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Infinite-dimensional discrete-time bilinear models driven by Hilbert-space-valued random sequences can be 
rigorously defined as the uniform limit of finite-dimensional bilinear models. Existence and uniqueness of 
solutions for such infinite-dimensional models can be established by assuming only independence and structural 
similarity for the stochastic environment under consideration. Uniform structure equiconvergence implies 
uniform state convergence under suitable stability-like conditions. 

1. Introduction 

Mathematical modelling is usually understood as the problem of building a mathematical 
model, for instance in terms of differential or difference equations, for a given real, say physical, 
system. This is closely related to the system identification problem (see, e.g., [2]). Generally, the 
model candidates are well-defined mathematical objects such as, for instance, nonlinear ordinary 
differential equations whose existence and uniqueness of solutions have been previously estab- 
lished. In this paper we shall be dealing with the problem of properly defining a class of such 
mathematical objects, rather than with the problem of exhibiting a well-known mathematical 
equation which may reasonably describe the behaviour of some real process. 

The class of mathematical objects that we shall be considering here is the one which describes 
the behaviour of an important subclass of nonlinear dynamical systems, namely bilinear systems 
(see, e.g., [1,6-8,111). The major part of the available literature on bilinear systems is related to 
deterministic, continuous-time, and finite-dimensional models, although some important contri- 
butions outside the above category have already been published (see, e.g., the references in [3,5]). 
Here we shall be considering discrete-time bilinear systems operating in a stochastic environ- 
ment, whose model is formally given by the following difference equation: 

X 1+1 A, + c A&, ; e/J xj + u,, 
k>l 1 

where { A, ; k 2 0) is a sequence of bounded linear operators on some separable Hilbert space 
H, {e ,;k~1}isanorthonormalbasisforH,and{ui;i~O},{wj;i~O},and{xi;i~0}are 
H-valued random sequences. Suppose H is infinite-dimensional, so that the above series may be 
infinite. The purpose of the present paper is to give a rigorous definition of the above 
infinite-dimensional stochastic discrete bilinear model, and to investigate the problem of ap- 
proximating its state sequence by state sequences generated by finite-dimensional models. 

037%4754/89/$3.50 0 1989, Elsevier Science Publishers B.V. (North-Holland) 



20 C.S. Kubrusly / Discrete bilinear systems in Hilbert spas. 

The paper is organized as follows. H-valued second-order random variables are briefly 
reviewed in Section 2, since they comprise the basic support upon which the main results will be 
built. In Section 3 it is shown that the infinite-dimensional structure under consideration can be 
properly defined as the uniform limit of finite-dimensional structures on the Hilbert space A?’ of 
all second-order H-valued random variables. Existence and uniqueness of the state sequence 
generated by the underlying limiting model are also verified in Section 3. Finally, the reverse 
problem of approximating the resulting state sequence by using finite-dimensional structures is 
considered in Section 4. 

2. Notational and conceptual preliminaries 

Throughout this paper we shall assume that H is a separable nontrivial Hilbert space. ().I) and 
( . ; . ) will stand for norm and inner product in H, respectively. Let B[ H] denote the Banach 
algebra of all bounded linear transformations of H into itself. We shall use the same symbol I( - (1 

to denote the uniform induced norm in B[ H]. Let T * E B[ H] be the adjoint of T E B[ H], and 
set B[ H]+ = { T E B[ H] : 0 < T = T * }, the closed convex cone of all self-adjoint nonnegative 
(i.e., 0 < (Th ; h) Vh E H) operators on H. Let B,[ H] denote the class of all compact operators 
from B[H], and set B,[H]+ = B,[H] fl B[H]+. For T E B,[H]+ we define the trace of T as 
usual, 

tr(T)zf f (Tek* , ek) = E A,, 
k=l k=l 

where { ek ; k 2 l} is any orthonormal basis for H, and { A, 2 0 ; k 2 l} is the set of all 
eigenvalues of T, each of them counted according to its multiplicity. Now set 1 T 1 = (T * T)l12 
E B[ HI+ for any T E B[ H], and recall that T E B[ H]+ -T= JTJ and TEB,[H]- ITI E 

B,[H].Let B,[H]={TEB,[H]:~~((T() < co} denote the class of all nuclear operators on H. 

In particular, set B,[H]+ = B,[H] n B[H]+ = {T E B,[H]+ : tr(T) < cc}. Finally, for any f, g 
E H define the outer product operator (f 0 g) E B,[ H] as follows: (f 0 g) h = (h ; g)f for all 
h E H, so that (f 0 f) E B,[ HI+. F or a brief presentation on nuclear (or trace-class) operators, 
the reader is referred to [12]. 

Let (a, 2, p) be a probability space, where 2 is a u-algebra of subsets of a nomempty basic 
set 3, and p is a probability measure on 2’. Let 3’6’ be the set of equivalence classes of H-valued 
measurable maps x defined almost everywhere on ti, such that 

I141$=2f~{ 11412} = &+,l12 d/h) < 00, 

where E stands for the expectation operator for scalar-valued random variables. The above is the 
so-called second-order property. Now, set the following inner product in A+‘: 

(x; y>$-f~{(x; y)} = j)+); ~(4) di-44 

for all x, y EJ?, which induces the above norm in Z’. Thus, X= L,( iI, p ; H): the Hilbert 
space of all second-order H-valued random variables. For any x, y E X’, consider the sesquilinear 
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functional E{( - ; Y) (x; -)} : Hz -+ C, which is bounded. Then (cf. [12, p. 1201) there exists a 
unique operator in B[H], say 6{ x 0 y }, referred to as the carrel&on of x E%’ and y EZ, such 
that 

(E{~~y)f;g)=~{(f;y)(x;g)} vf, g=H- 

2.1. Remark. It is a simple matter to show that, for every x, y EZ’ and T E B[ H], 
(a) &{xoy} EB~[H] and E{x~x} EB~[H]+, 

@I W? x o x 1) = IIxll$e, 
Cc> IITxll.P G IV-II * llN?P~ 

Now consider a family {x5 E X ; ( E Z # 0) of random variables. For each [ E E let { et,& ; k 
2 l} be an orthonormal basis for H made up of all eigenvectors of a{ x5 0 xc} E B,[ HI+, whose 
existence is ensured by the Spectral Theorem (see, e.g., [9, p. 4601). Such a family is said to be 
structurally similar if there exists an orthonormal basis for H, say { ek ; k 2 l}, such that 

{eg,k; k> l} = {e,; k> l} for every <EZ. {ek, * k 2 l} is referred to as the c~mrn~n orthonor- 

ma1 basis for H of {x5 E &‘; ( E Z}. Note that structural similarity may be thought of as a 
generalization of correlation stationarity. Actually, a family { x6 E .?P ; ( E E Z ,@} is correlation 
stationary if there exists a Q E B,[ H]+ such that CC?{ x5 0 xE} = Q for every < E Z. For any family 

{x,E2; [EZ#,G} we set 

%;E =-‘)= (yW: yisindependentof {x~EZ’;~_EE}}. 

In particular, for any x E 2, XX = { y E LX!‘: y is independent of x E X’} . 

2.2. Remark. Note that y •3~ e x E Yy. The following well-known independence properties (see, 
e.g., [lo]) will b e needed in the sequel: 

(a) If x E 4;,, then, for every measurable functionals +,, $ : H + C, 

~{4(xMY)~ =+(x)b{+(Y)L 

@I If {Y,=@‘; u E 2’ z ~3) is independent of { xt. E &’ ; 6 E Z # ,@}, then, for any finite subset 
{xE,,;l<k<<m) of {xE;[EZ} andforeverymeasurablemap N:H”-+H, 

N(xE,,..., x6,> qa,,;.q. 

2.3. Remark. For any x E X consider the linear functional E{ ( . ; x) } : H + @, which is 
bounded. Then, by the Riez Representation Theorem (see, e.g., [9, p. 345]), there exists a unique 
element in H, say E{ x}, referred to as the expectation of x E 2, such that 

(E(x) ; h) =E{(x; h)} Vh E H. 

Two random variables x, y E&’ are said to be uncorrelated if 

a{xoy} =E{x}~E{y}. 

By the Riez Representation Theorem (and according to the definition of expectation, correlation, 
and outer product operator), uncorrelatedness turns out to be equivalent to 

4fb) iwl=4fb)l 4dY)l 
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for every bounded linear functionals f, g : H --, @, with the upper bar denoting complex 
conjugate. Hence, independence obviously implies uncorrelatedness, according to Remark 2.2(a). 
However, only uncorrelatedness will not suffice our needs in Section 3. We shall really need the 
separation property in Remark 2.2(a) for quadratic functionals, which is not generally true for 
uncorrelated random variables. When uncorrelatedness is enough (e.g., for linear models), a 
sharper and more elegant approach can be developed. To see this, let us first recall the following 
particular case of Remark 2.2(b). Take any finite subset { x[~ ; 1 < k d m} of a family { xg ; 5 E E 

+B}. If x qx~;~E.q, then, for every measurable map N : H” -+ H, 

Nxg,,. .., X&J E4. 

However, the above is not generally true if we assume x E n tEB.9xt instead of x E _F+; 6Ez-). 
Indeed, it is possible that (y + z) 4 9X even if X, y, z E .Z’ are pairwise independent. Thus, YX is 
not a linear subspace of 2, opposite to +YX = { y E X’ : y is uncorrelated with x E X}, which is 
a closed linear subspace of Z’. Therefore, if uncorrelatedness was sufficient, we could replace the 
set 9X by the Hilbert space eX throughout the next section, which would certainly supply a 
nicer set-up. But, this is not the case for nonlinear models. 

3. Infinite-dimensional stochastic bilinear model 

Consider the infinite-dimensional stochastic discrete bilinear model that has formally been 
introduced in Section 1. The purpose of this section is to give a rigorous definition for such a 
model. This will be achieved in Lemma 3.4 below. We begin by establishing two auxiliary results 
that will suffice our needs. 

3.1. Proposition. 
orthonormal basis 

J&<(n) 

Let {wtE2r;@Z # 0) be a structurally similar family with a common 
{e,;k>,l} forH. Foreach[EZandforeveryn>,l, set 

=A,+ i A,(w,; ek): Yw,+.X, 
k=l 

where { A, E B[ H] ; k >, 0} is a uniformly bounded sequence of operators. We claim that, for each 
E E E, the sequence of maps { zZW,( n) : YwE +X; n 2 l} converges uniformly or, equivalently, for 
each .$ E S there exists a map .B?~, : YwE + 31p such that 

sup 
Il4&4v -J;p,6vlIx+ o 

Ilull_%? 
asn+oo. 

O#UGY_ 

Such a map has the following properties: 

lls9,,41~ 1 < (IIAOII + ;U>I:l(AkIl IIWE&?II%+ 

for every a E @ and v EYES, and, for each i > 1, 
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whenever vj E.$,~ for every j = 0, 1,. . . , i and (C$,,v,) E &, for every k = 1,. . . , i, which happens 

whenever w5 6 yC u0 “, u ) I % 3 , according to Remark 2.2(b). 

Proof. For each 6 E Z we get from Remark 2.2(a) that 

GG(w E; e,)u; A,(wt; eI>v>x 

=E{(w&; ek)(e I ; W&4P ; 4-9 > 

=E{(w~;~~)(~,;~~)}E{(A~u;A~u)) =(~{w,“w~}e,;e,)(A,~;A,v), 

for every k, I >, 1, whenever u E&,. Moreover, since { w5 E X ; ( E _“} is structurally similar, 
c?{ ws 0 WC} ek = hg,ke,, so that Cpz)=A5,k = tr(b{ wE 0 w,}) = ((w~(($< m, for each E E S and 
every k >, 1, where A,,, 2 0 is the eigenvalue of 6’{ wE 0 w5 } E B,[ H]+ associated with the 
common eigenvector ek for each k >, 1 (cf. Remark 2.1(b)). Hence, for each 5 E E, 

II 
i Ak(W[i ek>u 

2 

k=m il 2 

= i (A&Q; e,)K AdwE; +&e 
k,l=m 

= 5 &I( e/i ek)(Aku ; A,+, =G SUP ,,Ak,,2,b,,$ i A,,k 
k,l=m m<k<.v k=m 

for all u EJ$< and for any 1 d m up, according to Remark 2.1(c). Therefore, uniform conver- 
gence follows for each 6 E Z, since 2 is complete, and 

Il-QP+& + + -~w,(4~lI~ 
sup sup 
v>l O#uUx,, ll4l~ 

6 :“41,Ak,,~k~+~~~,k~1’2j0 as n+ O”. 

Let us finally verify the bounded linear-like properties of the map s?,,,( (which just fails to be a 
bounded linear one because its domain J$, is not a linear subspace of 2). Boundedness is 
readily verified since, for each 5 E Z and for any v E 9W,, 

Ilss,,(+& 4 (lI4,ll + ;;yjiAkiI ~b’Q~~rn)~~~~~~ 

for every n >, 1. Homogeneity is trivial. The additivity property can be verified as follows. For an 
arbitrary E E Z, take U, u EJ$,~ for which (U + u) E YWt. Then, in such a case, dWf( n)( u + v) = 
.PS?~<( n) u + s$“$( n) v for every n B 1, so that 

IW& + 4 - pwp +~wpll, 

Thus, our additivity property holds true for i = 1. Now let uJ E YWC for every j = 0, 1,. . _ , i, i + 1 
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and (C$=,uj) E&,< for every k = 1, 2,. . . , i, i + 1, and suppose the desired additivity property 
holds for some i 2 1. Then, since it holds for i = 1, 

which concludes the proof by induction. 0 

3.2. Remark. In the preceding proposition we got uniform pointwise convergence (i.e., uniform 
on YWE for each E E Z), but not uniform equiconvergence (i.e., uniform on &,< and uniform in 
.$ E Z). Now, suppose the structurally similar family { w5 E LX? ; ( E _‘} is correlation dominated in 
the following sense: there exists a Q E B,[H]+ such that 

For instance, correlation stationarity for { w5 EX ; 5 E Z} characterizes a particular case for 
which the above assumptions obviously hold true. By setting A, = (Qe, ; ek) >, 0 for each k 2 1, 
we get A,,, = (CC’{ w5 0 wE} ek ; ek) < A, for all 5 E X and every k > 1, so that 

P P 

sup c h,,, < c sup A,,, < 5 A, 
[EZ k=m j k=,,, (EZ k=m 

for any 1 G m <p, where Cr=iX, = tr(Q) < cc, Hence, 

sup 
EEZ 

Thus, the sequence of maps { A@‘~<( n) : J$< -+X; n > l} converges to 
on YWC c SF and uniformly in 5 E Z (i.e., uniform equiconvergence), 
similar family { w t E .X ; ( E Z} is correlation dominated. 

+O asn+cc. 

““4WE : 4vg + S? uniformly 
whenever the structurally 

3.3. Proposition. Consider a sequence { ui E 2’8 ; i > O}. Let { wi E A?’ ; i 2 0} be a structur&Iy 

similar sequence such that w. E YuO and wJ E 9(,,,,, _, w,_,,uo,u, , “,) for every j 2 1. Then 

ui E $w, 7 272 W,_,’ . . sdw,ujE&, Vj=O ,..., i-l, 

;A@‘~,_ ,... s.@,,,,u~E&, Vk=O ,_.., i-l, 
J=o 

i-l 

c -pP,,_,- . . 4v,vj + 0, E 4, > 
j=O 

for every i >, 1, with ,“p;,, : &, 
/ 

-+ ti defined as in Proposition 3.1. 
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Proof. Since u0 E XW, we get (.&‘,,,,q,) E&’ by Proposition 3.1. Hence, according to Remark 
2.2(b), w1 ~9~~~ ug o,I implies that ur, 
property of &,, ’ in Proposition 3.1, 

&‘,qO, and z~?‘~,q, + u, are in &,. Then, by the additivity 

.ae,, [ -4v”% + 51 = J%v,~wo~o + Jc,Ul. 

Thus, the desired result holds for i = 1. Now suppose it holds for some i k 1, so that 

W-W,. . . .dw,u,)EiP for every j=O,..., i by Proposition 3.1. Hence, according to Remark 

2-2(b), Wit1 E9(a(w0 ,__., wf,uO,uI ,_._, u,+,) implies that 

u r+lE9W,+,, .5YW.. .zZWujE9W,+, Vj=O ,..., i, i 

Cdw ,... dwujEXw,+, Vk=O ,_.., i, 
i 

j=O 

C dw,* . . dw,“j + ‘i-t1 EXv,+lv 
j=O 

Then, by the additivity property of &‘,,,+, in Proposition 3.1, 

Thus, the result holds for i + 1, which concludes the proof by induction. •I 

3.4. Lemma. Let { wi E .X ; i > be a with a common orthonormal 
k>,l} 

euery i > 0, as defined 3.1, where 
Given x0 EX and { ui ~2; i > 0}, assume further that w,, E& and wj E_Y~~~,~~,.._,~ 

every j 2 1. Then the difference equation in 2, 
I Wg ,.... 

xi+1 = Ao+ fAk(~.,;ek) xi+ul, 
k=l 1 

has a unique solution, which lies in J$,, for euery i 3 0, given by x1 =.MWOxO + u0 and, for every 
i > 2, 

i-l 

xi =d W<_, . . ~~l,xO + C s$w,~,. . . ~~,“j-l + ui-l. 

I=1 

Proof. Set uO = x0 and uj+l = uj for every j > 0, so that ~0 E 40 
for every j z 1. Then, by Proposition 3.3, 

and w, E 3~ +,. , WI_ ,.U,~,U,r.. , u ) I 

i-l 

[ 

i-l 

(4 C dW,_,’ . . &w,‘_/ + ui E9w,, &Iv, c Jc,_,. . . dw,“j + u* = h dw,. . e I J4U,Uj 
j=O j=o j=O 
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for every i >, 1. Therefore, by setting 

i-l 

(b) xi= Cd_. ..dw,uj+u;E9w 

j=O 

for every i a 1, we get 

(c) Xi+l =dw,xi + ‘ifI> x0 = uo, 

for every i 2 0. On the other hand, if {xi EX; i >, 0} solves the difference equation (c) then, 
from (a), it is readily verified by induction that (b) holds true for every i > 1. 0 

4. Finite-dimensional approximations 

Under the assumptions of Lemma 3.4, consider the state sequence { xi E &,, ; i > 0}, so that 

(I) xi+l =&&,x, + ui= 

[ 

A,+ 2 A,(w;; ek) xi+uj 
k=l 1 

for every i > 0. Now, for each n >, 1, consider an approximate state sequence {x,(n) E$~, ; 
i a O}, such that 

(2) xi+Jn) =.z?zJn)x;(n) + u;= 
[ 
A,+ i: A,(w,; e/J Xl(n) + ui 1 

for every i > 0. Here, x0(n) is supposed to be endowed with independence properties similar to 
those imposed to x0. Precisely, we assume that x,(n) EX is such that w. ~~~~~~~~~~~~ and 
WjE.Y (xo,xo(nhuo ,..., u ,-,> WrJ ,... >w,-,I for every j >, 1, for each n >, 1. Note that this includes the usual 
particular case of x0(n) being actually indentified with x0 (i.e., x0(n) = x0 E&’ for every n >, 1). 
We refer to the models (1) and (2) as infinite-dimensional and finite-dimensional, respectively. 
However, note that the state in (1) and the approximate state in (2) are both H-valued random 
sequences, hence infinite-dimensional. What is really finite-dimensional in (2) is the sequence 
{((wi;e,) ,..., (w,;e,));i>O},inth e sense that it is a @“-valued random sequence. Since, by 
Proposition 3.1, 

(3) ~@~,,(n) +xZ~, as n + cc 

uniformly on 9,,, c A? and pointwise in i (which will be referred to as uniform pointwise 
structure convergence-cf. Remark 3.2), it is natural to enquire about an expected state 
convergence, 

(4) xi(n) +xi as n + 0c 

in 2, for each i >, 0. Such a pointwise state convergence actually follows in a natural and 
straightforward way from the uniform pointwise structure convergence. For, from (1) and (2) we 
may write 

xi+l - xi+l (n) = Ao+ kelAk(wi; e*)]jxl-xitn)! + k=~+l~k(Wi~ ekh 

[ 
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for every n 2 1 and i 2 0. Note that, by the independence condition under consideration and 
from Remark 2.2(b), we actually have xj( n) EJ$,, and (x, - xi(n)) E &, for every n 2 1 and 
i 2 0. By the above equation we get 

where, for each i > 0, 

II f A,(w;;e,)x, II -+O asn+cc, 
k=n+l A? 

according to Proposition 3.1. Thus, ]jx,+,(n) - xi+i]lX 4 0 as n -+ cc whenever j/xi(n) - x,]]~ 

+ 0 as n + cc. If I]xo(n) - x~](~ + 0 as n + cc, we have confirmed by induction that the 
following holds. 

4.1. Corollary. Consider the assumption of Lemma 3.4, and the models in (I) and (2). If 

11x0(n) - xOIIx-) 0 as n + m, 

then, for each i 2 0, 

]lxi(n) - x;]]~-+ 0 as n + co. 

Equivalently, the state sequence generated by the infinite-dimensional model in (1) can always be 
pointwise approximated by state sequences generated by finite-dimensional models as in (2), 
whenever uniform pointwise structure convergence holds true. 

On the other hand, if (3) holds uniformly on &,, c Z and uniformly in i (which will be 
referred to as uniform structure equiconvergence-cf. Remark 3.2) it is also natural to enquire 
whether (4) holds in .# uniformly in i. However, such a uniform state convergence does not 
necessarily follow from uniform structure equiconvergence. To verify this, let us consider the 
simplest class of counterexamples where the bilinear models are reduced to linear ones. Thus, 
assume that A, = 0 for every k > 1, so that 

xi-xi(n) = Ab(x, T x,(n)) 

for every n > 1 and i > 0. Now suppose x,(n) = (1 - /I,) x0 EZ for every n 2 1, for some 
complex sequence { ,l3,, # 0 EC ; n > l} such that ] &, ] + 0 as n--j 00, where the random 
variable x0 EXdegenerates to h, E H (i.e.,/]x, - holIz= 0 for some h, E H, so that x,, = h, E H 
with probability one). Then, 

llxiCn> - xill.F = I Pn II) AdhO(l 
for every n > 1 and i > 0. Moreover, suppose A, E B[H] is power unbounded (i.e., sup,>,,]]Abl] 
= oo), so that, by the Banach-Steinhaus Theorem (see, e.g. [12, p. 74]), there exists an h E H 
such that supi~,]]A~hl] = 00. By setting h, = h we get 
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for every n > 1, even though 11x0(n) - xOJIx + 0 as n --, co and Ij(~?~~(n) --,Pe,,)ullz = 0 for all 
u ~9~ c 2, for every n 2 1 and i > 0. Summing up leads to the following remark. 

4.2. Remark. Consider the assumptions of Lemma 3.4, and the models in (1) and (2). The 
additional conditions 

Ilx,(n) - xOllx+ 0 as n + cc 

and 

do not guarantee that 

sup(lx,(n) - xiJIz+ 0 as n -+ 00. 
i>O 

Equivalently, the state sequence generated by the infinite-dimensional model in (1) may not be 
uniformly approximated by a state sequence generated by a finite-dimensional model as in (2), 
even under the assumption of uniform structure equiconvergence. 

Now we shall give a sufficient condition for uniform structure equiconvergence to imply 
uniform state convergence. Assume that { wi E 36’; i >, 0} is correlation dominated (so that 
uniform structure equiconvergence holds according to Remark 3.2) and { ui E 3c4; i > 0} is 
uniformly bounded (i.e., sup, ~,o~~~ill~= supi.+$r( G{ ui 0 u;}) < cc; note that correlation domi- 
nance implies uniform boundedness, but the converse is not necessarily true). Set 

a = ll4ll + ~~Pll~kll~~Pll~ill.%B~ 
k>l 120 

and suppose (Y < 1. From Proposition 3.1 we have 

llx,+1ll~ G lI~w,x*llx +ll~ill~ G 4Ix;ll~ + ~~Pll~,II.e > 
ihO 

so that, by induction, 
i-l 

IIx,Il_e G ~~lI%ll.e + SUPll~III.TY c d < llxolJ*+ supl\z$ll#(l - cI>-’ < cc 
i>O “l=o i2?0 

for every i 2 1, whenever (Y < 1. Since supi~,,llxIIIx < cc we get (cf. the proof of Proposition 3.1 

and Remark 3.2) 

0 4 y,,Ef’sup 
I 

f Ak(W,; ek)xi 

r20 k=n+l I/ 3r 

l/2 

G s~~llA,Il~~~llx,ll~ it+ xk +o asn-,oo. 
k>l 120 i i k=n+l 

Therefore, 
i-l 

llx,Cn) -xill.X? q a’ IIXOW - %ll2P +Yn c ai< II44 - %lI?fD +vno - 6’ 
j=O 

for every i, n 2 1. Thus we have shown that the following holds. 
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4.3. Theorem. Consider the assumptions of Lemma 3.4, and the models in 
further that { wi E 2; i > 0} is correlation dominated and { u, ~3; i > 0} 

Lf 

11x,(n) - x~I(~-+ 0 as n + cc 

and 

a=IIAJl+ :u,:ll~,ll~~~~tr(~(,j.~,~)j”‘<~~ 

then 

sup/lx,(n) - xillx+ 0 as n -+ cc). 
ia0 

29 

(1) and (2). Assume 
is uniformly bounded. 

Equivalently, the state sequence generated by the infinite-dimensional model in (1) can be uniformly 
approximated by state sequences generated by finite-dimensional models as in (2), whenever a < 1. 

5. Concluding remarks 

This paper dealt with modelling of infinite-dimensional discrete bilinear systems driven by 
H-valued second-order random sequences. The stochastic environment, under which the system 
is supposed to operate, was characterized by independence and structural similarity only. No 
assumption on stationarity was required, and the probability distributions involved were allowed 
to be arbitrary and unknown. Actually, stationarity was replaced by the less stringent assump- 
tion of structural similarity. On the other hand, independence could not be relaxed to uncorre- 
latedness, as discussed in Remark 2.3. For a comparison of the independence conditions usually 
assumed in the stochastic bilinear systems literature the reader is referred to [4], where 
mean-square stability for a particular case within the class of models defined in Lemma 3.4 has 
been investigated. 

The main results of the present paper appeared in Sections 3 and 4. The result of Section 3 
was synthesized in Lemma 3.4, which was supported by Propositions 3.1 and 3.3. In Proposition 
3.1 it was shown that the sequence of maps { dW,( n) : &,, ---f 2 ; n 3 1) converges, uniformly on 
.&,, c 3'6' and pointwise in i, for any structurally similar sequence { w I E 2 ; i 3 0). Actually, the 
convergence also holds uniformly in i, whenever { w, E 2’ ; i > 0} is also correlation dominated, 
as shown in Remark 3.2. The transition properties of the bounded linear-like limiting map 

Sal,, : ,a;, -+X where derived in Proposition 3.3. 
The results of Section 4 are concerned with the reverse problem of approximating the state 

sequence generated by the infinite-dimensional model defined in Lemma 3.4, by state sequences 
generated by finite-dimensional models. As one would expect, uniform pointwise structure 
convergence naturally implies pointwise state convergence (cf. Corollary 4.1), so that pointwise 
state approximation is straightforward from Proposition 3.1. However, uniform state conver- 
gence does not generally follow from uniform structure equiconvergence, as summarized in 
Remark 4.2. A sufficient condition to ensure uniform state convergence out of uniform structure 
equiconvergence, so that uniform state approximation holds in that case, was given in Theorem 
4.3. 
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