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Consistency of image edge filtering is of prime importance 
for 3 0  interpretation of image sequences using feature 
tracking algorithms. To cater for image regions containing 
texture and isolated features, a combined corner and edge 
detector based on the local auto-correlation function is 
'utilised, and it is shown to perform with good consistency 
'on natural imagery. 

INTRODUCTION 

The problem we are addressing in Alvey Project MMI149 
is that of using computer vision to understand the 
unconstrained 3D world, in which the viewed scenes will 
in general contain too wide a diversity of objects for top- 
down recognition techniques to work. For example, we 
desire to obtain an understanding of natural scenes, 
containing roads, buildings, trees, bushes, etc., as typified 
by the two frames from a sequence illustrated in Figure 1. 
The solution to this problem that we are pursuing is to 
use a computer vision system based upon motion analysis 
of a monocular image sequence from a mobile camera. By 
extraction and tracking of image features, representations 
of the 3D analogues of these features can be constructed. 
! 

To'enabie explicit tracking of image features to be 
.performed, the image features must be discrete, and not 
'form a continuum like texture, or edge pixels (edgels). For 
'this reason, our earlier work1 has concentrated on the 
extraction and tracking of feature-points or corners, since 

they are discrete, reliable and meaningful2. However, the 
lack of connectivity of feature-points is a major limitation 
in our obtaining higher level descriptions, such as surfaces 
and objects. We need the richer information that is 
available from edge$. 

THE EDGE TRACKING PROBLEM 

Matching between edge images on a pixel-by-pixel basis 
works for stereo, because of the known epi-polar camera 
geometry. However for the motion problem, where the 
camera motion is unknown, the aperture problem prevents 
us from undertaking explicit edge1 matching. This could be 
overcome by solving for the motion beforehand, but we 
are still faced with the task of tracking each individual edge 
pixel and estimating its 3D location from, for example, 
Kalman Filtering. This approach is unattractive in 
comparison with assembling the edgels into edge 
segments, and tracking these segments as the features. 

Now, the unconstrained imagery we shall be considering 
will contain both curved edges and texture of various 
scales. Representing edges as a set of straight line 
fragments4, and using these as our discrete features will be 
inappropriate, since c w e d  lines and texture edges can be 
expected to fragment differently on each image of the 
sequence, and so be untrackable. Because of ill- 
conditioning, the use of parametrised curves (eg. circular 
arcs) cannot be expected to provide the solution, especially 
with real imagery. 

Figure I .  Pair of images from an outdoor sequence. 



Having found fault with the above solutions to the 
problem of 3D edge interpretation, we question the 
necessity of trying to solve the problem at all! Psycho- 
visual experiments (the ambiguity of interpretation in 
viewing a rotating bent coat-hanger in silhouette), show 
that the problem of 3D interpretation of curved edges may 
indeed be effectively insoluble. This problem seldom 
occurs in reality because of the existence of small 
imperfections and markings on the edge which act as 
trackable feature-points. 

Although an accurate, explicit 3D representation of a 
curving edge may be unobtainable, the connectivity it 
provides may be sufficient for many purposes - indeed the 
edge connectivity may be of more importance than explicit 
3D measurements. Tracked edge connectivity, supplement- 
ed by 3D locations of comers and junctions, can provide 
both a wire-frame structural representation, and delimited 
image regions which can act as putative 3D surfaces. 

This leaves us with the probIem of performing reliable (ie, 
consistent) edge filtering. The state-of-the-art edge filters, 
such as5, are not designed to cope with junctions and ' . 

comers, and are reluctant to provide any edge connectivity, 
This is illustrated in Figure 2 for the Canny edge operator, 
where the above- and below-threshold edgels are represented : 
respectively in black and grey. Note that in the bushes, 
some, but not all, of the edges are readily matchable by -' 

eye. After hysteresis has been undertaken, followed by the 
deletion of spurs and short edges, the application of a 
junction completion algorithm results in the edges and 
junctions shown in Figure 3, edges being shown in grey, 

~ 

and junctions in black. In the bushes, very few of the 
edges are now readily matched. The problem here is that of 
edges with responses close to the detection threshold: a 
small change in edge strength or in the pixellation causes a 
large change in the edge topology. The use of edges to 
describe the bush is suspect, and it is perhaps better to 
describe it in terms of feature-points alone. 

Figure 2. Unlinked Canny edges for the outdoor images 
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Figure 3. Linked Canny edgesfor the outdoor images 



AUTO-CORRELATION DETECTOR 
The solution to this problem is to attempt to detect both 
edges and corners in the image: junctions would then 

; consist of edges meeting at corners. To pursue this 
' approach, we shall start from Moravec's comer detectofi. 

MORAVEC REVISITED 

Moravec's comer detector functions by considering a local 
window in the image, and determining the average changes 
of image intensity that result from shifting the window by 
a small amount in various directions. Three cases need to 
be considered: 

A. If the windowed image patch is flat (ie. approximately 
constant in intensity), then all shifts will result in only 
a small change; 

0. If the window straddles an edge, then a shift along the 
edge will result in a small change, but a shift 
perpendicular to the edge will result in a large change; 

C. If the windowed patch is a comer or isolated point, then 
all shifts will result in a large change. A comer can 
thus be detected by finding when the minimum change 
produced by any of the shifts is large. 

We now give a mathematical specification of the above. 
Denoting the image intensities by I, the change E produced 
by a shift (x,y) is given by: 

where w specifies the image window: it is unity within a 
specified rectangular region, and zero elsewhere. The shifts, 
(x,y), that are considered comprise ((1,0), (1,1), (0,1), 
(-1.1)). Thus Moravec's corner detector is simply this: 
look for local maxima in min(E) above some threshold 
value. 
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Figure 4. Corner detection on a test image 

The performance of Moravec's corner detector on a test 
image is shown in Figure 4a; for comparison are shown 
the results of the Beaudet7 and Kitchen & ~ o s e n f e l d ~  
operators (Figures 4b and 4c respectively). The Moravec 
operator suffers from a number of problems; these are 
listed below, together with appropriate corrective 
measures: 

1. The response is anisotropic because only a 
discrete set of shifts at every 45 degrees is 
considered - all possible small shifts can be covered by 
performing an analytic expansion about the shift origin: 

where the first gradients are approximated by 

Hence, for small shifts, E can be written 

where 
A =  x 2 8 w  
B =  y 2 @ w  
C=(XY)@w 

2. The response is noisy because the window is 
binary and rectangular - use a smooth circular 
window, for example a Gaussian: 

3. The operator responds too readily to edges 
because only the minimum of E is taken into 
account - reformulate the comer measure to make use of 
the variation of E with the direction of shift. 

The change, E, for the small shift (x,y) can be concisely 
written as 

where the 2x2 symmetric matrix M is 

Note that E is closely related to the local autocorrelation 
function, with M describing its shape at the origin 
(explicitly, the quadratic terms in the Taylor expansion). 
Let a$ be the eigenvalues of M. a and P will be 
proportional to the principal curvatures of the local auto- 



correlation function, and form a rotationally invariant 
description of M. As before, there are three cases to be 
considered: 

A. If both curvatures are small, so that the local auto- 
correlation function is flat, then the windowed image 
region is of approximately constant intensity (ie. 
arbitrary shifts of the image patch cause little change in 
El; 

B. If one curvature is high and the other low, so that the 
local auto-conelation function is ridge shaped, then 
only shifts along the ridge (ie. along the edge) cause 
little change in E: this indicates an edge; 

C. If both curvatures are high, so that the local auto- 
correlation function is sharply peaked, then shifts in 
any direction will increase E: this indicates a comer. 

iso-response contours 
R / 

Figure 5. Auto-correlation principal curvature space- 
heavy lines give cornerledgelflat classijkation, 

fine lines are equi-response contours. 

Consider the graph of (a$) space. An ideal edge will have 
a large and /3 zero (this will be a surface of translation), 
but in reality J3 will merely be small in comparison to a, 
due to noise, pixellation and intensity quantisation. A 
comer will be indicated by both a and P being large, and a 
flat image region by both a and P being small. Since an 
increase of image contrast by a factor of p will increase a 
and p proportionately by p2, then if (a$) is deemed to ' 

belong in an edge region, then so should (ap2,pp2), for 
positive values of p. Similar considerations apply to 
comers. Thus (a$) space needs to be divided as shown by 
the heavy lines in Figure 5. 

CORNERIEDGE RESPONSE FUNCTION 

Not only do we need comer and edge classification regions, 
but also a measure of comer and edge quality or response. 
The size of the response will be used to select isolated 
comer pixels and to thin the edge pixels. 

Let us first consider the measure of comer response, R, 
which we require to be a function of a and P alone, on 
grounds of rotational invariance. It is attractive to use 
Tr(M) and Det(M) in the formulation, as this avoids the 
explicit eigenvalue decomposition of M, thus 

Consider the following inspired formulation for the comer 
response 

~ = ~ e t - k ~ r ~  . S  a 

? 

Contours of constant R are shown by the fine lines in 
Figure 5. R is positive in the corner region, negative in 
the edge regions, and small in the flat region. Note that 
increasing the contrast (ie. moving radially away from the 

Figwe 6. Edgelcorner class$icafion for the outdoor images 
(grey = corner regiom, white = thinned edges). 



a b 
Figure 7. Completed edges for the outdoor images 

(white = corners, black = edges). 

origin) in all cases increases the magnitude of the 
response. The flat region is specified by Tr falling below 
some selected threshold. 

A comer region pixel (ie, one with a positive response) is 
selected as a nominated comer pixel if its response is an 8- 
way local maximum: comers so detected in the test image 
are shown in Figure 4d. Similarly, edge region pixels are 
deemed to be edgels if their responses are both negative and 
local minima in either the x or y directions, according to 
whether the magnitude of the first gradient in the x or y 
direction respectively is the larger. This results in thin 

- edges. The raw edgelcorner classification is shown in 
Figure 6, with black indicating corner regions, and grey, 
the thinned edges. 

By applying low and high thresholds, edge hysteresis can 
_ be carried out, and this can enhance the continuity of 

edges. These classifications thus result in a 5-level image 
comprising: background, two comer classes and two edge 
classes. Further processing (similar to junction 

d completion) will delete edge spurs and short isolated edges, 
"nd bridge short breaks in edges. This results in 

continuous thin edges that generally terminate in the 
comer regions. The edge terminators are then linked to the 

' comer pixels residing within the comer regions, to form a 
connected edge-vertex graph, as shown in Figure 7. Note 
that many of the comers in the bush are unconnected to 

A edges, as they reside in essentially textural regions. 
i Although not readily apparent from the Figure, many of 
' the corners and edges are directly matchable. Further work 

remains to be undertaken concerning the junction 
; Completion algorithm, which is currently quite 
I rudimentary, and in the area of adaptive thresholding. 
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