OPTICAL IMAGE SYNTHESIS FOR CLOUD REMOVAL WITH GENERATIVE ADVERSARIAL NETWORKS

José David Bermúdez Castro

Advisor: Prof. Raul Queiroz Feitosa
Co-advisor: Dr. Patrick Nigri Happ

Laboratório de Visão Computacional
Departamento de Engenharia Elétrica
PUC-RIO
Introduction

Remote sensing data:

- Cost-effective solution for many applications,
 - Agricultural mapping
 - Urban planning
 - Disaster management
 - Weather forecasting,
 - etc.
- More satellites with higher spatial resolution and lower revisiting time.
 - Landsat 8
 - Sentinel 1
 - Sentinel 2
 - etc.
- These applications can be affected by the presence of clouds in optical imagery from passive sensors.
Introduction

Remote sensing data:

- Cost-effective solution for many application,
Introduction

Remote sensing data:

■ Cost-effective solution for many application,
 ▶ Agricultural mapping
 ▶ Urban planning
 ▶ Disaster management
 ▶ Weather forecasting,
 ▶ etc.

■ More satellites with higher spatial resolution and lower revisiting time.
 ▶ Landsat 8
 ▶ Sentinel 1
 ▶ Sentinel 2
 ▶ etc.

■ These applications can be affected by the presence of clouds in optical imagery from passive sensors.
Introduction

Remote sensing data:

- Cost-effective solution for many application,
 - Agricultural mapping
 - Urban planning
 - Disaster management
 - Weather forecasting,
 - etc.

- More satellites with higher spatial resolution and lower revisiting time.
Introduction

Remote sensing data:

- Cost-effective solution for many applications,
 - Agricultural mapping
 - Urban planning
 - Disaster management
 - Weather forecasting,
 - etc.

- More satellites with higher spatial resolution and lower revisiting time.
 - Landsat 8
 - Sentinel 1
 - Sentinel 2
 - etc.
Introduction

Remote sensing data:

- Cost-effective solution for many application,
 - Agricultural mapping
 - Urban planning
 - Disaster management
 - Weather forecasting,
 - etc.

- More satellites with higher spatial resolution and lower revisiting time.
 - Landsat 8
 - Sentinel 1
 - Sentinel 2
 - etc.

- These applications can be affected by the presence of clouds in optical imagery from passive sensors.
Introduction

Optical imagery is affected by the presence of clouds.

Figure. *Campo Verde* municipality, Mato Grosso, Brazil.
Introduction

Solutions ? ...
Solutions

- Use of images from active sensors, like Synthetic Aperture Radar (SAR).
 - They almost do not depend on the atmospheric conditions neither on the solar illumination.
 - The information captured by them is less descriptive and more complex to interpret than in optical images.

- Use reconstruction techniques for cloud removal,
 - There is still no method able to completely solve this problem.
Solutions

■ Use of images from active sensors, like *Synthetic Aperture Radar* (SAR).

▶ They almost do not depend on the atmospheric conditions neither on the solar illumination.

▶ The information captured by them is less descriptive and more complex to interpret than in optical images.

■ Use reconstruction techniques for cloud removal,

▶ There is still no method able to completely solve this problem.
Solutions

- Use of images from active sensors, like *Synthetic Aperture Radar* (SAR).
 - They almost do not depend on the atmospheric conditions neither on the solar illumination.
Solutions

- Use of images from active sensors, like *Synthetic Aperture Radar* (SAR).
 - They almost do not depend on the atmospheric conditions neither on the solar illumination.
 - The information captured by them is less descriptive and more complex to interpret than in optical images.
Solutions

- Use of images from active sensors, like *Synthetic Aperture Radar* (SAR).
 - They almost do not depend on the atmospheric conditions neither on the solar illumination.
 - The information captured by them is less descriptive and more complex to interpret than in optical images.

- Use reconstruction techniques for cloud removal,
Solutions

- Use of images from active sensors, like *Synthetic Aperture Radar* (SAR).
 - They almost do not depend on the atmospheric conditions neither on the solar illumination.
 - The information captured by them is less descriptive and more complex to interpret than in optical images.

- Use reconstruction techniques for cloud removal,
 - There is still no method able to completely solve this problem.
Conditional Generative Adversarial Networks (cGANs) have been broadly used in different image generation tasks,

Figure. Examples of some application of cGANs. Image taken from [Isola et al., 2016]
Motivation

Based on,

- SAR images are almost not affected by clouds.
- The capability of cGANs for image translation.
Motivation

Based on,

■ SAR images are almost not affected by clouds.
■ The capability of cGANs for image translation.

we proposed,

SAR to Optical Image Synthesis for Cloud Removal with cGANs
Motivation

Based on,

- SAR images are almost not affected by clouds.
- The capability of cGANs for image translation.

we proposed,

SAR to Optical Image Synthesis for Cloud Removal with cGANs

- **Objective:**

 Learn nonlinear mapping function that maps SAR images to optical cloud-free images.
Proposed Method

Figure. Proposed methodology for cloud removal in optical satellite images.
Proposed Method

Results:

(a) SAR
(b) Real
(c) Generated

(d) SAR
(e) Real
(f) Generated
Proposed Method

Results:

Figure. Result for monotemporal image classification in term of OA.
Proposed Method

Results:

Figure. Result for monotemporal image classification in term of AA.
Proposed Method: Multitemporal

Figure. Proposed multitemporal methodology for cloud removal in optical satellite images.
Proposed Method: Multitemporal

(a) Real Optical

(b) Monotemporal

(c) Multitemporal
References