor region. Let us therefore consider the

computation of a single descriptor at a single scale where

the descriptor is computed over a Ws sample array with Ss
histograms of Hs bins.

As does DAISY, SIFT requires image gradients that are

computed in the same way and then sampled within the

descriptor region at Ws locations. The gradients are then

Gaussian smoothed and histograms are formed using

trilinear interpolation, that is, each bin is multiplied by a

weight of 1� d, where d is the distance of the sample from

the central value of the bin. The smoothing and interpola-

tion takes 4Ws multiplications. Finally, each sample is

assigned to a bin and accumulated, which requires Ws

multiplications and Ss � ð2Ws

Ss
Þ ¼ 2Ws summations.

To summarize, the computation of one SIFT descriptor

requires Ws samplings, 5Ws multiplications, and 2Ws

summations plus the initial convolution required for

gradient computation.

3.2.3 Comparing DAISY and SIFT

For comparison purposes, assume that convolving of a

1D kernel of length N can be done with N multiplications

and N � 1 summations per pixel. Then, DAISY requires

2H �Q�N þ 2 multiplications, 2H �Q�N � 1 summa-

tions, and S samplings per pixel.
If we insert the parameters Ws ¼ 16� 16, Ss ¼ 4� 4,

and Hs ¼ 8 for SIFT, as reported in [19], and the

parameters we used in this paper for DAISY, H ¼ 8,

Q ¼ 3, and S ¼ 25; with an average N ¼ 5, we see that

SIFT requires 1,280 multiplications, 512 summations, and

256 samplings per pixel, whereas DAISY requires
122 multiplications, 119 summations, and 25 samplings.

Note that computing the descriptor in a different
orientation also requires an additional shifting operation
in DAISY with S �H shifts per pixel, whereas this is
handled in SIFT during the sampling phase of the gradients
with Ws additions.

In any event, a direct comparison of these numbers
might be somewhat misleading as one can approximate
some of the operations in SIFT in a dense implementation to
increase computational efficiency. One might also consider
a more efficient implementation of the convolution opera-
tion using FFT, which would boost DAISY’s performance.
The most important speedup difference, however, is due to
two facts. First, DAISY descriptors share histograms so that
once a histogram is computed for one pixel, it is not
computed again for the T other descriptors surrounding
this histogram location. Second, the computation pipeline
enables a very efficient memory access pattern and the early
separation of the histogram layers greatly improves
efficiency. This also allows DAISY to be parallelized very
easily, and our current implementation [30] allows the use
of multiple cores using the OpenMP library. In Table 2, we
show typical computation times for various sized images. In
Fig. 7, we show the time required to compute DAISY
descriptors with varying number of cores on different
image sizes. Computation time falls almost linearly with the
number of the cores used. The algorithm is also quite
suitable for GPU programming which we will pursue in
future.

In terms of memory, the precomputed convolved orienta-
tion layers require 4Q�H � P bits and if we also want to
precompute all of the descriptors of an image, this will require
4Ds � P bits. In example, for an image of size 1;024� 1;024,
these equal to 96 and 800 MB, respectively, for the standard
parameter set of R ¼ 15, Q ¼ 3, T ¼ 8, and H ¼ 8.

4 DEPTH MAP ESTIMATION

To perform dense matching, we use DAISY to measure
similarities across images as shown by Fig. 8. We then feed
these measures to a standard graph-cut-based reconstruc-
tion algorithm [8]. To properly handle occlusions, we
incorporate an occlusion map, which is the counterpart of
the visibility maps in other reconstruction algorithms [16].
We do this by introducing an occlusion node with a
constant cost in the graph structure. The value of this cost
has a significant impact on the proportion of pixels that are
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Fig. 7. DAISY Computation Times: Computation times of the DAISY descriptor for all the pixels of an image with various settings on three different
sized images. We present the change of the computation time with respect to the number of cores used in parallel.

TABLE 2
Computation Time in Seconds on an IBM T60 Laptop



labeled as occluded. As will be discussed in Section 5, we

use one image data set to set it to a reasonable value and

retain this value for all other experiments shown in this

paper. The depth and occlusion maps are estimated by EM,

which we formalize below.
We compute the descriptor of every point from its

neighborhood. However, for pixels that are close to an

occluding boundary, part of the neighborhoods, thereby

part of the descriptors, will be different when captured

from different viewpoints. To handle this, we exploit the

occlusion map and define binary masks over our descriptors.

We introduce predefined masks that enforce the spatial

coherence of the occlusion map, and show that they allow

for proper handling of occlusions.
In practice, we assume that we are given at least two

calibrated gray-scale images, and we compute the dense
depth map of the scene with respect to a particular
viewpoint which can either be equal to one of the input
view points or it can be a completely different virtual
position. We use the calibration information to discretize
the 3D space and compute descriptors that take into account
the orientation of the epipolar lines, as shown in Fig. 8. In
this way, we do not require a rotationally invariant
descriptor and take advantage of the fact that DAISY
descriptor is very easy to rotate, as described in the
previous section.

4.1 Formalization

Given a set of N calibrated images of the scene, we denote

their descriptors by D1:N . We estimate the dense depth

map Z for a given viewpoint by maximizing:

pðZ;O j D1:NÞ / pðD1:N j Z;OÞpðZ;OÞ; ð4Þ

where we also introduced an occlusion map term O that

will be exploited below to estimate the similarities between

image locations. As in [8], we enforce piecewise smoothness

on the depth map as well as our occlusion map by

penalizing nearby different labels using the Potts model,
i.e., V ¼ �ðqi 6¼ qjÞ with qi and qj are labels of nearby pixels.

For the data-driven posterior, we also assume indepen-
dence between pixel locations:

pðD1:N j Z;OÞ ¼
Y
x

pðD1:NðxÞ j Z;OÞ: ð5Þ

Each term pðD1:NðxÞ j Z;OÞ of (5) is estimated using our
descriptor. Because the descriptor considers relatively large
regions, we introduce binary masks computed from the
occlusion map O, as explained in the next section, to avoid
including occluded parts into our similarity score.

4.2 Using Masks over the Descriptor

Given the descriptors, we can take the pðD1:NðxÞ j Z;OÞ
probability to be inversely related to the dissimilarity
function

D0ðDiðXÞ;DjðXÞÞ ¼
1

S

XS
k¼1

��D½k�i ðxÞ �D
½k�
j ðxÞ

��
2
; ð6Þ

where DiðXÞ and DjðXÞ are the descriptors at locations
obtained by projecting the 3D point X (defined by
location x and its depth ZðxÞ in the virtual view) onto
image i and j, D

½k�
i ðxÞ is the kth histogram eh in DiðxÞ, and S

is the number of histograms used in the descriptor.
However, as discussed above, we should account for

occlusions. The descriptor is computed over image patches
and the formulation of (6) is not robust to partial occlusions.
Even for a good match, if the pixel is close to an occlusion
boundary, the histograms of the occluded parts have no
reason to resemble each other.

We, therefore, introduce binary masks fMmðxÞg such as
the ones depicted in Fig. 9, which allow DAISY to take into
account only the visible parts when computing the
distances between descriptors. The mask length is equal
to the number of histograms used in the descriptor, the S of
Table 1. We use these masks to rewrite the D0 of (6) as

D ¼ 1PS
q¼1M½q�

XS
k¼1

M½k���D½k�i ðxÞ �D
½k�
j ðxÞ

��
2
; ð7Þ

where M½k� is the kth element of the binary mask M.
Following [8], we define the pðD1:NðxÞ j Z;OÞ term of (5) as
a Laplacian distribution LapðDðD1:NðxÞ j Z;OÞ; 0; �mÞ with
our occlusion handling dissimilarity function.

To select the most likely mask at each pixel location, we
rely on an EM algorithm and tried three different strategies:

. The simplest one, depicted by Fig. 9a, involves
disabling the histograms that are marked as
occluded in the current estimate of the occlusion
map O and obtaining a single binary mask MmðxÞ.

. A more sophisticated one is to use the predefined
masks depicted by Fig. 9b which have a high special
coherence. The probability of each mask is computed
such that the masks that have large visible areas with
similar depth values are favored. We write

pðMmðxÞjZ;OÞ ¼
1

Y
vm þ

1

�2
mðZÞ þ 1

� �
; ð8Þ
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Fig. 8. Problem Definition: The inverse depth is discretized uniformly
and the matching score is computed using neighborhoods centered
around the projected locations. These neighborhoods are rotated to
conform to the orientation of the epipolar lines.



where vm is the average visible pixel number, �mðZÞ is the
depth variance within the mask region, and Y is the
normalization term that is equal to the sum of all mask
probabilities.

Then, we take the data posterior to be the weighted sum
of individual mask responses as

pðD1:NðxÞjZ;OÞ
¼
X
m

pðD1:NðxÞjZ;O;MmðxÞÞpðMmðxÞjZ;OÞ: ð9Þ

. The third strategy is a simplified version of the
second one, where we only use the result of the most
probable mask instead of a mixture.

In the first and third strategy, we use only one mask. By
contrast, the second strategy involves a mixture computed
from several masks. Note that the mask probabilities are
reestimated at each step of the EM algorithm. In our
experiments, the second and third strategies always
performed better than the first, mainly because they enforce
spatial smoothness. The second strategy, however, is
computationally more expensive than the third without
any perceptible improvement in performance. Therefore,
we use only the third strategy in the remainder of the paper.
We generally run our EM algorithm for only two to three
iterations, which results in better occlusion estimates
around occlusion boundaries.

5 EXPERIMENTS AND RESULTS

In this section, we present various experiments we
performed in order to measure the performance of DAISY.
In Section 5.1, we present results of a parameter sweep
experiment we performed to understand and optimize the
DAISY parameters with respect to the baseline. We then
compare DAISY against other descriptors for depth

estimation purposes. In Section 5.3, we pushed the baseline
to very large values to explore the range within which
DAISY yields acceptable depth accuracy and the quality of
our occlusion estimates. Then, finally in Section 5.4, we test
our approach on image pairs with various photometric and
geometric transformations and show that it is robust to
these and compare our reconstructions with that of a state-
of-the-art multiview algorithm [26].

5.1 Parameter Selection

To understand the influence of the DAISY parameters of
Table 1, we performed two parameter sweep experiments,
one in the narrow-baseline case and the other in the wide-
baseline case. We used the data set depicted by Fig. 11,
which includes laser-scanned ground truth depth and
occlusion maps as discussed in [28], [29]. For the narrow-
baseline case, we used the image pairs ff1; 2g; f2; 3g; f3; 4g;
f4; 5g; f5; 6gg. For the wide baseline, we used ff1; 4g;
f2; 5g; f3; 6gg. This guarantees similar baselines within each
one of the two groups.

Fig. 10 depicts the results. Correct depth estimates of
80þ percent can be achieved using a less complex
descriptor for short baseline. However, as the baseline
increases, Fig. 10 suggests that it becomes necessary to use a
more complex descriptor at the expense of increased
computation and matching time.

Most of the time devoted to descriptor computation is
spent on convolutions. It can be reduced by using a smaller
number of bins in the histogram (H) or by using a smaller
number of layers (Q). We can use H ¼ 4 with a little
performance loss, but the layer number Q should be chosen
carefully depending on the baseline. It appears that two or
three layers give similar responses. As far as T , the
discretization of the angular space, is concerned, four or
eight levels perform similarly for both narrow and wide-
baseline cases. However, when increasing the baseline, the
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Fig. 9. Binary masks for occlusion handling: We use binary masks over the descriptors to estimate location similarities even near occlusion
boundaries. In this figure, a black disk with a white circumference corresponds to “on” and a white disk to “off.” In (a), we use the occlusion map to
define the masks and, in (b), predefined masks make it easy to enforce spatial coherence and to speed up the convergence of EM estimation.



radius R should also be increased, but only up to a point.
Going beyond this point causes a loss of discriminative
power and a performance drop, especially in the wide-
baseline case.

One might argue that there is no need to use more than
four bins in the histograms as one could generate the in-
between responses of a gradient from the horizontal and
vertical directions only. However, this is not the case when
summing over a group of pixels because aggregating the
low-resolution responses will lose the gradient distribution
information of individual pixels and computing a higher
resolution version of the histogram from the low-resolution
one will not be equal to summing individual high-
resolution responses. This is why increasing the histogram
resolution makes the descriptor more distinctive at the cost
of some computational overhead.

Although descriptor parameters could be adapted
depending on the baseline, scene complexity, and textured-
ness, it is difficult to automate this process. The purpose of
this experiment was to see whether there exists a set of
parameters that clearly outperform other parameter sets.
However, the experimental results suggest that the de-
scriptor is relatively insensitive to parameter choice for an
extended range for both narrow and wide-baseline image
pairs: different parameter sets produce similar results.
Looking at this experiment, we can conclude about three

of the four parameters of the descriptor, namely the radius
quantization (Q), angular quantization (T ), and histogram
quantization (H). However, the effect of the size of the
descriptor radius (R) is not so clear since a relatively
textured scene is used in the experiment, and we believe the
effect of R will be more apparent for less textured scenes.
Although we do not have a data set with a ground truth
depth map of such a scene and therefore cannot accurately
quantify this effect, we have observed that using a larger R
is beneficial for less textured scenes from other data sets
used in this paper. Hence, in practice, we use the most
generic parameter set R ¼ 15; Q ¼ 3; T ¼ 8; H ¼ 8 for all of
the experiments presented in this paper. Admittedly, this
produces a longer descriptor than strictly necessary, but it
performs well for both narrow and wide baselines.
However, depending on the application DAISY is used
for, the parameters can be set accordingly. For example, if it
is known that input images have a short baseline and scene
is more or less textured, R ¼ 10; Q ¼ 3; T ¼ 4; H ¼ 4 will
produce good results with a shorter footprint of length 52.

5.2 Comparison with Other Descriptors

To compare DAISY’s performance with that of the other
descriptors we again used the data set of Fig. 11 and also the
data set of Fig. 12, for which laser-scanner data are available
as well. Arguably our results on the data of Fig. 11 should
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Fig. 10. Parameter sweep test for narrow- and wide-baseline cases: As described by Table 1, there are four parameters that specify the shape and
size of DAISY: radius (R), radius quantization (Q), angular quantization (T ), and number of bins of the histogram (H). The above figures depict the
results of a 4D sweep of these parameters and the color of each square represents the percentage of depths that are correctly estimated. The value
associated to a color is given by the color scale on the right. To assess the correctness of an estimated depth, we used laser-scanned depth maps
and assumed an estimate as correct if the estimate error is within 1 percent of the scene’s depth range. (a) The averaged result for five narrow-
baseline image pairs of the Fountain sequence of Fig. 11. The green rectangle denotes the best parameter set for this configuration which is
R ¼ 5; Q ¼ 3; T ¼ 4; H ¼ 8, resulting in a descriptor of size 104 with a 81.2 percent correct depth estimates. However, upon closer inspection, we
see that many other configurations produce similar results (80+ percent). Among these, the configuration R ¼ 5; Q ¼ 2; T ¼ 4; H ¼ 4 produces the
shortest descriptor length of 36. It is denoted by the black rectangle. (b) The averaged result for three wide-baseline image pairs of the Fountain
sequence. The best result, again denoted by a green rectangle, 73 percent correct depth estimate is achieved with R ¼ 10; Q ¼ 3; T ¼ 8; H ¼ 8
which yields a 200 length descriptor. However, as in the narrow-baseline case, there are many other configurations that produce a very similar
performance (71+ percent) with shorter descriptor sizes. The shortest one (black rectangle) is R ¼ 10; Q ¼ 3; T ¼ 4; H ¼ 4 with 52 length. Having
multiple configurations that result in similarly high performance shows that we don’t really need to change our descriptor parameters depending on
the baseline to improve performance, but we can change to meet speed or memory requirements. The configuration we used
(R ¼ 15; Q ¼ 3; T ¼ 8; H ¼ 8) in all of the other experiments presented in this paper is outlined in blue.
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Fig. 11. Comparing different descriptors: Fountain Sequence [28]. (a) In our tests, we match the leftmost image against each one of the other five.
(b) The laser-scan depth map we use as a reference and five depth maps computed from the first and third images. From left to right, we used
DAISY, SIFT, SURF, NCC, and Pixel Difference. (c) The leftmost plot shows the corresponding distributions of deviations from the laser-scan data,
expressed as a fraction of the scene’s depth range. The other plots summarize these distributions for the five stereo pairs of increasing baseline with
discrete error thresholds set to be 1 and 5 percent of the scene’s depth range, respectively. Each data point represents a pair where the baseline
increases gradually from left to right and individual curves correspond to DAISY with masks, DAISY without masks, SIFT, SURF, NCC, and Pixel
Difference. In all cases, DAISY does better than the others and using masks further improves the results.

Fig. 12. Comparing different descriptors: HerzJesu Sequence [28]. As in the Fountain sequence of Fig. 11, we use different descriptors to match the
leftmost images with each one of the other images. We compute the depth map in the reference frame of these. Second row: Ground truth depth
maps with overlaid occlusion masks. Remaining rows: Depth maps computed using DAISY, SIFT, SURF, NCC, and Pixel differencing, in that order.



be treated with caution since we have used these images to
set our parameters. However, we have done no such thing
with the data of Fig. 12 and obtain very similar results.

We used DAISY with occlusion masks, DAISY, SIFT,
SURF, NCC, and Pixel differencing to densely compute
matching scores. They are then all handled similarly, as
described in Section 4, to produce depth maps. The only
difference is that we do not use binary masks to modify
matching scores for descriptors other than DAISY. All of the
region-based descriptors are computed perpendicular to the
epipolar lines; SURF and SIFT descriptors are 128-length
vectors and NCC is 11� 11.

For the data set of Fig. 11, the leftmost image in the first
row is matched against each one of the other five, which
implies a wider and wider baseline. The second row depicts
the laser-scanner data on the left and the depth maps
computed from the first and third images using DAISY, SIFT,
SURF, NCC, and pixel differencing. The third row sum-
marizes the comparison of different descriptors against
DAISY. The leftmost graph shows the result for the first and
third image pairs by plotting the percentage of correctly
estimated depths against the amount of allowed error which
is represented as a fraction of scene’s depth range and
remaining graphs summarize these curves for all image pairs
at discrete error levels. In one case, the depths are considered
to be correct if they are within 1 percent of the scene’s depth
range and in the other within 5 percent. We present results
using DAISY with and without using the occlusion masks.
DAISY by itself outperforms the other descriptors and the
masks provide a further boost.

For the data set of Fig. 12, we match the leftmost image
with each one of the other first row images in turn and
compute the depth map with respect to the latter image. We
display the ground truth maps in the second row and show
the estimated depth maps for different descriptors in the
remaining rows. Fig. 13 depicts the quantitative results for
this data set as in the previous data set.

Both of the data sets show that DAISY performs better
than all of the other descriptors. Note that, although the
results of SIFT and DAISY are close for the 5 percent
threshold, DAISY finds substantially more correct depths for
the 1 percent threshold. This indicates that the depths found
using DAISY are more accurate than those found using SIFT.

5.3 Occlusion Handling

We tested the performance of our occlusion detection
scheme with the extended version of the HerzJesu sequence

of Fig. 12, depicted by Fig. 14. The matching is done using
two images, one from the first row and one from the first
column, and the depth map is shown in the referential of
the second image. The resulting depth map is displayed on
the intersection of the respective column and row together
with the ground truth on the diagonal. We use different
colors to highlight correctly estimated occlusions, missed
occlusions, and falsely labeled occlusions. An example pair
of images from this sequence is shown in Fig. 15. Table 3
gives the percentage of the correctly estimated depths in
visible areas where the correctness threshold is set to
5 percent of the scene’s depth range.

As discussed in Section 4, the value of the occlusion cost in
the graph structure has a direct influence on how many
pixels are labeled as occluded. In Fig. 16, we plot ROC curves
obtained by using this for all of the image pairs of Fig. 14.
Here, each data point represents the result with a different
occlusion cost, true positive rate shows the percentage of the
visible areas we detect as visible, and false positive rate
shows the amount of missed occlusions. By using these plots,
we picked a single value, 25 percent of the maximum cost, for
the occlusion cost for all the results shown in this paper.

To show the effect of the baseline on the performance, we
plot the area under the curve (AUC) of these ROC curves
with respect to the angle between the cameras for all the
image pairs of Fig. 14. This curve shows that our approach
works for a wide variety of camera configurations and is
robust up to 30-40 degree changes. We also show two
example ROC curves for narrow- and wide-baseline cases
in the same figure.

The progress of our EM-based occlusion detection
algorithm can be seen in Fig. 17. In this figure, we give an
example for the evolution of the depth map with occlusion
estimates at each iteration. The initial estimate is quickly
improved in the next iteration with occlusions receding and
new depths being estimated for these previously occluded-
marked regions. We see that further iterations do not
improve the result significantly, and in practice we stop the
process after one or two iterations.

5.4 Robustness to Image Transformations

Although we designed DAISY with only wide-baseline
conditions in mind, it exhibits the same robustness as
histogram-based descriptors to changes in contrast (Fig. 1),
scale (Fig. 2), image quality (Fig. 3), viewpoint (Figs. 4 and 18),
and brightness (Fig. 19). In these figures, we also present the
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Fig. 13. Quantitative comparison results for Fig. 12: The leftmost plot shows the corresponding distributions of deviations from the laser-scan data,
expressed as a fraction of the scene’s depth range. The other plots summarize these distributions for the five stereo pairs of increasing baseline with
discrete error thresholds set to be 1 and 5 percent of the scene’s depth range, respectively. Each data point represents a pair where the baseline
increases gradually from left to right and individual curves correspond to DAISY with masks, DAISY without masks, SIFT, SURF, NCC, and Pixel
Difference. In all cases, DAISY does better than the others and using masks further improves the result.



depth maps obtained using NCC and SIFT which include
more artifacts than ours. This result is noteworthy because,
although it is a well-known fact that histogram-based

descriptors are robust against these transforms at feature

point locations, these experiments show that such robustness

can also be found at many other point locations.
To compare our method to one of the best current

techniques [26], we ran our algorithm on two sets of image

pairs that were used in that paper, the Rathaus sequence of

Fig. 20 and the Brussels sequence of Fig. 21. But instead of

using the original 3;072� 2;048 images, whose resolution is

high enough for apparently blank areas to exhibit usable

texture, we used 768� 512 images in which this is not true.

DAISY nevertheless achieved visually similar results.
Fig. 21 also highlights the effectiveness of our occlusion

handling. When using only two images, the parts of the

church that are hidden by people in one image and not in the

other are correctly detected as occluded. When using three

images, the algorithm returns an almost full depth map that

lets us erase the people in the synthetic images we produce.
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Fig. 15. HerzJesu Close-up: Depth map is computed from the second image’s point of view using DAISY. Correctly detected occlusions are shown in
green, incorrectly detected ones with blue, and the missed ones with red. The last image is the laser-scanned ground truth depth map.

Fig. 14. HerzJesu Grid: By using two images, one from the leftmost column and one from the upper row, we compute depth and occlusion maps from
the viewpoint of the row image. In the diagonal, we display the ground truth depth maps. We marked the correctly detected occlusions with green,
incorrectly detected ones with blue, and the missed ones with red. From this figure, it is apparent that DAISY can handle quite large baselines without
losing too much from its accuracy, as can be seen from Table 3.

TABLE 3
Correctly Estimated Depth Percentage for Fig. 14



6 CONCLUSION

In this paper, we introduced DAISY, a new local descriptor,
which is inspired from earlier ones such as SIFT and GLOH

but can be computed much more efficiently for dense-

matching purposes. Speed increase comes from replacing

weighted sums used by the earlier descriptors by sums of
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Fig. 17. Evolution of the occlusions during EM: The three images show the evolution of the occlusion estimate during the iterations of the EM for
Fig. 11 images. The initial solution (a) is quickly improved even after a single iteration (b) and does not change much thereafter (c).

Fig. 18. Valencia Cathedral: The reconstruction results of the exterior of the Valencia Cathedral from two very different viewpoints. The depth map is
computed from the second image’s point of view.

Fig. 16. ROC for occlusion threshold: We plot ROC curves for the selection of the occlusion threshold for all of the image pairs of Fig. 14. (a) The
ROC curves of the narrow-baseline image pair f4; 5g and the wide-baseline image pair f1; 5g. (b) The area under the curve (AUC) of the ROC graphs
of the image pairs with respect to the angle between the principal axes of the cameras. The result of each such pair is represented with a data point
and the curve shows the fitted line to these.



convolutions, which can be computed very quickly and
from using a circularly symmetrical weighting kernel. The
experiments suggest that, although pixel differencing or
correlation is good for short-baseline stereo, wide baseline
requires a more advanced measure for comparison. We
showed DAISY to be very effective for this purpose.

Our method gives good results, even when using small
images for stereo reconstruction. This means that we could
use our algorithm to process video streams whose resolu-
tion is often lower than that of still images. When dealing
with slanted surfaces and foreshortening, these results
could be further improved by explicitly taking into account
3D surface orientation and warping the DAISY grid
accordingly, which would not involve any significant
computational overhead. This would fit naturally in a warp

stereo approach [23] in which we would begin with

unwarped detectors to compute a first surface estimate,

use the corresponding orientations to warp the detectors,

and iterate.
Computing our descriptor primarily involves perform-

ing Gaussian convolutions, which are amenable to hard-

ware exportation or GPU implementation. This could lead

to real-time, or even faster, computation of the descriptor

for all image pixels. This could have implications beyond

stereo reconstruction because dense computation of image

descriptors is fast becoming an important technique in other

fields, such as object recognition [7], [18]. To encourage such

developments, a C++ and MATLAB implementation of

DAISY is available for download from our webpage [30].
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Fig. 20. Results on low-resolution versions of the Rathaus images [27]: (a)-(c) Three input images of size 768� 512 instead of the 3;072� 2;048
versions that were used in [26]. (d) Depth map computed using all three images. (e) A fourth image not used for reconstruction. (f) Image
synthesized using the depth map and the image texture in (a) with respect to the view point of (e). Note how similar it is to (e). The holes are caused
by the fact that a lot of the texture in (e) is not visible in (a).

Fig. 21. Low-resolution versions of the Brussels images [26]: (a)-(c) Three 768� 510 versions of the original 2;048� 1;360 images. (d) and (e) The

depth map computed using images (a) and (b) seen in the perspective of image (c) and the corresponding resynthesized image. Note that the

locations where there are people in one image and not in the other are correctly marked as occlusions. (f) and (g) The depth map and synthetic

image generated using all three images. Note that the previously occluded areas are now filled and that the people have been erased from the

synthetic image.

Fig. 19. Brightness Change: We compute the depth map from the second image’s point of view using DAISY. There is a brightness change between
the two images.
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