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MEAN SQUARE STABILITY FOR DISCRETE BOUNDED
LINEAR SYSTEMS IN HILBERT SPACE*

C. S. KUBRUSLYt

Abstract. The asymptotic behaviour for infinite-dimensional discrete linear systems driven by white
noise is considered in this paper. Both the evolution and convergence of the state correlation operators
sequence are analysed. Mean square stability conditions are investigated, including a comparison with the
deterministic stability problem. The particular case of compact operators is considered in some detail.
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1. Introduction. Conditions for asymptotic stability of finite-dimensional discrete
linear system operating either in a deterministic or stochastic environment are by now
well established (cf. [10], [9]). On the other hand the same problem in an infinite-
dimensional setting, which is endowed with a much richer structure, still presents some
unsolved questions.

As far as the asymptotic stability problem for infinite-dimensional discrete linear
deterministic systems is concerned, there is available in the current literature a fairly
complete collection of results (cf. 3). This does not seem to be the case for discrete
stochastic systems, although some few results have already been investigated by using
different approaches and under different motivations. For instance, the convergence
analysis of stochastic approximation algorithms .in Hilbert space considered in [13]
and [8] actually gives asymptotic stability conditions for infinite-dimensional dynamical
systems. Questions related to optimal stochastic control problems have also motivated
some partial results in this direction (cf. [6], [16] and [17]).

In this paper we consider the mean square stability problem, by analysing both
the evolution and asymptotic behaviour of state correlation operators, for discrete
linear systems in Hilbert space. The paper is organized as follows. Notational pre-
liminaries and basic concepts, which will be needed along the text, are considered in

2. These comprise bounded linear transformations, positive and nuclear operators,
correlation operators, and approximate controllability. A brief review on asymptotic
stability for deterministic discrete systems is presented in 3, including the auxiliary
results which will be used in the sequel. The central theme of the paper appears in

4. There it is analysed the evolution and convergence of the state correlation sequence
{Qi; ->-0} for discrete linear systems driven by white noise. The main results (cf.
Lemma 2, Theorems 1, 2 and Corollary 1) deal with the relationship between conver-
gence of {Qi; i->0} and the spectral radius r(A) of the system operator A. It is shown
that r(A)< (i.e. uniform asymptotic stability for the free system) is sufficient to
ensure uniform convergence of {Qi; i>= 0} to a correlation operator (i.e. mean square
stability for the disturbed system). Necessary and sufficient conditions for uniform
convergence of {Q; _>- 0} to a positive correlation operator are also given, for the case
of a compact system operator A.
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20 c.s. KUBRUSLY

2. Notational and conceptual preliminaries. In this section we pose the notation
and some basic concepts which will be used in the sequel. Throughout this paper we
assume that U and H are separable nontrivial Hilbert spaces. and will stand
for inner product and norm, respectively.

Bounded linear transformations. Let X and Y be Banach spaces. [X, Y] will
denote the Banach space of all bounded linear transformations of X into Y. For
notational simplicity we write [X] for [X, X]. (T) and (T) will stand for the
null space and range space of T [X, Y], respectively. The spectrum of T [X]
will be denoted by tr(T). Ptr(T) c tr(T) will denote the point spectrum (i.e. the set of
all eigenvalues) of T [X]. r(T)=sup{lh]: h or(T)} is the spectral radius of
T [X]. T* [H, U] is the adjoint of T [U, HI. We shall write T T, T T,
or T T if a sequence { T; > 0} of operators in [H] converges weakly, strongly,
or uniformly to T [H] as i oo, respectively.

Positive and nuclear operators. A self-adjoint operator T T* [H] will be called
nonnegative (T-> 0), positive (T> 0), or strictly positive (T > 0) according to the
following standard definitions:

T>=O : (Tx;x)>=O VxH,

T>O :> (Tx;x)>O VxOH,

T>-O , lv>Osuchthat(Tx;x)>-/llxll VxeH.

If T -> 0e N[H] (T> 0, T> 0), then there exists a unique T1/2 >= Oe [g] (rl/2> O,
T/2> 0) such that (T/2)2= T. For T_-> 0e N[H] we define the trace of T as usual:

def.

tr (T) Y( Tek ek)
k k

where {ek; k>_ 1} is any orthonormal basis for H, and {/k_->0; k_>- 1} is the set of all
h e Pr(T), each of them counted according to its multiplicity. T_>- 0 e .[H] is nuclear
(or trace-class) if tr (T)< oo. Let NI[H] denote the class of all nuclear operators on
H, and recall that N[H]c o[H]c N[H], where N[X] denotes the class of all
compact linear operators on a Banach space X. The following well-known result will
be needed in the sequel.

Remark 1. If T N[H] has a bounded inverse (in particular, is strictly positive)
and it is compact (in particular, nuclear), then H is necessarily finite-dimensional.

Correlation operators. For arbitrary x, y H define the operator x oy g[H] as
follows [3]:

(xoy)z=x(z;y),

for every z e H. Now let u and v be H-valued second order random variables, and
define the following sesquilinear form:

def.

E{((uov)x;y)} E{(x; v)(u;y)}

Let (1, M, p) be a probability space where M is a g-algebra of subsets of a nonempty basic set
and p is a probability measure defined on M. An H-valued second order random variable is a p-measurable
map u 1"/ H such that

E{llull =} | u(,o)ll dp < oo

(i.e. u L2( p; H)). Here E denotes the expectation operator. An H-valued second order random sequence
{u;i>=O} is a family of H-valued second order random variables. For an introduction to the theory of
H-valued random variables see, for instance, [1 ].
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DISCRETE BOUNDED SYSTEMS IN HILBERT SPACE 21

on H H, which is bounded. The symbol E on the right hand side denotes expectation
in the usual way. Then (cf. [14, p. 120]) there exists a unique operator in [H], say
E {u v}, defined by

(E{uov}x; y)= E{((uov)x; y)}

for every x, y H. We call E{uov} [H] the correlation of u and v.
Remark 2. The following auxiliary results are readily verified.

E{uov}=E{vou}*,

E{(u +v)o(u +v)}= E{uou}+E{vov}+E{uov}+E{vou},

E{AuoBv}=AE{uov}B* I A, B[H].

Moreover, the correlation of u is self-adjoint nonnegative and nuclear; that is

0<= E{uou} E(uou)* ,[H],

since

tr (E{uou})= E(llull2}.
H-valued second order random variables u and v are said to be uncorrelated if
E{uov}= E{u}oE{v}. An H-valued second order random sequence {ui; i>=0} is wide
sense stationary if E{uio uj} depends only on the difference i-j for all i,j => 0. It is a
white noise if E {u uj} 0 for all # j.

Approximate controllability. A pair of operators A [H] and B 6 [U, HI is
approximate controllable [2], briefly (A, B) is A-C (also called weakly reachable [4]),
if

CI (B*A*) {0}.
j=0

We shall be particularly interested in the approximate controllability for the pair
(A, BR/2), for some R R*->_0 [U]2. Notice that

(A, BR/) is A-C :=> (A, B) is A-C,

since V(B*A*) c Jf(R/B*A*), and

R > 0 and (A, B) is A-C ==> (A, BR/) is A-C,

since R > 00(R/) {0} =:>(R/2B*A*) c Jf(B*A*J). Also notice that the reverses
of the above statements are not generally true.

3. Deterministic asymptotic stability. Asymptotic stability for discrete determinis-
tic infinite-dimensional linear systems has been investigated by several authors (e.g.
see [5], [15], [7], [12]). In this section we present some basic concepts and auxiliary
results which will be used in 4.

DEFINITION 1. Let X be a Banach space, A [X], and define an X-valued
sequence {x; i->_ 0} as follows:

X + Axi, Xo X.

If R is thought of as a correlation operator for an input disturbance sequence, then approximate
controllability for the pair (A, BR /2) is sometimes termed stochastic approximate controllability.
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22 . s. KUBRUSLY

The free linear system given in (1) (or equivalently, the operator A [X]) is:
(a) uniformly asymptotically stable if A’ --> 0. That is,

Ila’ll-->0 as i-->oo.

(b) strongly asymptotically stable if A’ --> 0. That is,

IIa’x - 0 as i--> oo Vx x.
Remark 3. By the Banach-Steinhaus theorem [14] it is immediate to verify that

sup IlA’xll < o Vx x r(A) -< 1,

since r(A)j= r(A) -< IIAII-<sup, IIA’II < oo, j0 (the reverse is clearly not true, for
take any operator A 3[R2] such that r(A)= and IIA’II- oo as i-> oo). Moreover it
is also readily verified by contradiction that

A’ -0 => Po’(A) {. C’IhI< 1}.

However even the combined reverse is not true, that is

r(A)=< and Po’(A) {h C" I 1< 1} :/=> A’ -0,

since by setting X=12 and letting AY3[12] be the right shift operator (i.e.
A(sCl, :2,""" (0, sol, so2, for all x (:l, :2,""" 12), it follows [11] that r(A) 1,
P(a)-, but IIA’xll- Ilxll i>_-0, for an arbitrary x 12.

On the other hand there are several equivalent ways of stating uniform asymptotic
stability.

LEMMA 1. LetXbe a complex Banach space andA [X]. Thefollowingproperties
are equivalent:

(a) Ila’t[->O as i-->oo.

(b) r(A) < 1.

(c) There exist real constants ), >- and p (0, 1), such that

(d) IIA’oll < for some io >- O.

(e) E [[A’ll’ < for any k > O.
i=0

(f) Y e’ll o < oo for some ko > O.
i=0

(g) E IIA’xll <, Vx x, for any k 1.
i=0

(h) E IIA’xll<, V X, for some ko 1.
i=0

Proof It is trivially verified that (c) => (e) (f) => (a). Since r,(A)’ r(A’) <= IIA’[[,
/i->0, one gets (a)=>(b). By the well-known Gelfand formula, IlAil] l/’-r(a) as
i- oe, and by the radical test for infinite series, it follows that (b) :=>IIA’H < pi, vi >= io,

For a real Banach space X the lemma still holds if r(A) is changed to r(A+), where A 3[X +]
is defined by A/(x +x/-ly)= Ax +x/--Ay, for all x, yX, with the complex Banach space X denoting
the complexification of X (cf. [14]). Notice that Ila+’lltx+a Ila’lltm, Vi-->0.
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DISCRETE BOUNDED SYSTEMS IN HILBERT SPACE 23

for some integer io>-O and any p(r(A), 1); which implies (c) with y=
max{ AJ O <=j <- io}p-io>= 1. Since IIA’xI[g<--_IIA’[Ik[[x[[ ’, for all xX, it is immediate
to verify that (e) :=> (g). That (g) (h) is trivial. It has been proved in [15] that (h) => (b).
Finally it is clear that (c):=>(d), and (d)(a) since [[A0[[-< [lAnolin, Vj>-O. lq

Remark 4. Obviously uniform asymptotic stability implies strong asymptotic sta-
bility. The fundamental difference between finite- and infinite-dimensional formulations
relies upon the reverse of the above statement, which is not generally true for infinite-
dimensional spaces. For instance, set X 12 and let A [12] be the left shift operator
(i.e. A(1, 2,""" )= (72, 3, for all X-’-(1, 2,""" ) 12). It is easy to show that
]lA’xll-O as i-oo for all x 12, but IIA’II Vi>=O. However, if A oo[X] (in
particular, if dim(X) < oo), then strong and uniform asymptotic stability are equivalent
concepts. Indeed, for A oo[X], or(A)-{0} Pcr(A)-{O}. Hence, if A o[X] is
strongly asymptotically stable, then the compact set or(A) is contained in the unit open
ball, according to Remark 3, and so r(A) < 1.

4. State correlation evolution and mean square stability. Consider a discrete linear
dynamical system evolving in a stochastic environment, and modelled by the following
autonomous difference equation.

(2) x+ Ax + Bud+l, Xo Buo,

where A Y3[H] and B [U, H]. Here {x; i-> 0} denotes an H-valued state sequence
such that Xo is an (B)= H-valued second order random variable. The input disturb-
ance sequence {u; i->0} is assumed to be an U-valued second order wide sense
stationary white noise, with correlation operator

R R*= E{u, ou,}>-O I[U] /i --> 0.

Now define the following self-adjoint nonnegative operator.

Q, Q* E AJQoA-j>-- O6 ,[H], Qo BRB*,
j=0

for every i>_-0. Notice that Qi is actually nuclear since R is nuclear, A and B are
bounded, and I[H] is a two-sided ideal of [H] (cf. [14, p. 173]). On iterating (2)
from Xo onwards, and using Remark 2, it is a simple matter to show that Qi is the state

correlation operator; that is,

Qi E {X Xi } / >-- O,

which has the following further properties.
PROPOSITION 1.

(a) Qj A’+1 Qj_i_l A*i+l + Q, lj > >= O.

In particular,

Q+l AQiA* + Qo A+I QoA*+I + Q Vi >- O.

Therefore, for every >= O,

(b) Q,Q,+I,

thus tr(Q) -< tr(Q+1) and Q -<- Qi+1 [[. Moreover,

(c) Q,>0 :> W(RI/2B*A*)={0}.
j=0
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24 e. S. KUBRUSLY

Proof Let i, j be any integers such that j > i_> 0. Then

j--i--I

QI _, A’QoA*t + A’QoA*’= Q, + A’+’+’ QoA*’+’+’,
1=o 1=i+1 I=O

thus following the result in (a). The particular cases are trivially obtained by setting
0 and j + 1, respectively. The result in (b) is then readily verified since

(Q,x; x)= E IIR’/B*A*xll Vx e n.
j=0

Therefore {tr(Q,)} and (110,11} are nondecreasing sequences. Since Q,->0 one gets
Q, > 0 :> {(Q,x; x) 0 =:> x=0}. But

(Qix;x)=0 : xe f’) W(R/2B*A*J),
j=0

thus following the result in (c).
We shall be particularly interested in the asymptotic behaviour of the sequence

{Q,;
LEMMA 2. (a) If Qi-> Q e 9[H], then Q-> Q, and the limit has the following

properties: 0 <= Q, <= Q Q*, Q, Q II,
Q=A+QA*i++Qi Yi->0.

Moreover,

(A, BR ’/) is A-C Q>0 Pr(A*){A ca: IAI< 1}.

(b) /f Qi Q e 3[H], then tr (Q,)/ tr Q), and Q Q.

Proof. If Q wQe [H], then by the Banach-Steinhaus theorem {Q} is uni-
formly bounded (cf. [14, p. 78]). Therefore since {Qi} is a nondecreasing sequence
(according to Proposition (b)) of self-adjoint operators, it follows that Q Q, and
Q Q* (cf. [14, p. 79]). Actually 0 <-Q =< Q for every i=> 0, since

(Q,x; x)= E IIR’/2B*A*Jxll 2<-

.for all x e H. Thus IIQ, -< IIQII. Hence the nondecreasing sequence (IIQ, II} converges,
and IIQII--sup__, lim,_(O,x; x) <= lim,_. IIQ, II. Then IIQ, , IIQII. By Proposition
l(a) it follows that

Q1 (A,+, QA,,+ + Q,) A’+I(Qj_,_,- Q)A,’+

for every j > >_- 0. Therefore, since Q1 --> Q,
II[Q -(A’+’ QA*’+ + Q,)]x II--< IIA’+’ iI(Qi-,-,- Q)A*’+’xll - 0

as jc, for all xe H and every i=>0. Then, by uniqueness of the strong limit,
Q A+QA*i+l + Q, Y 0. Moreover,

(Qx; x)=O , xe iq ,N’(R/2B*A*).
j=O

So, recalling that Q _-> 0, one has

Q>O => {(Qx; x)=O:=>x=O} :> CI A/’(R’/2B*A*) ={0}.
j=O
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DISCRETE BOUNDED SYSTEMS IN HILBERT SPACE 25

Finally take any h Pr(A*) (if Per(A*)= the result is trivial), and let x 0 be an
eigenvalue associated to A. Then

((Q-Qi-1)x; x)=(AiQA*ix; x)=lhl2i(Qx; x) wi >- 1.

Hence ]hi< whenever Q WQ> 0, which completes the proof of part (a). Now
assume that Q [H]. Then tr(Q)-<_tr(Q), since Q-<_ Q, and the nondecreasing
sequence {tr (Qi)} converges. Thus, for any orthonormal basis {ek} and for every n >_-- 1,

tr (Q) lim Qiek ek) + 2 (Qek; ek)
i- k=l k=n+l

_<- lim tr (Q,) + Y (Qek; ek) lim tr (Q,) as n -> o.
i-o k=n+l i-eo

Then tr (Q)/ tr (Q). Therefore

[1Q Q, --< tr Q Q,) tr (Q) tr (Q,) --> 0 as --> oo. 13

Remark 5. Concerning the final statement of Lemma 2(a) it is worth mentioning
that positivity (which is sufficient) is not necessary, but nonnegativity is not sufficient
(i.e. Q>-O= Pr(A*)c {h C" Ix[< 1}: Q>0). It is also easy to show that W(Q)c
c(Q+) c ’(Qi), i-> 0.

We shall say that the linear system in (2) is mean square stable if the state
correlation sequence {Q; i_-> 0} converges to a correlation operator Q (i.e. E{xox}
E{xox} as i oo for some second order H-valued random variable x), such that the
Lyapunov equation Q AQA* + Qo in Lemma 2(a) has a solution Q >- 0 l[H].
However, by Lemma 2(b), the above convergence has to be uniform. So we define as
follows.

DEFINITION 2. The linear system in (2) is mean square stable if

Q, 5> Q [H].

We now investigate the connection between mean square and uniform asymptotic
stability concepts.

THEOREM 1.

a) Q, 5>Q>.0[H] =:> r(A)<l.

b) Q, 5>Q>0 3[H] ::> rr(A)<-_ 1.

Proof Since Q>-O,:IQ-[H]. By Lemma 2(a) Q-Q=A+QA*+, Vi>0.=
Hence

(a) IIa’+’ll =-- [IA’+(Q’/2)(Q/2)-II<-I[A’+’(QI/2)II2II(Q’/)-’[[
a’+’ QA*’+’ Q-’II Q Q, Q-’II - 0 as --> oo,

thus following the desired result by Lemma 1.

(b) IIm*’+’xll It(Q’/)-’(Q’/)A*’+’xlI<=II(Q’/)-’IIII(Q’/)A*’+xll
--IIQ-II <a’/’Qm*’/’x;x>-IIQ-ll ((Q-Q,)x;x>-O as i-oo,

for all x H, thus following part (b) by Remark 3, since r(A*)= r,(A), l-]

THEOREM 2.

r(A)< :=> Q, % Q ,[H].
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26 c.s. KUBRUSLY

Proof Suppose r(A) < 1. Since

Q, --< AjQoA* <-_ I1Qo Y m z v >- o,
=0 =0

it follows by Lemma that { Qi; _-> 0} is uniformly bounded. Therefore, using Proposi-
tion (a), we get for every j > >- 0,

IIQ-Q, II-<-IIQ-,-,I[ IIa’+’ll -<- sup IIQII IIa’+’[[=-0 as i-->,
k

by Lemma 1. Then Qi --> Q 3[H], since {Q} is a Cauchy sequence and [H] is a
Banach space. Finally, since A and B are bounded and R is nuclear, it can be shown
[14, p. 173] that tr (ABRB*A*) <-IIAJI[IIBII tr (R). Therefore, using Lemma again,

tr(Q)= Y tr(AJBRB*A*J)<=tr(R)
j=o =o

Hence {tr (Q)} is a bounded sequence, and so (cf. [14, p. 179]) the uniform limit Q
of the nuclear sequence {Q} must be nuclear.

Remark 6. We notice from Lemma 2 that Qi- WQ <=> Qi__> sQ, and Qi- WQ
I[H] :=> Q-* "Q. However it can be shown that

(a) O,L>O[H] :; O, -Q[H],

(b) Q,Q[H] :#> Og,[n].

Moreover, it can also be verified that both strong convergence and positivity are not
sufficient in Theorem l(a). That is,

(c) Q,-Q>0[H] > r(A)<l,

(d) O, 2--> O>0 ,[H] :/:> r(A) <- 1.

To illustrate the above statements we consider the following examples.
Example 1. First we show that the statements (a) and (c) in Remark 6 hold true.

Set H=12 and U=1. Let A[l] be the right shift operator, A(sC, so2, .)=
(0, :1, sc, ") for all x (:1, s, ") e l. Let B e[1, l] be given by Bu (u, 0,.
for all u e 1, and set R l, the identity operator in 1. It is a simple matter to verify
that

Q= AJBB*A*J=diag(1," ", l,O," ")>=Ol[l] Vi>=O,
j=0

with the nonzero entries at the first i+ positions, such that tr (Q)= + 1. Hence

Qi ----> O ] >" 0 [/2],

since I[(I-Q,)xl[=y,=,+2[,[2o as i-c for all x= ((,, so2, .) 12, although {Q}
does not converge uniformly since II1-Qi[[ 1, V i-> 0. This supports the statement
(a) in Remark 6. However, as it is well known [11], r(A)= 1, thus confirming the
statement (c) in. Remark 6.

Example 2. Now we illustrate the statements (b) and (d) in Remark 6. Let
{ ek k >= } be a real positive sequence in l, and define a real positive strictly decreasing
null sequence {hk; k >_- 1} as follows.

Ak+l Ak- ek, A1 ek.
k=l
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Set H--U=I2. Let A[12] be a constantly weighted left shift operator,
A(:t, :2," ") pt/2(sc2, :3," ") for all x (t, so2, ") 12, such that [11] r(A) pt/2>
0. Let B= I 3[/2], the identity operator, and R diag (et, e2,’" ")>0 t[/2], with
tr (R)= At. It is readily verified that

Qi AJRA*j =diag pJe+ e+2, >0 31[/2],
=0 =0 j=0

with tr (Qi) ==o pAj+t, ’i>-0. In particular, with r(A)=p it follows that

Q, diag (At- A,+:, A:-/i+3, ") > 0
i+1with tr (Q) k=t Ak. Thus

Q,--) Q=diag (h,, h2,’" .)>0

since 0 Q, A,+=- 0 as --> o. However

Q[12] :> tr(Q)= Y Ak<,
k=l

which does not necessarily happen. For instance,

’k -> :=> Ak /k _>-ek k( k + =- =:> Q t[I2],

2k+l
ek=k:(k+l): lk>-I :=> Ak=- ’k-->l =:> Qt[/2].

This confirms the statement (b) in Remark 6. Now let r(A): p > and set ek a k-l,
/k>_-l, with 0<a<p-t<l. Then R=diag(1, a,a2,’’’)>01[/2], with tr(R)=
(l-a)-t, and

-(ap)i+l

Q= R>03t[/2] Vi->-0,

with tr(Q,)=[1-(ap)’+][(1-ap)(1-a)]-t. Thus

Q, --) Q=(1-ap)-’R>O ,[/:],

with tr(Q)=[(1-ap)(1-a)]-t, since IIQ-Q, ll=(1-ap)-t(ap)’+’-->o as
However r(A)> 1, thus supporting the statement (d) in Remark 6.

Remark 7. By Theorem l(a), Theorem 2, and Remark one has

Q, --) Q>0e 9[H] =:> dim (H)<oc,

although (cf. Example 1)

Q, --) Q>0[H] dim(H)<c.

If dim (H)< o, then 3t[H] 3[H], Pit(A)= tr(A), strict positivity is equivalent to
positivity, and uniform convergence is equivalent to strong convergence. Therefore, in
such a case, it follows by Theorem and Theorem 2 that

Q,--)Q>O[H] :> r(A)< and Q>0.
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However the assumption Q > 0, which appears in both sides of the above statement,
may not be dismissed. That is, even for finite-dimensional spaces,

Q,Q[H] : r(A) <- l, G(A) < Q > O,

as it is readily verified. These finite-dimensional results can be extended to infinite-
dimensional spaces, whenever A is compact, as follows.

COROLLARY 1. IfA [H], then the following properties are equivalent:

(a) r(A) and (A, BR /2) is A-C.

(b) Q, Q>0 31[H].

(c) Q, Q>0 3[H].

Proof. (a)(b) by Lemma 2(a) and Theorem 2, and (b)==>(c) trivially, for any
A [H]. Now assume that A
max {IA ]:

5. Concluding remarks. In this paper we have considered mean square stability
for discrete bounded linear systems in Hilbert space driven by white noise. The evolution
and convergence of the state correlation operators sequence were investigated in
Proposition and Lemma 2. It has been shown in Theorem 2 that uniform asymptotic
stability is a sufficient condition for mean square stability, although the reverse is not
necessarily true (cf. Remark 6), as it occurs in a finite-dimensional setting whenever
Q> 0 (cf. Theorem and Remark 7).

For compact operators the discrete-time stability problem is quite clear, being a

straightforward generalization of the finite-dimensional case. Indeed, as recalled in
Remark 4, for deterministic systems strong and uniform asymptotic stability are
equivalent concepts whenever A is compact. Comparing Remark 7 with Corollary
it is readily verified that a similar situation actually happens for stochastic systems
with a compact operator A.
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