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Abstract: Let H be the Hilbert space of all second order H.valued random variables, where H is a nontrivial separable
AiTbert space. 1In this paper it is shown that infinite-dimensional discrete-time bilinear models driven by H-valued
random sequences can be rigorously defined as the uniform limit in H of finite-dimensional bilinear models. CExistence
and uniqueness of spjutions for such infinite-dimensional models can be established by assuming only independence and
structural similarity for the stochastic environment under consideration.

1. INTRODUCTION

One has noticed iately a remarkabie research effort
towards an important subclass of nonlinzar dynamical
systems, namely bilinear systems {e,g. see the surveys in
[13,06] and [7]}. The mejor part of the availabie
Titerature is related to determistic, continuous-time,
and finite-dimensional models; although some important.
contributions outside the above category have already been
published {e.g. ses the -references in [3} and £5]). Here,
we shall be considering discrete-time bilinear system
operating in a stochastic environment, whose model is
formally given by the following difference equation.

x1+1 f [Ao + k%1 Ak-:w,i,ekﬂxj U
where {A ; k20} is a sequence of bounded 1inear operators
on some separabie Hilbart space H, {ey; kz1} is an
orthonormal basis for H, and {ug; 120}, {w;; 120} and

Ixs;; i20) are H-valued random sequences. 1f H is finite-
-dimensional, then such 2 model characterizes precisely a
finite-dimensional stochastic discrete bilinear system,
since the above series is finite. The purpose of the
present paper is to give a rigorous definition of the
above stochastic discrete biiinear model, when H is
infinjte-dimensional. 1t will be shown that the infinite-
-dimensional model under consideration can be properly
defined as the uniform limit of finite-dimensional models
on the Hilbert space H of all second order H-valued random
variables. The existence and uniqueness of solutions for
such a limiting model will alse be established.

2. NOTATIONAL AND CONCEPTUAL PRELIMINARIES

We shail assume throughout this paper that H is a
separable nontrivial Hilberi space. and <;> will
stand for norm and inner product in H, respectively.
Let B[H] denote the Banach algebra of all bounded linear
sranstormations of H into itself. We shall use the same
symbol || {| to denote the uniform induced norm in B[H].
Let T*gE[H] be the adjoint of TeB[H], and set
B[H) ={TeB{H]: 0sT=T*}, the ciosed convex cone of all self
—adjoint nennegative (i.e. O & <Th;h> ¥hei) operators on
H. For TeB[H]™ we define the trace of T as usual.
def. o= o

27 ) <Te ;e > =
fear KK Ek=1

tr{T) A o

whera {ey; k21) is any orthonormal basis for H, and
3,205 k21) is the set of ait eigeqva}ugs of T, each of
thém counted according to ts muitiplicity. Let
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B,[HI*={TeB[H] =tr{T)<=) denote the class of all
nonnegative nuclear operators on H. For 2 brief
presentation on nuclear {or trace-class) operators, the
reader is referred to [10].

Let (%,I,u) be a probability space, where L is a
o-algebra of subsets of a nonempty basic set @, and p is
a probability measure on L. Lei A be the set of
equivalence classes of H-valued measurable maps x defined
almest everywhere (2.e.) on @, such that

Ixllz % et xtw)|F) = J[lu (@[ du<m

where ¢ stands for the expectation operator for scalar-
-valued random variables. The above is the so-called
second order property. Now set the following inner
product in # .

<'x;y>H def. ef{<x(w)yl{w)>} = f x{w)sy{w)>dy
Q

for all x,yeH, which induces the above norm in H. Thus
H=l,{Q,u;H): the Hilberl apace ¢f all second orden
H-valued random variabfesa, For any xeH consider the
sesquilinear functional e{<s;x{w)> <x{w);->}:H*+L,which is
tounded. Then {ef. [t0, p.120]) there exists a unigue
operator in B[H]*, say E{xex}, referred to as the
connelation of xeH, such that
<El{xox}f;g> = e{ctixlw)> <{w);g>} ¥f ,gek

Remark 1: It is_a simpie matter to show that
Trictxox})=]| x [l for any xeH, so that E{xox }eB;[H]* for
gvery xeH. Moreover, it is 2lso easy to show that
[Tl s U5l 1 x

li xll; for every xe# and TeB[Hj].

Now consider a family {xpeH; EezZ=P] of random
variables. For each £e= let {er y; k21} be an orthonormal
besis for H made up of all eigeﬁﬁectors of E{xrng}eBl[H]ﬁ
whose existence is ensured by the Spectral Thedrem (e.g.
see [8, p.4603}. Such a family is.said to be sinucturelly
similan if there exists an orthonormal basis for H, say
{ex; kz1}, such that {ey ,; kzil={ey; k21} for every Lac.
{ey; kzi} is referred £3’as the common onthonormal basis
for H of {xzeH; gez}. For any family {xgeH; Eez=f} we set

1 = {y¢H: y is independent of {xseH; £ez)) .

3 £63)
£ ! .
In particular, for any xeH, 1x={yeH:y is independent x&H}.

Remark 2: Note that yel, <=—> xel,. The fo?ioéing well-
—¥nown 1ndependence ‘properties {e.g. see [8]) will be
needed in the sequel.
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(a) If xeI, then, for every measuranle functionals
Y
V!V H

e{olx{w}] wlylw)} = elolx(w)]} elely{w)l} .

(b) If {y,&H; uveT=B} is independent of {x sH; £e==p}
then, for- any finite subset {XE ;3 1sksn} gf {xg; £gz} ,

N{x. ,ueox- ) & 1, . .
e & [yu. ueT}

for every measurable map N:HH.

3. INFINITE-DIMENSIONAL STOCHASTIC BILINEAR MIDEL

Considar the infinite-dimensional stochastic
discrete bilinear model that has been formally introduced
in section 1. The purpose of this section is to give 2
rigorgus definition for such a model., This will be
achieved in Lamma 1 befow. We begin by establishing two
auxiliary results that will suffice our needs.

Proposition 1: Let {wgsH; £eZ=B} be a structurally similar
Tamily with @ common grthunormal basis {ek, k>1} fcr H,
For each £&Z and for every n21, set

{n) = A n
AwE n o * Ek=1

Ak<wg;ek> : IWE *.H s

where {AyeB[H]; k20} is an uniformly bounded sequence of
operators. We claim that, for each g¢z, the sequence of
maps {A, (n): I +#; n21} converges un1f0rm1y, or

equ1va1e§t1y, fdr each £gZ there exists a-map Aw I
such that E

LA, (nlv-4 v
A

Supd'zva-[ -0 as me
we IlV“H

Such a.map has the following properties.

l A@évllH s (A, + sgpka,ﬂ Al Tl vl
Awsav = aAwgv R

for every asC and vst . and for each i2)

tz -1

A
zO J ‘]zﬁ wf-' J

whenaver vchw- for every j=0.1,. )GI

..,1 and ([ o
g . . 3=0"§
for every k=1,...,1, whych happens whenaver
W, EL{Vlel! vyl according to Remark 2(b}.

1

Proof: For each £ez we get from Remark 2(a), and according
to the definition of the correlation operator, that

‘cAk<w€;ek>v H A2<NE )v> = <E{WE°”E}eE;Ek> <AkV;AEV>

for avery k,221, whenever veI Moreover, since
{w eH; £ez} is structurally 51%1iar,

P . F
E{wgows}ek = Ae 8y Lk,IlE-k = tr(E{xgowE})-f!wE|h <o
for each £eZ and every k21, where Ap 20 is the eigenvalue
of E{wrowr}eB,[H]* associated with %he common eigenvector
e for eadh k21. Hence, for each ZeZ,

P
K,L=m

k<wg;ek>v ; A£<WE;EE)V>

| ELmAkws;ekw]i; = "

1P, 12, > <A v3A V>, § SUP Ha, ti2iiv]l2 3P )
f-k“ﬂ,,i Bgity kK TeH msksp'' Tk LA

for all VGIw
Thererore, g

and for any 1amsp, according to Remark 1.

II A, (neulv -Awh(n)v” )
§ > w0 a5 mw

SUP, 31 SUp0=veI

e I,

so that uniform convergence foilows far sach £e2. The
remaining bounded linear-like properties of the map Ay

(which just fails to be a bounded linear one because i%s
domain I, is not a linear subspace of H) are easily

verified.  Boundedness and homogeneity are trivial. The
add;t1v1ty property can be established by induction (c¢f.
(4]

Proposition 2: Consider a sequence {v ef; iz20}. Let
Twiel; 1207 De & structurally s1m11ar ;equence such that

W
°€IV0 and

w. eI,
J 1wo, .-.,w‘I 1,v VL""’Vj)

for every jz1, Then

vy € Iwi s Awi_1"'ijvj € Iwi ¥i=l,...,i=-1
:skoi-1...ijvj 1, Vk=O,...,i-1 ,
{;:;Aw- ...ijvj vV Iwi ,

A \EE,}:[} " ...ijyj + vl - ‘ELOAH%...A;‘jvJ. ,

for every izl, with Aw :1w -+H gefined as in Proposition 1.

J i
Proof By Remark 2(b} and Proposition 1 it is a s:mple
matier to show that the desired result holds for i=1. Now
suppose it holds for some i21. Hence, according to Remark

g(b},

Wiet © {wo,...,wi,vo,vl,...,v1.+1} -
Vi © I"i+1 s Awi...ijvj € I“i+1 ¥i=0,....1 ,
— i;oA"‘i' AWJ_VJ € Iw1_+1 Yk=0,...,f »
\E;=0Awi.‘.ijvj Vi€ Iwi+1

Then, by the additivity property of A, jn Proposition I
i+

Ay Ay oA v s Ts Pa LA, vy,
Wiel 520 My i3 3=0 ¥iag J

Thus the result helds for i+1, which concludes the proof
by induction.

quenct

Lemma 1: Let {wyeH; 120} be a structurally s1m1!ar$e
WTER 3 common orthonormal basis {e,: kat} for H. Set

=A + 7 Acwies: 1 +H
W.i o k=1 k ik LE

for every 120, as defined in Preposition {, where
{Aye8{H]; k201 is uniformiy bounded. Given X, gl an
{u €H; 120}, assume further that WoeT, and

Xg

w, s I,
h {X, U

o w
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for every j21. Then the difference Eqﬁation in H
-]
Xipy * (A, + Ek=1 A cwgse >k, + us

has 2 unigue solution, which lies in 1, for every iz0,
N 1
given by xl:AWOxo*“o and, for every i22,

i-1
X. = A O S z A
i W_i_1 Wo Q §=1 W

.

cedA UL, o+ U,
o1 W5 J-1 i-1

pProof: Set VosX and v.+1=uj for every ja0, such that

w elv and a J
2] o

w, €1

i {wo,...,wj_1,vo,vl,...,vj}

for every jz1. Then, by Proposition 2, v

‘s
! {1'1 Aw ceA Vo w VoG]

5=0 Wi 4T

(a) i-1 i
AT N 7R D) R
W Ly iy I i d

for every i21. Therefore, by setting

21-1 A
3=0

(b) X, =

e N
5 Aw‘v v1 [

W i J \\'.i

i-1
for every i21, we get

{c) x,

X, o+ ¥,
it = Ay,

5 71 it oo ?

for every i20. On the other hand, if {xjeH; 120} soives
the difference equation {¢) then, from (a) it is readily
verified by induction that (b) holds true for every izt.

4, CONCLUDING REMARKS

This paper dealt with modelling of infinfte-
-dimensional discrete bilinear systems driven by H-valued
second order random sequences. The stochastic
environment, under which the system is supposed to
operate, was characterized by independence and structural
similarity only. No assumption on stationarity was
required, and the probability distributions involved were
allowed to be arbitrary and -unknown.

The main results were presented in Lemma 1, which
ware supported by Propositions! and 2. 1In Propesition |
it was established the existence of the bounded linear-
-1ike map Awirlwi*ﬂ by uniform convergence arguments. Its

transition properties were derived in Propesition 2. Such
a map plays a fundamental role in bilinear modelting,
since it characterizes the multiplicative action of the
input over the state. Existence and uniqueness of
solutions for infinite-dimensional stochastic discrete
bilinear models ware established in Lemma 1.

Finally, it is worth remarking on the independence
congitions assumed so far. Let Xg€H, {ujen; 120} and
iwjeH; 120} be the random disturbances involved in Lemma i,
and consider the following conditions:

(1) xOEI{(ui,wi);TZOJ’and 1(ui,wi); 720} is an independent
sequence in H2.
{2) usdwl=wi{w) Tor 211 wen and every i20, and {x ,w.; 120}
is an independent sequence.

ooz .3 1203} are
(3) XDEI{ui,wi; 120)> and {ug; i20) and {w1 203
independent sequences, which are independent of each other.

{4) xoel{u-,wi; $20)° {ugs i203 and.{wi, i20} are
independen% sequences, and {u.,wj} i5 independent of
{Ui'wi; J=i20} for every jz0.

(5) XOEI{UO,WD f 20
{xo'uu""’”j-1'wo""’"j-i} or every jz0.

) and {uj,wj} is independent of

It is 2 simple matter to show that

(1) ==y,
Z 4) (s} .
3=

Note that condition {5} is certainly stronger than what is
actually needed to ensure the results in Lemma 1. However,
condition (5) may look somewhat artificial, so that the
sironger condition in {4) is sometimes assumed in the
related literature (e.g. see [3]). Indeed the even
stronger conditions (1), (2) and (3}, which may eventually
be more appealing, are very often assumed for modelling
stochastic bilinear systems {e.g. see [5],[11] and [2],
respectively). It is also worth remarking that conditions
(2) and (3} represent rather different situations, which
turn out to suffice our modelling purposes.
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