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Abstract 
This paper presents a new method for detecting scale in- 

variant interest points. The method is based on two recent 
results on scale space: I) Interest points can be adapted 
to scale and give repeatable results (geometrically stable). 
2) Local extrema over scale of normalized derivatives in- 
dicate the presence of characteristic local structures. Our 
method first computes a multi-scale representation for the 
Harris interest point detector: We then select points at which 
a local measure (the Laplacian) is maximal over scales. 
This allows a selection of distinctive points for which the 
characteristic scale is known. These points are invariant to 
scale, rotation and translation as well as robust to illumina- 
tion changes and limited changes of viewpoint. 

For indexing, the image is characterized by a set of scale 
invariant points; the scale associated with each point al. 
lows the computation of a scale invariant descriptol: Our 
descriptors are, in addition, invariant to image rotation, 
to afine illumination changes and robust to small perspec- 
tive deformations. Experimental results for indexing show 
an excellent perfarmance up to a scale factor of 4 for a 
database with more than 5000 images. 

1 Introduction 
The difficulty inlobject indexing is to determine the iden- 

tity of an object under arbitrary viewing conditions in the 
presence of cluttered real-world scenes or occlusions. Lo- 
cal characterization has shown to be well adapted to this 
problem. The small size of the characteristic regions makes 
them robust against occlusion and background changes. To 
obtain robustness to changes of viewing conditions they 
should also be invariant to image transformations. Recent 
methods for indexing differ in the type of invariants used. 
Rotation invariants have been presented by [IO], rotation 
and scale invariants by [81 and affine invariants by [13]. 

Schmid and Mohr [IO] extract a set of interest points 
and characterize each of the points by rotationally invari- 
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ant descriptors which are combinations of Gaussian deriva- 
tives. Robustness to scale changes is obtained by comput- 
ing Gaussian derivatives at several scales. Lowe [8] extends 
these ideas to scale invariance by maximizing the output 
of difference-of-Gaussian filters in scale-space. Tuytelaars 
et al. [ 131 have developed affine invariant descriptors by 
searching for affine invariant regions and describing them 
by color invariants. To find these regions they simultane- 
ously use interest points and contours. Instead of using an 
initial set of features, Chomat et al. [2] select the appropriate 
scale for every point in the image and compute descriptors 
at these scales. An object is represented by the set of these 
descriptors. All of the above methods are 1imited.to a scale 
factor of 2. 

basel.ine: matching [ I', 
m. is; however more restricted.. . Addi- 

tional constraints can be imposedcand'the search complexity 
is less prohibitive. For example, Prichett and,Zisserman [9] 
first match regions,boand by foul: line segments. They then 
use c.orresponding fiegions to, compute rhe homography and 
grow the regions. Such an approach is clearly difficult to ex- 
tend to the problem of indexing. Two of the papers on wide- 
baseline matching have specifically addressed the problem 
of scale. Hansen et al. [5] present a method that uses cor- 
relation of scale traces through multi-resolution images to 
find correspondence between images. A scale trace is a set 
of values for a pixel at different scales of computation. Du- 
fournaud et al. [3] use a robust multi-scale framework to 
match images. Interest points and descriptors are computed 
at different scale levels. A robust homography based match- 
ing algorithm allows to select the correct scale. These two 
approaches are not usable in the context of indexing, as im- 
age to image comparison is necessary. In the context of 
indexing we need discriminant features which can be ac- 
cessed directly. Storage of several levels of scale is pro- 
hibitive, as it  gives rise to additional mismatches and in- 
creases the necessary storage space. 

In this papers we propose an approach which allows in- 
dexing in the presence of scale changes up to a factor 4. 

Simi,lati agproaches. exi'sti 
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The success of this method is based on a repeatable and 
discriminant point detector. The detector is based on two 
results on scale space: 1)  Interest points can be adapted 
to scale and give repeatable results [3]. 2 )  Local extrema 
over scale of normalized derivatives indicate the presence of 
characteristic local structures [7 ] .  The first step of our ap- 
proach is to compute interest points at several scale levels. 
We then select points at which a local measure (the Lapla- 
cian) is maximal over scales. This allows to select a subset 
of the points computed in scale space. For these points we 
know their scale of computation, that is their characteris- 
tic scale. Moreover, it allows to select the most distinctive 
points. Points are invariant to scale, rotation and transla- 
tion as well as robust to illumination changes and limited 
changes of viewpoint. This detector is the main contribution 
of this paper. We show that its repeatability is better than 
the one of other approaches proposed in the literature and 
therefore allows to obtain better indexing results. The sec- 
ond contribution is the quality of our indexing and matching 
results. 

Overview. This paper is organized as follows. In section 2 
we introduce scale selection. In section 3 our scale invariant 
interest point detector is described and section 4 presents al- 
gorithms for matching and indexing. Experimental results 
are given in section 5. 

2. Scale selection 
In the following we briefly introduce the concept of 

scale-space and show how to select the characteristic scale. 
We then prcscnt experimental results for scale selection. 

Scale-space. The scale-spacc representation is a set of im- 
ages represented at different levels of resolutions [ 141. Dif- 
ferent levels o f  resolution are in general created by convolu- 
tion with the Gaussian kernel: L(x, s) = G(s) * I(x) with 
I the image and x = ( : E ,  y). We can represent a feature (i.e. 
edges, corners) at different resolutions by applying the ap- 
propriate function (combinations of derivatives) at different 
scales. The amplitude of spatial derivatives, in general, de- 
creases with scale. In the case of scale invariant forms, like 
step-cdge, the derivatives should be constant over scales. 
In order to maintain the property of scale invariance the 
derivative function must be normalized with respect to the 
scale of observation. The scale normalized derivative D of 
order rn. is defined by: 

Normal t x d  derivatives behave nicely under scaling of 
the intensity pattern. Consider two images I and I’ imaged 
at different scales. The relation between the two images is 
thcn defncd by: I ( x )  = I’(x’), where x’ = tx. Image 
derivatives are thcn related by: 

S‘ ”G~~ , , ,~ , , ,  (s) * I(x) = t’”.sfnGll L ,  ( t s )  * I ( x ’ )  

Thus, for normalized derivatives we obtain: 

Dz, ... 2 ,  (x, 8) = DI, ...& (x, t s )  
We can see that the same values are obtained at corre- 

sponding relative scales. 
To maintain uniform information change between suc- 

cessive levels of resolution the scale factor must be dis- 
tributed exponentially. Let F be a function used to build the. 
scale-space and normalized with respect to scale. The set of 
responses for a point x is then F(x, s,) with s, = kns0. so 
is the initial scale factor at the finest level of resolution andl 
s, denotes successive levels of the scale-space representa- 
tion with k the factor of scale change between successive: 
levels. 

Characteristic scale. The properties of local characteristic: 
scales were extensively studied in [7]. The idea is to select a 
characteristic scale by searching for a local extremum over 
scales. Given a point in an image we compute the func-. 
tion responses for several scale factors s,, see Figure 1 .  
The characteristic scale is the local maximum of the func- 
tion. Note that there might be several maxima, therefore 
several characteristic scales. The characteristic scale is rel- 
atively independent of the image scale. The ratio of the 
scales, at which the extrema were found for corresponding 
points in two rescaled images, is equal to the scale factor 
between the images. Instead of detecting extrema we can 
also look for other easy recognizable signal shapes such as 
zero-crossings of the second derivative. 

Figure 1: The top row shows two images taken with dif- 
ferent focal lengths. The bottom row shows the response 
F ( x ,  s,) over scales where F is the normalized Laplacian 
(cf. eq.2). The characteristic scales are at 10.1 and 3.89 for 
the left and right image, respectively. The ratio corresponds 
to the scale factor (2.5) between the two images. 

Several derivative based functions F can be used to com- 
pute a scale representation of an image. These functions 
should be rotation invariant. Illumination invariance is less 
critical because we are looking for extrema. In the follow- 
ing we present the differential expressions used for our ex- 
periments. Note that all expressions are scale normalized. 

Square gradient s2((L2(x, s) + Lt (x ,  s)) (1) 
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.... 

Laplacian 
detected 46% 
correct/ 
detected 29% 
correct 13.3% 

LapIacian (S~(L~~(X, s) + Ly,(x,  s))l (2) 

Difference-of-Gaussian Il(x) * G(s,-l) - I(x) * G(s,)l 
(3) 

Harris function det ( C )  - (Y trace ( C )  (4) 

with C(x, s, S) = 

DOG gradient Harris 
38% 30% 16% 

28% 22% 23% 
10.6% 6.6% 3.4% 

Experimental results. The scale selection technique based 
on local maxima has been evaluated for functions (1),(2),(3) 
and (4). The evaluation was conducted on several sequences 
with scale changes. The characteristic scale was selected for 
every point in the image. Figure 2 displays image points for 
which scale selection is possible (white and grey). Black 
points are points for which the function (Laplacian) has no 
maximum. Note that these points lie in homogeneous re- 
gions and have no maximum in the range of considered 
scales. 

The selected scale for a point is correct if the ratio 
between characteristic scales in corresponding points is 
equal to the scale factor between the images. Correspond- 
ing points are determined by projection with the estimated 
transformation matrix. In the case of multiple scale max- 
ima, the point is considered correct, if one of the maxima 
corresponds to the correct ratio. Points with correctly se- 
lected scales are displayed in white (cf. Figure 2). 

original c 

scaIe=2.5, 35% 

scale=] .2, 80% 

scale=4.3, 16% 

Figure 2: Characteristic scale of points. Black-no charac- 
teristic scale is detected. Gray-a characteristic scale is de- 
tected. White-a characteristic scale is detected and is cor- 
rect. The scale of the images is given above the images and 
corrcsponds to scale = o ~ ~ ~ ; ~ ~ d n l .  The scaled images were 
enlarged to increase the visibility. 

We can observe that only a small percentage of selected 
scales are correct for large scale factors. In table 1 we have 
compared results for different functions F in  the presence 

527 



Figure 3: Searching for maxima in scale-space. 

Our approach does not use a single function to search in 
3D, but uses the Harris function (cf. eq. 4) to localize points 
in 2D and then selects points for which the Laplacian attains 
a maximum over scales. In the following, it is referred to as 
the Harris-Laplacian. 

The Harris detector is used for 2D localization as it  has 
shown to be most reliable in the presence of image rota- 
tion, illumination transformations and perspective deforma- 
tions as shown in a comparative evaluation [ 1 I]. However, 
the repeatability of this detector fails when the resolution 
of images changes significantly. In order to deal with such 
changes, the Harris detector has to be adapted to the scale 
factor [3]. Repeatability results for such an adapted ver- 
sion are excellent. The remaining problem is scale selec- 
tion. During our experiments we noticed that the adapted 
Harris function rarely attains maxima in 3D space. If too 
few points are detected, the image representation is not ro- 
bust. Therefore, we propose to use a different function, the 
Laplacian, for scale maxima detection. We have seen in the 
previous section that this function allows to find the highest 
percentage of correct maxima. 

Our detection algorithm works as follows. We first build 
a scale-space representation for the Harris function. At each 
level of the scale-space we detect interest points by detect- 
ing the local maxima in the image plane: 

F ( x ,  s,) > F(xw, s,) vx, E w 
F(x,sn) > t h  

where W denotes the 8-neighbourhood of the point x. 
In order to obtain a more compact representation, we ver- 

ify for each of the candidate points found on different levels 
if it forms a maximum in the scale direction. The Laplacian 
is used for selection. 

F ( x ,  sn)  > F ( x ,  ~ 7 1 - 1 )  A F ( x ,  s n )  > F ( x ,  s n + ~ )  
F(x,s,) > tl 

Figure 5 shows the scale-space representation for two 
real images with points detected by the Harris-Laplacian 
method. For these two images of the same object imaged at 
different scales we present for each scale level the selected 
points. There are many point-to-point correspondences be- 
tween the levels for which the scale ratio corresponds to the 
real scale change between the images (indicated by point- 
ers). Additionally, very few points are detected in the same 

location but on different levels. Our points are therefore 
characteristic to the image plane and the scale dimension. 

A comparative evaluation of different scale invariant in- 
terest point detectors is presented in the following. We 
compare the approaches of Lindeberg (Laplacian and gra- 
dient), Lowe as well as our Harris-Laplacian detector. To 
show the gain compared to the non-scale invariant method, 
we also present the results of the standard Harris detector. 
The stability of detectors is evaluated using the repeatabil- 
ity criteria introduced in [ I  I ] .  The repeatability score is 
computed as a ratio between the number of point-to-point 
correspondences that can be established for detected points 
and the mean number of points detected in two images: 
T1 ,2  = mean(m1,mz) c('lJz) where C(I1 , I z )  denotes the number 
of corresponding couples and ml, mz the numbers of de- 
tected points in the images. Two points correspond if the 
error in relative location does not exceed 1.5 pixel in the 
coarse resolution image and the ratio of detected scales for 
these points does not differ from the real scale ratio by more 
than 20%. Figure 4 presents the repeatability score for the 
compared methods. The experiments were done on I O  se- 
quences of real images. Each sequence consists of scaled 
and rotated images for which the scale factor varies from 1.2 
up to 4.5. Best results are obtained for the Harris-Laplacian 
method. The results are 10% better than those of the second 
best detector, the Laplacian. 

Figure 4: Repeatability of interest point detectors with re- 
spect to scale changes. 

4. Robust matching and indexing 
In the following we briefly describe our robust matching 

and indexing algorithms. The two algorithms are based on 
the same initial steps: 

1 .  Extraction of Harris-Laplacian interest points (cf. sec- 
tion 3 ) .  

2. Computation of a descriptor for each point at its char- 
acteristic scale. Descriptors are invariant to image ro- 
tation and affine illumination changes. They are robust 
to small perspective deformations. 
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I 1.92 s 1 . 2  \ s=2.4 \ s=4.8 \ s=9.6 

s= 1.2 s=2.4 s=4.8 s=9.6 

Figure 5 :  Points detected on different resolution levels with the Harris-Laplacian method. 

3. Comparison of descriptors based on the Mahalanobis 
I distance. 

Interest ,points. To extract interest points we have used 
a sca1e:representation with 17 resolution levels. The initial 
scale so is 1.5 and the factor k between two levels of resolu- 
tion is 1.2. The parameter a is set to 0.06 and the thresholds 
t h  and tl are set to 1500 and 10, respectively. 

Descriptors. Our descriptors are Gaussian derivatives 
which are computed at the characteristic scale. Invariance 
to rotation is obtained by “steering” the derivatives in the 
direction of the gradient [4]. To obtain a stable estimation 
of the gradient direction, we use the peak in a histogram of 
local gradient orientations. Invariance to the affine inten- 
sity changes is obtained by dividing the derivatives by the 
steered first derivative. Using up to 4th order derivatives, 
we obtain descriptors of dimension 12. 

I 

Comparison of descriptors. The similarity of descriptors 
is measured by the Mahalanobis distance. This distance 
requires the estimation of the covariance matrix A which 
encapsulates signal noise, variations in photometry, inaccu- 
racy of interest point location, and so forth. A is estimated 
statistically over a large set of image samples. 

Robust matching. To robustly match two images, we first 
determine point-to-point correspondences. We select for 
each descriptor in the first image the most similar descrip- 
tor in the second image based on the Mahalanobis distance. 
If the distance is below a threshold the match is kept. This 
allows us to obtain a set of initial matches. A robust esti- 
mation of the transformation between the two images based 
on RANdom SAmple Consensus (RANSAC) allows to re- 
ject inconsistent matches. For our experimental results the 
transformation is either a homography or a fundamental ma- 

trix. A model selection algorithm [6] can of course be used 
to automatically decide what transformation is the most ap- 
propriate one. 

Indexing. A voting algorithm is used to select the most 
similar images in the database. This makes retrieval robust 
to mismatches as well as outliers. For each point of a query 
image, its descriptor is compared to the descriptors in the 
database. If the distance is less than a fixed threshold, a vote 
is added to the corresponding database image. Note that a 
point cannot vote several times for the same database im- 
age. The database image with the highest number of votes 
is the most similar one. 

5. Experimental results 
In the following, we validate our detection algorithm by 

matching and indexing results. Figure 6 illustrates the dif- 
ferent steps of our matching algorithm. In this example the 
two images are taken from the same viewpoint, but with a 
change in focal length and image orientation. The top row 
shows the detected interest points. There are 190 and 213 
points detected in the left and right images, respectively. 
The number of detected points is about equivalent to results 
obtained by a standard interest point detector. This clearly 
shows the selectivity of our point detection method. If no 
scale peak selection had been used, more than 2000 points 
would be detected. The middle row shows the 58 matches 
obtained during the initial matching phase. The bottom row 
displays the 32 inliers to the estimated homography, all of 
which are correct. The estimated scale factor between the 
two images is 4.9 and the estimated rotation angle is I9 de- 
grees. 

Figure 7 shows an example for a 3D scene where the 
fundamental matrix is used for verification. There are 180 
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and 176 detected points detected in the left and right im- 
ages. The number of initial matches is 23 and there are 14 
inliers to the robustly estimated fundamental matrix, all of 
them correct. Note that the images are taken from different 
viewpoints, the transformation includes a scale change, an 
image rotation as well as a change in the viewing angle. The 
building in the middle is almost half occluded. 

database (second row) was correctly retrieved, that is it was 
the most similar one. The approximate scale factor is given 
in row three. The changes between the image pairs (first and 
second row) include important changes in the focal length, 
for example 5.8 for the image pair (a). They also include 
important changes in viewpoint, for example for pair (b). 
Furthermore, they include important illumination changes 
(image pair (e)). 

Extracted interest points 

Initial points matches 

Inliers to the estimated homography I 

Figure 6: Robust matching: there are 190 and 213 points 
detected in the left and right images, respectively (top). 58 
points are initially matched (middle). There are 32 inliers 
to the estimated homography (bottom), all of which are cor- 
rect. The estimated scale factor is 4.9 and the estimated 
rotation angle is 19 degrees. 

In the following we show the results for retrieval from a 
database with more than 5000 images. The images in the 
database are extracted from 16 hours of video sequences 
which include movies, sport events and news reports. Sim- 
ilar images are excluded by taking one image per 300 
frames. Furthermore, the database contains one image from 
each of our 10 test sequences. The total number of descrip- 
tors in our database is 2539342. 

The second row of figure 8 shows five images of the test 
sequences which are contained in the database. The top row 
displays images for which the corresponding image in the 

Figure 7: Example of images taken from different view 
points. There are 14 inliers to a robustly estimated funda-. 
mental matrix, all of them are correct. The estimated scale: 
factor is 2.7. 

The test sequences where used to systematically evalu-. 
ate the performance of retrieval. Results are shown in ta-. 
ble 2. For each of the 10 test sequences, we have evaluated 
the performance at different scale factors (1.4 to 4.4). For 
each scale factor, we have evaluated the percentage that the: 
corresponding image is the most similar one or among the: 
five or ten most similar images. We can see that up to a 
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(a) 1b.8 

L. 

1.4 1.8 2.4 2.8 3.4 4.4 
I 60 60 60 50 30 30 

1 5 1 100 90 60 80 50 50 

(b) 3.7 (c) 114.4 (d) 1/4.1 (e) 5.7 

Figure 8: The first row shows some of the query images. The second row shows the most similar images in the database, all 
of them are correct. The approximative scale factor between query image and database image is given in row three. 

scale factor of 4.4, the performance is very good. At the 
scale of 4.4, 30% of the images are correctly retrieved, 50% 
are among the 5 best matches and 70% are among the I O  
best matches. These results were obtained with 12 dimen- 
sional descriptors. If we use derivatives up to order 3, that is 
7 dimensional descriptors, the results degrade significantly. 
This justifies using the fourth order derivatives. 

1 1  #retrieved 1 1  scale factor II 

I I I I I L I( 100 I 100 I 90 1 90 I 80 I 70 
I, 

I O  

Table 2: Indexing results for our test sequenccs at different 
scale factors. The first row of the table gives the percentage 
of correct retrieval, that is the corresponding image is re- 
trieved as the most similar one. The secondhhird row give 
percentages that the corresponding image is among the 5/10 
most similar images. 

6. Conclusions and perspectives 
We have presented an algorithm for interest point detec- 

tion that is invariant to important scale changes. A com- 
parison with existing detectors shows that our interest point 
detector gives better results. Experimental validation for 
matching and indexing was carried out on a significant 
amount of data. Matching and indexing results are very 
good up to a scale factor of 4. To our knowledge none of 
the existing approach allows to deal with such scale factors 
in the context of indexing. Furthermore, our approach is in- 
variant to image rotation and translation as well as robust to 
illumination changes and limited changes in viewpoint. Per- 
formance could be further improved by using more robust 
point descriptors. In our future research, we intend to focus 
on the problem of affine invariance of point descriptors. 
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