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Mean square stability conditions for discrete-time bilinear systems operating in a 
stochastic environment are given in this paper. Only independence and wide sense 
stationarity are required for the second order disturbance sequences involved, thus 
dismissing ergodicity and zero-mean assumptions. Stochastic stability conditions 
are derived by using a deterministic stability result for a class of separable nonlinear 
dynamical systems evolving in a Banach space. 1 1986 Academic Press, Inc 

1. INTRODUCTION 

Bilinear systems comprise an important subclass of nonlinear dynamical 
systems, which lately experienced a remarkable research effort. The 
available results have reached a certain level of maturity which has already 
justified some systematic presentation in book form [ 1, 21. More recent 
achievements in both theory and applications of bilinear systems can 
presently be found in some general surveys [3-51 and special issues [69]. 

Stability for continuous-time bilinear systems operating in a stochastic 
environment has been investigated by several authors. Both the stochastic 
Liapunov function approach, based on a general (either linear or non- 
linear) stochastic stability theory [ 10, 111, or the Lie-algebraic approach 
for analysing moments stability [12], have been extensively used in the 
current literature (e.g., see the survey in [S] and the special issue [ 131). 
For infinite dimensional systems the problem was approached in a Hilbert 
space setting in [14, 151. 

On the other hand, little has been written on stability for discrete-time 
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bilinear systems operating in a stochastic environment, compared with 
what has been done for the continuous-time case. Some frequency domain 
results were considered in [ 16, 171 for particular classes of single-input 
models, and almost sure and mean square stability conditions were 
presented in [ 181. Conditions for mean square stability were also obtained 
in [19] towards the bilinear system identification problem. 

The purpose of the present paper is to investigate mean square stability 
conditions for discrete dynamical systems of the form 

x(i+ l)= A,+ f A,w,(i) x(i)+Bu(i), 
k=l 1 

where {Ak; k=O, l,..., p} and B are linear transformations, and {w(i) = 
(al(i),..., o,(i)); i 3 0} and (u(i); i > 0} are second order random sequences. 
Such a model is properly described and discussed in section 3, where the 
evolution of the state moments q(i) = E{x(i)} and Q”(i) = 
E{x(i+ v) x*(i)} is also analysed. Conditions on the above stochastic 
model under which the sequences {q(i); i > 0} and {Q”(i); i 2 0} converge 
are established in Section 4, by using a preliminary deterministic stability 
result developed in Section 2. 

2. PRELIMINARIES 

In this section we pose the notation and auxiliary results which will be 
needed in the sequel. 

Notation 

If X is a normed linear space (an inner product space), then the symbol 
I( /I (( ; )) will stand for norm (inner product) in X. If X and Y are normed 
linear spaces, then B[X, Y] will denote the normed linear space of all 
bounded linear transformations of X into Y. For simplicity we set B[X] = 
W[X, X]. Let IF denote either the real field R or the complex field C, and [F” 
the n-dimensional (either real or complex) Euclidean space. A transfor- 
mation in g[[Fp, P] will be identified with its n by p matrix representation 
relative to the standard orthonormal bases for [F” and lFp. For arbitrary 
x=(ti ,..., {,)E[F” and y=(o ,,..., up) E [Fp the transformation (xy*) E g[ lFp, 
IF”], such that 

(xy*)z=x(y*z)=x(z;y)=x i ikOk 
k=l 

for all z = (ii ,..., i,) E IFp, is identified with the usual outer product n by p 
matrix [ckD,], k=l,..., n, l=l,..., p (the overbar denoting complex con- 
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jugate, and the asterisk representing conjugate transpose). The Banach 
space of all F-valued (absolutely) summable one-sided infinite sequences 
will be denoted by I, as usual. Let Z’ be the complexilication of a Banach 
space Z (e.g., C” can be thought of as the complexification of [w”), and 
define for each L E a[Z] the following operator L’ E &?[Z’] : L’ = L if Z is 
a complex space (i.e., if Z = Z’); and L’(.u + fly;) = Lx + VG Ly for 
all x, y E Z, if Z is a real space. Now let a( L’) c @ be the spectrum (i.e., the 
nonempty compact set of all spectral values) of L’E&?[Z’]. The 
(generalized) spectral radius of LE~I[Z] is then defined as the spectral 
radius of L’ E g [Z’]. That is, r,(L) = r,( L’) = max { 1 A / : 2 E a( L’) c @ ). 
Roughly speaking, r,(L) is the maximum of the absolute value of all spec- 
tral values of L E &?[Z], “including complex spectral values.” We recall that 

lim /I L’ 11 ‘Ii = r,(L) < /I L’ I/ = 11 L /I = sup { 11 Lx I/ : 11 x II = 1 }. 
i-CC 

If U and V are Hilbert spaces, L* E g[ U, I’] will denote the adjoint of 
L E$?[ I’, U]. L 2 0 will be used if a self-adjoint (i.e., L = L*) operator 
L ECA?[ V] is nonnegative (i.e., (Lx; x) 30; VXE V). We set .4?[ V] + = 
{L E 23[ V] : L = L* 2 0}, the closed convex cone of all self-adjoint non- 
negative operators in %3[ I’]. We finally recall that if L E W[ V] is normal 
(i.e., if LL* = L*L), then r,(L) = II L II = sup{ I (Lx; x) I; 11 x 11 = 1 }. 

An evolution result 

Before introducing the convergence results, which will enable us to 
establish stability conditions, we need to prove the following. 

~oPOsITIoN(P-1). Let {r,; i30}, {ui; i>O}, and (j?;; i>O} be real 
sequences, and let { ai; i b 0} and (pi; i b 0} be nonnegative real sequences. 
Set 

#,(i,j) = 
i 

” 
if i=j, 

I-I;:; s,, ifi>j, 

for any real sequence { 6,; i 3 O}. Now consider the ,following inequulities: 

(a) t,+, d (ai + PL,) ir, + BiU,? Vi>O. 

(b) 5, d ti,(i, 0) 4, + C:= ,!, b,(i,j+ 1 )CP,~, + /j,o,l, Vi3 1. 

(~1 5,~~,+,,(iO)ro+C:=~~1+I~(i,.i+ 1)8,0,, Vi3 1. 

We claim that (a) =E- (b) * (c). In particular, (a’) = (b’) => (c’), with (a’), 
(b’), and (c’) standing for the following inequalities: 

(a’) C,,.,d(~+~)5~+oBu,, v, 3 0: 
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(b’) 5; < a[~‘[0 + cjl; a’-‘- ‘(pt, + fiuj)], Vi> 1, 

(C’) ~i60[(a+a~)i5,+PC:r:,(a+a~)i~‘~’ Uj], Vi> 1, 

where u, p, /?, and 0 are real constants such that 01> 0, p > 0, o > 0, and 
56 d0. 

Proof Let (a) be satisfied for all i> 0. It is trivially verified that (b) 
holds for i= 1. Suppose (b) is true for some i> 1. Then’ 

=4,(i+1,0)to+ i ~,(i+l,j+l)C~j~,+Pjo,l, 
j=o 

thus (a)*(b) by induction. In particular, (a)*(c). Now suppose 
i 2 0) satisfies (b), and set &., = to and 

i, = dn(l, 0) to + ‘X1 d,(i,j+ 1 )CP,~, + Bp,l, Vi3 1, 
, = 0 

such that r, 6 ii for every i b 0. Hence 

i !+I =ffiii+CljSi+Pi”id(ai+~i)i,+Piui, Vi30. 

Therefore {ii; i 2 0} satisfies (a), and so it also satisfies (c). That is, 

i- I 
5i<Ti-S4,+F(i,0)50+ 1 4,+,(ij+1)B,ui, Vi3 1, 

j=O 

whenever { 5;; i > 0) satisfies (b). Then (b) =- (c). The particular case is 
readily verified by setting cl0 = era, cli = c1 for every i 2 1, /I, = a/I and p, = a~ 
for every i > 0. 1 

Some Convergence Results 

The purpose of the remainder of this section is to present the preliminary 
stability result in Lemma (L-l ). This will be based on Propositions (P-l ) 
and (P-Z). We begin with two auxiliary remarks. 

Remark (R-l ). Let X be a Banach space and A E B[X]. It is well 
known that the following assertions are equivalent: (a) 11 A’11 + 0 as i + GO 
(i.e., A is uniformly asymtotically stable), (b) r,(A) < 1, and (c) there exist 
real constants c 3 1 and 0 < CI < 1 such that //A’// < ~2’ for every i 3 0. 
Moreover, if r,(A) < 1 we can choose a = r,(A) + E for any E E (0, 1 - r,(A)) 
(e.g. see [20]). 
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Remark (R-2). Let {x,; i 2 0) be a sequence in a normed linear space 
X, and consider the following assertions. 

(a) {xl; i3 0} is bounded. That is, SUP,~,, I/ .x, /I < cc. 
(b) (x,; i30) is a null sequence. That is, ~/.YJ 40 as i-t X. 
(c) {.K;; i3 0) is absolutei?, summuble. That is, { 11 .Y, 11 ; i 3 0; E I,. 

(d) {x,;i>O} h as a summable absolute envelope. That is, 
{suP”>&,+,~II; i>O}G. 

(e) jx,;i20) is a Cauchy summable sequence. That is, 
{suPv>O IIxi+v-~jlli i2°}Ell. 

(f) {xi; i>O} IS a Cauchy sequence. That is, SU~,,~~ I/ xi+ ,, - x, 11 + 0 
as i+a. 

(g) {x,; i 2 0) has null increment sequences. That is, jl X, + y -x, 1) 4 0 
as i-t co, for each v>O. 

We note that the diagram 

holds true, which completely characterizes every possible single 
relationship between each of the above assertions. Moreover 

(e, b)=(d), 
and 

(8, a) + (0 

However, if X is finite dimensional and (a) holds true, then (g)o (f) (cf. 
[21, pp. 55-581 for a proof in Iw’, whose extention to 5” is straightforward 
by the Bolzano-Weierstrass theorem). The only nontrivial results in the 
above diagram are (c) 4 (e) and (g) + (a), which are readily verified by 
taking real-valued sequences (rj; i > O> = ( 1, 0, 1/22, 0, 0, l/32, 0, 0, 0, 
1/42,...} and { t;i = Ig(i + 1); i > 01, respectively. It is a simple matter to 
show that (e, b) + (e, c) = (d) by using the triangle inequality. It can also 
be shown that (g, a) ~5 (f) by taking the following l,-valued sequence: 
{xi=zi-yi; i>O} with zi= {i,;jal>El,, where [,=jj’ if l<j<i+l 
and [,=O ifj>i+l, andy,=([i/(i+l)]‘/j;j>l}EIi, for each i>,O (cf. 
C22, p.78 I). 
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PROPOSITION (P-2). Let {xi; i > 0) be a sequence in a normed linear 
space X. Zf there exist a = (a,, ol, ,...) E 1, and c = (y,, y, ,...) E 1, such that 

IIXi+v-Xill 6 I c(il IIxts -xO II + I Yi 19 Vi, v 2 0, 

then {xi; i 2 0 > is a Cauchy summable sequence. 

Proof: By the triangle inequality, and setting v = 1, one has 

II xi+ 1 II 6 II xi+ 1 -x, II + II xi II d II x~ II + I clil II x1 - xO II + I Yi I 

for every i> 0. On iterating the above inequality from /(x0 I( onwards one 
gets by induction (cf. Proposition (P-l)) 

i- 1 

IIXiII G IIXOII + 1 (bjl 11x1 -JAI + IYjI), Vi> 1. 
/=O 

Hence SUPi II xi II 6 II ~0 II + II xl- x0 II II a II ,, + II c II II < co. Then, 

f. y”2: II xi+ Y -xi II 6 b”,‘: II ~,--~l/) IIalI,,+ lIcIl~,<~. I 

LEMMA (L-l). Let {vi; i 2 0} be any Cauchy summable sequence in a 
normed linear space X, and consider an X-valued sequence (xi; i 2 0) as 
follows. 

xi+1 = LXi + TXi + v;, x0 E X arbitrary, 

where L E W[X] is uniformly asymptotically stable, and T: X + X is a con- 
traction. That is, there exist real constants 0 < CI < 1, o > 1, and 0 <u < 1 
such that 

(i) 1) L’I/ <occ’, Vi>O, 

(ii) IITx-TYIIGP Ilx-YII, vx, y E x. 

If 
(iii) cr+ap< 1, 

then {xi; it 0} is a Cauchy summable sequence. Moreover if X is a Banach 
space, then x = limi --t cu xi is the only solution of 

(iv) y=Ly+ Tytv, 

where v = limi _ ocI v,. The solution does not depend on the initial condition x0. 

Proof: (I) It is readily verified by induction that 

i- 1 

X l+” =L’x,+ 1 L’~l-‘(Tx,+,+vj+,) 
i=O 
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for every v 2 0 and i 3 1. Hence 

-xi+” -x,=L’(x-x,,)+‘~‘L’ ’ ’ ( TX, + ,, - Txi + u, + F - L),). 

/LO 

Therefore, by (i) and (ii), and according to (P-l ), 

II x *+” -xi11 do ai IIx,--oII +‘& ‘(p/Ix,+,>-x~ll + /lU,+u 
1 

-“,I11 3 
j=O 1 

1 
r-l I/Xi+v-Xi(I GO (a+O/L)'IIX~-XOII + C (c1+~l*)‘~j~‘IIU,+,-UjII 

/=O 1 
for every v 3 0 and i 2 1. Hence, since g 2 1 and (a + 0~) > 0, 

II Xi+ Y - xi II 6 @r II x, - xO II + YI 

for every i, v > 0, where 

ai = o(a + ap)‘, 

Bi = (a + OP) ’ sup II o,+ v - ui II 2 
V20 

yi= i a,pi~j=o i (a+a~)‘+~‘sup I/u,+~--u~~/, 
j=O j=O V>O 

for each i> 0. From (iii), and recalling that {u,; i> 0) is Cauchy sum- 
mable, it follows that a = (ao, a, ,...) E 1,) and h = (PO, 8, ,...) E I, . Thus the 
convolution (or the Cauchy product) of a and b lies in 1, as well (cf. [22, 
p. 771). That is, c = a * b = (yo, y1 ,...) E I,. Then {x,; i> 0) is Cauchy sum- 
mable by (P-2). 

(II) Of course the limits V, x E X do exist, since { oi; i 3 O> and {xi; i > 1 } 
are Cauchy sequences (cf. Remark (R-2)) and X is a Banach space. It is 
immediately verified that the limit x E X is actually a solution of (iv), since 
L and T are continuous operators. On the other hand, if ye 2’ is any 
solution of (iv), we get 

xi+,-y=L(x,-y)+Tx,-Ty+u;-u, Vi>O. 

On iterating the above equation from x0 onwards, and then proceeding 
exactly as in part (I), it follows that 

IIxj-A <ai IIx~--YII +L Vi30, 

where c’= (yb, y; ,... )= a * b’, and b’= (&, p’, ,...) with j:= (a + 0~) I 
/I ui - u 1) for every i 3 0. NOW, since {u, - u; i 2 0} is a Cauchy summable 
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null sequence, it follows that it is absolutely summable (cf. Remark (R-2), 
(e, b) => (c)). Therefore 6’ E I,. Hence c’ E I,, since a E I,. Then (xi-y; 
i B 0} is absolutelly summable and so it is a null sequence. Thus y = x by 
uniqueness of the limit x. Since (iv) has a unique solution it has to be 
independent of x0. 1 

Remarks 

Consider the discrete-time dynamical system in (L-l), and note that L is 
not necessarily a contraction (thus the possibly nonlinear operator (T+ L) 
may not be a contraction as well). 

Remark (R-3). It can be shown that condition (iii) can be replaced by 

However, such an assumption is stronger than (iii) (i.e., it implies (iii)). 
Indeed, if the above holds it necessarily follows by (i) that 11 L 11 < ~JCI < 1 
(i.e., L is a contraction), which implies that we can choose r~ = 1 and 
c1= /I L 11 (since I] L’ II d 11 L /Ii; Vi > 0), thus (iii) holds with g = 1. Acutally, if 
TeC@[X], then IIL+TII 6 IILII + /IT11 <aa+,u. 

Remark (R-4). Obviously if TEB[X], then conditions (i), (ii), and (iii) 
can be replaced by 

II CL + TI’II -+ 0 as i-+00, 

or equivalently in a Banach space setting (cf. Remark (R-l)), 

r,(L + T) < 1. 

However, condition (iii), while seemingly stringent when T E 9#[X], is often 
satisfied in practical cases where the analysis of /I (L + T)’ // or r,( L + T) is a 
puzzling task. For instance, the preceding lemma will play a major role for 
the stability theorems of Section 4, where X will be a noncommutative 
Banach algebra, and (L + T) E g[X] will be a symmetric linear com- 
bination with X-valued coefficients. For example, 

(L+ WQI = i FkQF:, VQEX 
k=O 

with FkeX for each k = 0, i,..., p. In such a case both /(L + T)‘/l and 
r,(L + T) have not generally a simple form in terms of the X-valued coef- 
ficients {F,; k = 0, l,..., p}, unless these coefficients commute. 
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Remark (R-5). Finally note that if X is a Banach space and 
L, TEB[X] commute, then 

r,(L + T) 6 r,(L) + rJ T) < r + ,u, 

since the first inequality holds whenever L and T commute (cf. [23, p. 451) 
and r,,(L) < c1 (cf. Remark (R-l )), r,(T) d /I TII < p. Therefore the coefficent 
0 > 1 in (iii) can be thought of as a cost to be paid when L and T do not 
commute. 

3. BILINEAR SYSTEM CORRELATION EVOLUTION 

Model Description 

Consider a discrete-time dynamical system operating in a stochastic 
environment, whose evolution is governed by the following finite-dimen- 
sional difference equation 

x(i+ I)= A,+ f Akwk(i) 1 x(i)+&(i), x(0)=x(), (1) 
k=l 

where A,ES?[[F”], for each k=O, l,..., p, and BES?[~F’*‘, [F”]. Here {u(i); 
i 2 0} and {x(i); i 2 0) are random sequences in [F”’ and [F”, denoting input 
disturbance and model state, respectively. The lFP-valued random sequence 
(w(i) = (Ol(i),..., o,(i)); i 3 0} can be viewed either as an input disturbance 
which may eventually be equal to {u(i); i 3 0}, or as an internal model dis- 
turbance. In the former case the g[IF”]-valued random sequence { W(i); 
iaO>, given by 

W(i)= i A,w,(i), 
k=l 

represents the multiplicative action of an input disturbance on the model 
state, and (1) is said to be a time-invariant bilinear model. In the latter case 
(1) is said to be a linear stochastic model, with [A, + W(i)] denoting the 
random system operator, whenever {w(i); i > 0) and (u(i); i 2 0} are 
mutually independent. 

Assumptions on the Stochastic Environment 

Throughout this paper the symbol E will stand for expectation as usual. 
The stochastic environment, under which the model (1) operates, is charac- 
terized by the initial condition x0 and the random sequences {w(i); i>, 0) 
and {u(i); i> O}. We assume that: 
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(A-l ) x0 is a second order random vector independent of {w(i), u(i); 
i>O}. 

(A-2) {w(i);i>,O) and {u(i); i> 0) are both independent second 
order wide sense stationary random sequences. 

(A-3) {w(j), u(j)> is independent of {w(i), u(i); j # i 2 0} for every 
j >, 0, and E{ w(i) u*(i)) is constant. 
It is worth noting that assumptions (A-2) and (A-3) are both satisfied if 
{(w(i), u(i)); i 2 O} is an independent second order wide sense stationary 
random sequence in P + m. Moreover, if assumption (A-2) holds true, and 
if {w(i); i 2 0} and (u(i); i 3 0} are either related by means of a linear 
transformation or mutually independent, then assumption (A-3) is satisfied. 

The Independence Argument 

Independence in (A-l) to (A-3) can be relaxed, such that the followng 
uncorrelatedness-type assumption is sufficient. For each 0 6 j d i, 

E{w(i)x*(i)} =E{w(i)} E{x(i)}*, 

E{u(i)x*(j)} =E{u(i)} E{x(j)}*, 

E{ W(i) x(i) x*(j)> = E{ W(i)} E(x(i) x*(j)}, 

E{ W(i) x(i) u*(i)} = E{ W(i) E{x(i)} u*(i)), 

E{ W(i) x(i) x*(i) W*(i)} = E{ W(i) E{x(i) x*(i)} W*(i)), 

where x(i)=@,(i, 0) x0+x;:; @,,(i,j+ 1) Bu(j) for every i> 1, with 
@,(i,i)=Z and @,,,(i,j)=[A,+W(i-l)]...[A,+W(j)] for i>j. It is 
clear that independence, as supposed in (A-l ) to (A-3), implies the above 
somewhat artificial uncorrelatedness-type assumption. 

Auxiliary Notation 

We summarize here all the auxiliary notation that will be required in the 
sequel. Regarding the second order jointly wide sense stationary disturban- 
ces (w(i); i>O} and {u(i); ikO}, set 

Pk = E{Wk(i) >, 

Pk/= E{wk(i) Ol(i))t 

- 
Ykl=Pkl-PkP/r 

in [F for each k, 1= l,..., p, and 



46 C. S. KUBRUSLY 

r=E{u(i)}, 

rk = E{ mkci) di)}, 

R = E{ u(i) u*(i)}, 

c=E(w(i) w*(i)} -E{w(i)} E{i’t’(i)}* = [Ykl], 

in IF”, IF”, 9S[lF”‘]+, and B[ffp]+, respectively, for every i 2 0. Moreover 
set 

M=E{ W(i)} = i pkAk, 
k=l 

F=F,=A,+M, 

Fk = y:‘k’A,, 

for each k = l,..., p, in 9J[[F”], and define operators T and T, in .@[SS[P]] 
as follows. For any Q E 4?[ IF”], 

T(Q)=EW’G-Ml Qr:Wi,-Ml*}= i Yk,A,QA?> 
k,l= I 

k=O 
k#l 

for each I = 0, l,..., p. Considering the state sequence generated by (1 ), set 

c?(i) = E{x(i)l 

in [F”, and for each v 3 0 

Q"(i) = E{x(i+ v) x*(i)}, 

Q(i) = Qo(+ 
in B[IF”], and @[iF”]‘, for every i 2 0. Note that the existence of q(i) and 
Q”(i), for each i 2 0, is guaranteed by independence and second order 
assumptions, thus {x(i); i 2 0} is a second order random sequence as well. 
Finally, regarding the mixed terms involving both disturbances and state 
statistics set, in 93[ IF”] for each i 3 0, 

P(i)= A,q(i) r* + f A,q(i) rf B*, 
F k=l 1 

V(i) = P(i) + P*(i) + BRB*. 
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Mean and Correlation Evolution of the State Sequence 

Given a discrete dynamical system as in (l), and the preceding 
assumptions on the stochastic environment, we now seek for the evolution 
equations of the state mean q(i) and correlations Q”(i). By (l), and the 
above independence argument, it is immediate to show that 

q(i+ l)=Fq(i)+Br, Vi20, (2) 

such that, by induction, 
i- 1 

q(i) = F’q(0) + c PBr, Vi> 1. 
j=O 

It is also readily verified by the independence argument that 
P(i) = E{ [A,+ W(i)] x(i) u*(i) B*}. Moreover, since FQF* + T(Q) = 

EWo+ Wi)l HA,+ WI*) f or any Q E a[ F”], we get FQ(i) F* + 
T[Q(i)] = E{ [Ao+ W(i)] x(i) x*(i)[A,+ W(i)]*} by the independence 
argument. Thus following from (1) 

Q(i+ 1) = FQ(i) F* + T[Q(i)] + V(i), Vi>O. (3a) 

If the model disturbance covariance matrix C is diagonal (i.e., if the distur- 
bance w(i) has uncorrelated components for every i 2 0, such that yk, = 0 
whenever k # I), then (3a) becomes 

Q(i+ 1) = F!Q(i) F/* + T![Q(i)] + V(i), Qi20, (3b) 

for each 1= 0, l,..., p, or equivalently, 

Q(i+ I)= i FkQ(i) Ft + V(i), Vi20, (3c) 
k=O 

whose solution is readily obtained by induction: 

Q(i)=L’[Q(O)] + c Lip’-‘[V(j)], Vi2 1, 
j=O 

with LIQ]=~~=OFkQF~ for all QE~[F”], such that {L’E&?[W[F”]]; 
ib l} is given by 

L’(Q)= 5 ... f F,yF,,QF,*;-F;,, VQ E S?[F”]. 
k, = 0 k,=O 

Similarly it can also be shown from (1) that 

Q,, I(4 = FQ,(i) + Brq*(ih Vv, i>,O. 

409 II3 1-4 
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On iterating the above equation from Q<)(i) = Q(i) onwards we get by 
induction in v > 1, 

Q,.(i) = F"Q(i) + ‘f F’Brq*(i), Vi>O. (4) 
/=o 

Remark (R-6). By definition, T is 99[ F”] ‘-invariant, so that 
T[Q(i)]eg[F”]’ for every i30.’ On the other hand, as it also happens 
in the linear case, {Q(~)E&I[F”]+; i> 0) is not necessarily a monotone 
sequence. That is, it may happen that i [Q( i + 1) - Q(i)] 4 B[P] +. 
Moreover it can also be verified that, for a given i 3 0, V(i) $ a[ F”] + in 
general (thus implying that P(i) + P*(i) does not necessarily lie in 
%[F”] + ), even though all other terms in (3) lie in 59[ S”] +. 

4. MEAN SQUARE STABILITY 

Consider the mean {q(i); i 3 0} and correlation {Q(i); i 3 0) sequences 
given in (2) and (3). In this section we investigate sufficient conditions on 
the stochastic model ([A,+CE=, Akmk(i)], B) described in (l), in order 
to ensure that {q(i) = E{ x( i)}; i>O} and (Q(i)=E{x(i)x*(i)}; i30) 
converge for any admissible initial condition x0 and input disturbance 
{u(i); i>O}, d h . an t elr limits do not depend on x0. 

DEFINITION (D-l ). The model in (1) is mean square stable (m.s.s.) if, for 
any initial condition x0 and input disturbance {u(i); i 2 0} satisfying 
assumptions (A- 1 )-(A-3), there exist q E F” and Q E S?[ FH] + independent 
of x0 such that 

(a) ll4(+41/ -+Oas i+ 9 
(b) /IQ(i)-Qll -+O as i-tco. 

Remark (R-7). The second order state sequence (x(i); i b 0) is said to 
be asymptotically wide sense stationary (a.w.s.s.) if there exist qE lF” and 
Q, E .S?[ IF”], for each v 2 0, such that 

lIq(i)-ql/ +O as i+ ‘x;, 

IIQ,,(i)-QVll +O as i-+ a 

Note that (1) is m.s.s. if and only if (x(i); i > 0) is a.w.S.s. for any x0 and 
{u(i); i30) as in (A-l)-(A-3), and the limits q and Qv do not depend on 

’ “En passant,” this shows that the assumption (A-3,b) in [19] may be dropped out. 
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x,,. Also note that, if there exists the limit Q, = Q E 99[ IF”] it must be in 
~lw +, since Q(i) E 9[ ff”] + for every i 2 0 and 99[ [F”] + is closed in 
i?a[F”]. 

THEOREM (T-l). Consider the evolution equations in (2) and (3a). Set 

P2= II TII <kg, lY!dl IlAkll IlA,II. 

Suppose there exist real constants (T > 1 and 0 < a < 1 such that 

II F’ I/ 6 oai, Vi>O. 

a2 + a2p2 < 1, (5) 

then the model in (1) is m.s.s. 

ProoJ: (a) Consider Eq. (2). From Lemma (L-l) (with X= P, T= 0, 
L = F, and {vi = Br; i 2 0}) it follows that {q(i); i > 0) is Cauchy sum- 
mable, and so (D-l, a) holds. 

(b) Now consider Lemma (L-l ) in the Banach space X= a[ IF”] with 
TE&?[?#[[F”]] and { V(i)Eg[[F”]; i30} as defined in Section 3, and let 
LE~[~[IF”]] be given by 

L(Q) = FQF”, ~QERV, 

such that 

I( L’ /I = sup I( F’QF’ )I = I\ F’ I( 2 < a2azi, Vi>O. 
II Q II = 1 

Form part (a) it follows that { V(i); i > 0} is Cauchy summabfe since, for 
every i, v 3 0, 

IlV(i+v)-V(i)lI=I/P(i+v)-P(i)+P*(i+v)-P*(i)11 

<2 lIP(i+v)-P(i)(I 

d 2 
( 

II A0 II II r II + i II Ak II II rk II 
> 

II B II II q(i + v) - di)ll. 
k=l 

Then, if (5) holds we get the result in (D-l, b), with Qe$I[l!Y] + 
(cf. Remark (R-7)), according to Eq. (3a) and Lemma (L-l). 1 
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Remarks 

Consider the assumptions of (T-l ). Since F= A, + M is (uniformly) 
asymptotically stable (cf. Remark (R-l)) it follows that (cf. [22, p. 5671) 
~,F’To F’=(Z-F)-‘cg[[F”]. Hence 

q=(Z-F) ’ Br, 

where q = lim, _ iu q(i) according to (2). Moreover, since V(i) + V as 
i+ 00. with 

V=P+P*+BRB*, 

P=A,(Z-F)-‘Brr*B*+ f A,(Z-F)-‘Brr,*B*, 
k=l 

it is readily verified from (3a), (L-l), and (R-7) that Q = limi, J. 
Q(i) E g’cE”l + is the only solution of 

Q=FQF*+ Z’(Q)+ I’. 

Moreover, with QV = limi, tc Q,,(i) for each v > 0, it follows that 
qq* = lim “‘co Qv, since by (4) 

Q,,=F”Q+ c F’Brr*B*(Z-F*)-‘, vv3 1. 
j=O 

In the following we make several comments on condition (5), as a con- 
tinuation of those considered in (R-3)-(R-5). Some of these will motivate 
the next theorems. 

Remark (R-8). A condition somewhat similar to (5) was given in [ 181, 
for stability with probability one (w.p.1) of free stochastic systems under 
ergodicity assumption, as follows: Set Bu = 0 in (1) and assume, instead of 
(A-2), that 

fig: II Vj)II w.p.l * Ei II W)ll 1 as i+ E’. 

Let A, be asymptotically stable, that is (cf. Remark (R-l)) 

IlAbll <ad, ViBO, 

witha>1 andO<ol<l.If 
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then the free model (i.e., with Bu = 0) in (1) is asymptotically stable with 
probability one. That is, for any bounded (w.p.1) initial condition, 

x(i) 
w.p.1 t0 as i-co. 

Remark (R-9). Condition (5), which is sufficient to ensure mean square 
stability in (T-l), is not a necessary one. To illustrate this, set n = 2, 
m=p=l, yI1= R= 1, p, =r=O, q(O)=0 (such that q(i)=0 and P(i)= 
M = 0 for every i > 0), and 

where aI1 u2, P,, and b2 are nonzero real constants. Therefore 

I/Fill IIA;ll 1 o;: i = 0, 2, 4,... = = ? i = 1, 3, 5,... 

a = r,(A,) = 1 CI, Lx* 11’2, 

’ 
2 IIA,l12 max{b,L 14) 

=‘=min{(r,I, Itx21}’ r,(Ao) 

P = II A I II = max { I PI I, I IL I >. 

From (3a) it is readily verified by induction that, for every i > 0, 
Q(i) = diag(q,(i), q2(i)), where h(i) = (u],(i), q2(i)) in (w2 is given by 

h(i+ l)=Ah(i)+b, W) = (rll(O)? q2(0)), 

with 

such that 

r,(AJ2 = (a? +b’:)(ai + 8;) = r,(& +A:12 + ra(CAo, A,1J2, 

where [ Ao, A,] = A,A 1 - A, Ao. After some algebraic manipulation it can 
be shown that r,(A) < ~1~ + 02p2. Actually, if either 1 LYE I # la21 or 
ID1 1 # I/& it follows that 

r,(A) < LX’ + 02p2. 

Hence it may happen that 

r,(A)< 1 and a2+a2p2> 1 
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(e.g., set a, = 1, rz = $, p, = /I2 = 4. such that r,(A ) = 2 and x2 + a’p’= :). 
However, as it is well known, (h(i); i 3 0 ) converges (or, equivalently, 
{Q(i); i> 0) converges) for any /z(O) to a limit independent of A(O) 
whenever v,(A) < 1, although condition (5) may not be satisfied when 
r,(A) < 1. Moreover, if we replace the conditions imposed on the matrix A,, 
by the conditions imposed on the matrix A,, and vice versa, we get 
r,(A) < a2 + g2p2, where - 

= IIA; II i 2;, i 0, 2, 4,... = 
i = 1, 3, 5,... 

gz=I/A,ma={l18,13 I/MI 
- r,(Al)2 minfMI~ IP21)’ 

since this is equivalent to replacing the matrix A,, by the matrix A, (which 
have the same structure). Therefore, for this particular case, we have 
another sufficient condition for mean square stability, that is, 

a2+12< 1, - 

which is not implied by condition (5). For instance, set /I1 = 1, ,G2 = /j for 
any O</J< 1, and aI=a2=a for any O<a’</(l -p)< 1. Then (5) is not 
satisfied since 

a2 + a2/.12 = a2 + 1 > 1, 

although mean square stability is guaranteed by the new condition 

r,(A)<a2+a2~2=p+aZ/B< 1. - 

This particular case will be generized in Theorem (T-2) whenever the 
model disturbance covariance matrix C is diagonal. 

Remark (R-10). On the other hand, the weaker condition 

a2+p2< 1 

is not sufficient to ensure mean square stability, unless {Ak; k = 0, l,..., p} 
commute (cf. Remark (R-5)). For instance, regarding the model described 
in the preceding remark, set Q(0) = Z, a, = a ~ *, a2 = a4, and ~!?r = /I2 = a, for 
any O<a< 1, such that 

r,(A)2=a10+2a4+ap2>1, Vae (0, 1). 
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Thus 11 Q(i)/1 + cc as i+ co for every LIE (0, l), although 

a2+p2=2a2<1, Va E (0, l/d). 

Still regarding the example discussed in the preceding remarks we finally 
note that, if A, and A, commute (i.e., if a, /I2 = a2b, = 6), then the weakest 
condition r,(Ai + AT) < 1, which does not involve either the norm 
p = // A, 11 or p = II A, 11, is sufficient to ensure mean square stability. 
Actually, if A,&d A, commute (or equivalently, if [A,,, A,] = 0), we have 
in this particular case 

r,(A)2 = r,(A; + A;)2 = (rb(A,,)2 + r,(A,)2)2 

= (a, a2)2 + (/I, fi2)2 + 2d2 < (a’ + p2)2. 

It will be shown in Theorem (T-3) that r,(A,)2 + r,(A ,)2 < 1 is sufficient to 
ensure mean square stability in general, whenever A, and A, commute and 
C is a diagonal matrix. 

THEOREM T-2. Suppose C is a diagonal matrix, and consider the 
evolution equations (2) and (3b). For each I= 0, l,..., p set 

P: = II T II C f II Fk II 2, 

and let G, 3 1 and a, ,> ’ 0 be real constants such that 

II 6 II < a&, Vi30. 

k=O 
kfl 

then the model in (1) is m.s.s. 

Proof For any 1, 1, E (0, l,..., p}, such that 1 #I,, 

II F,l12 = II F,FJ+ II = sup (F,F;rx; x) < sup 
Il.4 = 1 I/x/I = 1 

k # lo 

(6) 
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Now, if there exists I,, E { 0, l,.... p j such that u;, + abpi, < 1, then sl,,, < 1 and 
pLlO< I (since a,,> l), which implies by the above inequality that 11 F,ll < 1 
for every I# I,. Hence, if (6) holds, with the minimum achieved for some 
I, E (0, l,..., p f, then F,, is (uniformly) asymptotically stable, and F, is a 
contraction for every I # I,. In other words, if (6) holds, then the set ( F,: 
I= 0, l,..., p} is comprised of either p + 1 contractions, or p contractions 
and one (uniformly) asymptotically stable noncontraction. Moreover, in 
the latter case, the only index for which (6) holds is that associated to the 
noncontraction matrix. Therefore the desired result follows exactly as in the 
proof of (T-l ), with the evolution Eq. (3a) replaced by (3b), which holds 
true whenever C is diagonal. 1 

Remark (R-l 1). Condition (6) in (T-2) can be replaced by 

k;,, II Fk II * < 11 

which obviously implies (6) by setting G,= 1 and CY,= 11 F,l/ for each 
I=O, l,..., p (cf. Remark (R-3)). 

THEOREM (T-3). Let C be a diagonal matrix, and consider the evolution 
equations (2) and (3~). Suppose the operators { Fk ; k = 0, l,..., p } commute. 

If 

kc,, r,V’k)* < 1, (7) 

then the model in (1) is m.s.s. 

Proof. First, consider the following auxiliary result. 

(AR-l) Let 9 be a ring with identity. For any nonnegative integer p 
let {a,; k = 0, l,..., p 1 be a commutative set of 9’. Then, for every i E N = 

{ 0, 1, L., ) 

whereIp={(i,,...,i,)E~Pfl:C~=Oik=i}.Th is is the extention of the well- 
known binominal formula (e.g., see [24, p. 123]), from which the above 
multinomial one is obtained by induction in p. We shall be particularly 
interested in two special cases: R = [w, the real field, and W=&?[%?[[F”]]. 

(a) Consider Eq. (2). Since r,(F,) < 1 it follows from Remark (R-l ) 
and Lemma (L-l) the result in (D-l, a). Moreover, it also follows that 
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{ V(i) E 2??[ F”]; i 2 0} as defined in Section 3 is Cauchy summable (cf. proof 
of (T-l)). 

(b) Set L=C~:=,L,E~?I[~I[IF”]], 
where (15, EB[~~[F”]]; k =O, l,..., p> are defined by the formula 

L(Q) = FkQFk*, VQ E B[F”], 

such that 

11 L: II = SUP II F; QF:’ I( = II F; (I 2, Vi>O. 
IIQII = 1 

Note that { Lk ; k = 0, l,..., p } commute by the commutativity assumption 
on {Fk; k=O, l,..., p}. Therefore, by (AR-l), we get 

Hence 

HLilI a&f-Jo IIF;:l12, VibO. 

Since r,(F,) < 1 for every k = 0, l,..., p, it follows by (R-l) that there exist 
ck 2 1 and &k E (0, 1 - Ya(Fk)) such that (I F;, 11 < a,(r,(F,) + ck)j for all i 2 0. 
Then, by using (AR-l ) again 

= aa’, Vi>,O, 

with 

and a= f: (Y,(Fk)+Ek)2. 
k=O k=O 

By (7) and (R-l) we can choose {e k; k = 0, l,..., p } small, so that a < 1. 
Therefore, since Eq. (3~) can be written as 

Q(i+ 1) = LQ(i) + V(i), ViZO, 

and recalling from part (a) that (V(i); i30) is Cauchy summable, the 
result in (D-l, b) (with Q E~J[P] + according to remark (R-7)) follows 
from Lemma (L-l ) with T = 0. 1 
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Remark (R-l 2). Let C be diagonal and {A,; k = 0, l,.... p $ be mutually 
commutative, such that {Fk; k =O, I,..., p} commute. Set 

I r,, I = (I P I I ,--1 I P, I ) E RL’, 

IRcI=CIP,,ll~~AC~pI’. 

sA = (r,(Ao), r,(A ,I,..., r,(A,)) E W + ‘, 

and note that 

1 Pkl I = 
Pkk = Ykk + 1 Pk I *, if k=l, 

IPkl IP,l G&$,*p;/** if k#l, 

since C = diag(y,, ,..., yPP) E B[ W] + with ~,&=pkk-/Pkl*>O. We now 
show that condition (7) in (T-3) can be replaced by 

(SJ, ; SA ) < 1 

Actually, by the commutativity assumption (cf. [23], p. 453), 

2 r,(Fk)* = r, (,A,+ i pkAk)’ + f: rp(y:i2Ak)’ 
k=O k=l k=l 

2+2rg(AO) i IPkl ro(Ak) 
k=l 

f f YkkrgtAkj2 
k=l 

=rdAO)*+ i IPkl Ipllrg(Ak) rg(A,) 

k,l= I 
kfl 

P 

+ 2rv(AO) 2 1 Pk I ra(Ak) 
k=l 

+ i (lPk12+Ykk)r,(Ak)2=(S,,S,;S,). 
k=l 

5. CONCLUSION 

In this paper we have established sufficient conditions for mean square 
stability of discrete bilinear systems operating in a stochastic environment. 
Mean square stability has been defined in (D-l) in terms of the asymptotic 
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behaviour of the state mean and correlation sequences. For the second 
order stochastic environment under consideration only wide sense 
stationarity and independence were required, thus dismissing ergodicity 
assumptions. The probability distributions involved were alowed to be 
arbitrary and unknow. 

Theorems (T-l)-(T-3), which comprise the main results of the present 
paper, have been proved by using a preliminary stability result proposed in 
Lemma (L-l ) for a class of deterministic nonlinear dynamical systems 
evolving in a Banach space. A general case has been investigated in (T-l), 
and two particularizations have been considered in (T-2) and (T-3). In (T- 
2) a model disturbance with diagonal covariance was assumed, and in (T- 
3) we also assumed commutativity for the system operators. The result in 
(T-l) generalizes the particular case proposed in [ 191, by extending it to a 
wider class of models. 

The mean square stability conditions presented in (T-I)-(T-3) have been 
discussed in detail in remarks (R-3)-(R-5) and (R-8t(R-12). They are 
based on upper bounds for norm and spectral radius of the system 
operators in B[ lF”], weighted by model disturbance covariance coefficients. 
Hence they may be easily checked in practice, since they do not require 
analysing Liapunov operator equations. 
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