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In this paper, we consider the class of infinite-dimensional discrete-time linear systems
with multiplicative random disturbances (i.e. with the state multiplied by a random
sequence), also known as stochastic bilinear systems. We formulate and solve the
quadratic optimal-control problem for this class of systems subject to an arbitrary
additive stochastic £2 input disturbance. Under assumptions that guarantee the exis-
tence of a solution to an algebraic Riccati-like operator equation (derived previously
by the authors), we characterize a bounded linear operator that takes the additive sto-
chastic (.2 input disturbance and the initial condition into the optimal control law.
Such a result generalizes, to the infinite-dimensional bilinear stochastic case, some
known results for the deterministic linear case.

1. Introduction

Linear systems with multiplicative random disturbances (i.e. with the state multiplied
by a random sequence), also known as stochastic bilinear systems, comprise an
important subclass of stochastic systems which have lately received a great deal of
attention. This is due, at least partly, to the various areas of application like, for
instance, in population models, nuclear fission and heat transfer, immunology, etc.
(e.g. see Refs 10 and 11; for further references see Ref. 7).

Quadratic optimal-control and H^-control problems, and their associated alge-
braic Riccati-like operator equations, for infinite-dimensional discrete bilinear sys-
tems operating in a stochastic environment have been recently considered [2, 3].
These generally mirror their linear counterparts (see e.g. Refs 4, 5, and 12; as a
matter of fact, the results in Ref. 12 also reach bilinear models). Conditions for the
existence and uniqueness of a solution to an algebraic Riccati-like operator equation
were obtained in Ref. 2, with a view to solving the quadratic optimal-feedback-
control problem for infinite-dimensional bilinear stochastic systems, for a class of
independent zero-mean additive input disturbances. In the present paper, we con-
sider the quadratic optimal-control problem (not necessarily in a feedback form)
for an infinite-dimensional discrete-time stochastic bilinear system subject to an
arbitrarily additive stochastic l2 input disturbance. Using the algebraic Riccati-like
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operator equation obtained in Ref. 2, we characterize a bounded linear operator that
takes the additive stochastic £2 input disturbance and the initial condition into the
optimal control law, which generalizes known results for the linear case (cf. Ref. 5
for the continuous-time case).

The present work is organized in the following way. In Section 2 we set out the
notation that will be used throughout the paper, and Section 3 contains the basic
assumptions upon which the model will be built. The model under consideration is
described in Section 4. The main theorem is stated at the end of Section 5, where a
bounded linear operator that takes the additive stochastic (2 input disturbance and
initial condition into the optimal control law is established. Again this mirrors its
linear counterpart [5]. An example for the particular case of independent zero-
mean additive input disturbances is presented in Section 6, and the results compared
with those obtained in Ref. 2.

2. Notation

Let X and X' be Banach spaces, and denote by B[X, X') the Banach space of all
bounded linear maps from X to X'\ for simplicity, we set B\X\ = B[X, X]. We
denote by G[X] the group of all invertible operators in B[X]. The norms in X and
X' and the induced uniform norm in B[X, X'] will all be denoted by || • ||, and r(»)
will stand for the spectral radius in the Banach algebra B[X]. For any nontrivial com-
plex Hilbert space H, we shall denote by (• ; •) the inner product in H (we write
(• ! ')n with norm | |- | |« if H is a probabilistic space), and an asterisk will stand
for adjoint as usual. Let B+[H] be the weakly closed convex cone of all self-adjoint
nonnegative operators in B[W], and set G+[H] = B+[«]nG[W]. Let BJW] denote
the class of all nuclear operators from B[Ti] (see e.g. Refs 2, 3, 8, or 9) and set
Bt[H) = B,[W] n B+[H]. Let 12(H) C @kWH be the Hilbert space made up of all
sequences {xk e7i\k^0} such that £itLo ll**ll2 < °°-

Let (Q, r , /x) be a probability space, where I is a sigmafield of subsets of a non-
empty set Q and n a probability measure on I. Let Jf = 1^(0,1,n,H) denote the
Hilbert space of all second-order W-valued random variables with inner product
given by (x;y)jf = E((x;y)) for all x,y e Jf, where E stands for the expectation
of the underlying scalar-valued random variables. Accordingly, the norm of x G Jf
is given by | |*||jr = E(||x||2)i. For any x,y G Jf, the expectation and correlation
operators will be denoted by E'(x) G H and E'{xoy) G B\[H] respectively (e.g. see
Ref. 8), with E'(xo x) €B*[H]; they are uniquely denned by the formulae
<E'(JC);Z> = E((x;z)) and (E\xoy)w\z) = E({w;y)(x\z)) for every w and z in Jf.
For any subsigmafield Z ' C I , the conditional expectation of x 6 Jf will be denoted
by E'(x\l') € Jf, and the conditional expectation of the underlying scalar-valued
random variable by E( • 11'). As usual, E'(x 11') is uniquely denned by the formula
(E'(x \Z')\g) = E((x;g) 11") for all f € H. For any family {xt G Jf; i € * £ 0} set

= {y e & '• y i s independent of {xt G Jf; i

Finally, for the product of operators X\, _, Xn, we use the operating-order convention:
njUi** = xnu

n
kz\xk (« = 1,2,_), with uJ

k=txk •.= 1 for, <«.
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3. Assumptions

Throughout this paper, W,H',Ti", and H'" will stand for separable complex Hilbert
spaces. Set # = L2(Q,Z,n,H), X" = L2(fi1ZJp,W')» •*"' = M A £,/*,«"), and
3t'" = ]-a{Q,I",/i,Hm), where (Q,E,n) is the underlying probability space. We
assume that {wt € Jf;i ^0} is a stationary independent random sequence with
expected value and correlation operator denoted by s G H and S G Bf [H] respec-
tively, and set C = (S-sos) G B+[H\. On the probability space (Q,Z,n), we con-
sider a nondecreasing family of subsigmafields !„ C E (n — 0,1,_) such that the
following properties are satisfied.

(PI) w/ is independent of In (that is, the sigmafield generated by wt is independent of
In) for atil^n,

(P2) wn is Tn+1-measurable.

Set
X = {x = (xo,*i,-) G e2{Jf) : xk e L2(Q,Zk,n,H) VA: ^ 0}.

It can be verified that X is a closed linear subspace of £2G*") and therefore a Hilbert
space. In a similar way, we define the Hilbert spaces -f c ^2(•*"'). * C l2{Jf"), and
5" C ^(•#"'") by replacing H and Jf in the definition of X by H' and Jf', U" and
Jf ", and W'" and Jf'", respectively. It is easy to verify that

l,/.1} for all j ^ i.

Notice that, if v = («o, t>i,_) G T ,̂ then vt may not be independent of past states xk

(k < /). It has been shown in Ref. 3 how one can construct the spaces X, "V, <#,
and 2£, and decreasing family of subsigmafields ! „ , out of a probability space
(Q, 1, fi) which lead to the above properties.

4. Description of the problem

Consider a discrete-time bilinear system operating in a stochastic environment, whose
model is given by the following infinite-dimensional difference equation:

o,^'H), (1)

where v = (vo,t>i,_) G "V (the additive input disturbance), u = (UQ,U\,~) G "U (the
additive control sequence), {WJ £ J(f; i ^ 0} is the multiplicative input sequence,
{XJ G Jf;/ > 0} is the state sequence, {Ak G B[W];fc ^ 0} is a bounded sequence of
operators, D G B[W',W], B G B[H",H], and {ek;k ^ 1} is an orthornormal basis
for H made up of the eigenvectors of S G Bf [W]. For simplicity, we write

k=\

Since XQ G XO, U eft, and v G if, it follows from (1) and Property P2 above that xt is
Immeasurable for each / > 0, and thus

a n d ^
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Set R, = E'(u, o v,) G Bf[H'] and Qt = E'(xt o x,) G Bf [W] for every / 5= 0. If
ut = -Kxt for some ^ e B [ / / , i f " ) , then, by a straightforward modification of
Lemma 2 in Ref. 8 and the fact that wt e S{x,,v,} > w e can show that the state corre-
lation sequence evolves as follows:

Qi+i = FBK{QI) + E'(FBKx, O Dvt) + E'(FMx, o Dv,)* + DRtD*.

Here FBK and Fg^ are operators in B[B[//]] and B[H], respectively, defined as

T{P) Vi> e B[W],

FBK = (A0-BK) + f2(s;ek)Ak € B[W],

with 7" € B[B[tf ]] given by

T{P) = Y^{Cek;e,)AkPA*, Vi> € B[W],
t,/=i

Associated with T and FflAr, we set T* e B[B[W]] and Fg*K e B[B[W]] as follows: for
al lPeB[W],

Ak, F*K(P) = F*BKPFBK +T*{P).

Moreover, set F* = F*, F = FQ, and F = Fo, and define

YB = {K£B[H,U"\: r(F*K)<l}.

Let M 6 B+fH] and JV e G+[H], and take v = (vf,,vu-) G f arbitrarily fixed. Set
4r = {« = (uo,«i,-) € * : x = (x0,*,,..) GST, where x is given by (1)} (so that
||x||<r < oo whenever u G 4r). For any u = (uo.U],-.) G 4r and JC0 G 3*Oi set

(2)
/=0 (=0

The quadratic stochastic optimal-control problem associated with the above discrete
model that we shall be addressing in this paper is that of finding the control in 4l that
minimizes (2); that is, find u G % such that

J(XQ,U) = infj(xo,u). (3)

5. Main results

Consider the setup of the previous sections. The following proposition and theorem
will be required in the rest of the paper; they were proved in Refs 3 and 2 respectively.
The definition below, which was introduced in Ref. 2 is necessary for the theorem
statement.

PROPOSITION 1 Consider model (1) with ui = -Kxl for some K eB[H,H"]. If
T(FBK) < 1) trien x = (jco,JC|,_) G 3T for every v = (vo,vu-) G Y and XQ^SCQ.

Moreover || JC Û - ̂  </(||xo||;o + ll^lly) for some nonnegative constant d.
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Definition. Take a separable Hilbert space ~HQ and L € B[H, Ha\ arbitrary. The pair
(L,F) is detectable if there exists B 6 B[Wo>^] such that x{FBL) < 1.

THEOREM 1 If (M,F) is detectable and TB is not empty, then there exits a unique
P 6 B+[H] such that

= P-F*(P)+ F'PB(N + B*PB)-lB*PF = P-

with

KP := (N + B'PBylB*PF.

- KpKP, (4)

(5)

Moreover KP e TB. Furthermore, the optimal stabilizing feedback solution to (3) (i.e.
the optimal solution to (3) of the form {«, = -AJC,; i $s 0} over all K G TB) is obtained
for K = KP, whenever » e i * i . Here %, C ir is the class of all zero-mean independent
random sequences from I2(jf') that are independent of {w/ e Jtf; i > 0} and x0.

The purpose of the present paper is to extend the final part of Theorem 1 to allow a
larger class of additive input disturbances v. The apriori constraint of feedback con-
trol is dismissed, and the additive disturbance v will be allowed to lie in •V rather than
in -ym (see Theorem 2 at the end of this section).

The next five propositions will be required for proving Lemmas 1 and 2 below, from
which we shall conclude the final result in Theorem 2. For fixed and arbitrary « e f ,
and for P and KP as in (4)-(5), set

= EE '
IV-1

y\pDvk+j
y=o /=o

k+]
(6)

PROPOSITION 2 Suppose that {M,F) is detectable and TB is not empty. Then

r * H ^ ^ C H U I I ^ for some c ^ O .

Proof. Set

First we show that

*=o

= E'

IV-1

1=0
'-k+\

(7)

Indeed, from the fact that £kj is Ik+i-measurable, we have from Holder's inequality
that

= ( E'

= E

\U -i ~ BKp)'] PDvk+J

Y[(Ak+J_, - BKp)* PDvk+J ) Xk+}

/-o
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-M. yPDvk+J;

^E\\\PDvk+J\\

^E{\\PDvk+j\\
:

f[(Ak+l -

- BKP)

Y[(Ak+l-BKP)\ckJ
J

But, recalling that wt is independent of Zk+l for every / ^ k + 1 (by Property PI), it
follows (cf. the proof of Proposition 2 in Ref. 3), that

I 2 | \

H(Ak+l - BKP)
L/=i

Therefore

which ensures our first claim. From Theorem 1 it follows that t{F*Kf) < 1 (i.e.
KP e rB), and hence

<oo

for every p > 0 (cf. Ref. 6). Thus, from (6), (7), and the triangle inequality in Jf,

E 1 \\{{Ak+H-BKP) *\PDvk+J

y=o

y=o

However, for arbitrary integer n^O,

y=o
oo

y=o m=o



CONTROL OF INFINITE-DIMENSIONAL STOCHASTIC BILINEAR SYSTEMS 391

Therefore,

*=o \y=o /

Take « € f " and set rk = E'(rk | Zk), with rk given in (6), for each k > 0. As we shall
see in the next proposition, r := (ro,ri,_) € S,'. Now consider the transformation
R-.-V -^3C such that Rv = r for all v e if.

PROPOSITION 3 Suppose that {M.F) is detectable, and that Tfl is not empty. Then
Re B[f,Sr] and | | f | | j - ^ c||u||^- for c as in Proposition 2 above.

Proof. From linearity of the conditional expectation operator and (6), it is immediate
to verify that R is linear. Clearly fk is Lk-measurable. Moreover,

\\fk\\]r = E((E'(rk\Zk);fk)) = E(E(rk;rk)\Zk)) =E((rk;rk))

and hence ||r*||jf < ||r/t||.*». Thus, from Proposition 2, ||r||J- < c|| w||^. D

PROPOSITION 4 Suppose that (M,F) is detectable and FB is not empty. Then, for
each k = 0,1,_,

£*l
J

Ik\=E'({Ak-BKPyrk\Ik).
y=o

Proof. Set

with £kj as in Proposition 2. Then, for any g e W,

y=o

y=o

2
J=o

where, in the last equality, we have used the fact that wk is independent of Zk (by
Property PI), so that E(\\Ak - BKP\\2\Zk) = E{\\Ak - BKP\\2). Moreover, from
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the triangle inequality and the proof of Proposition 2,

[
Hence, with probability 1, £AE(IIC*,;I|2 |£*)* < oo and thus, with probability 1,

The above result and the bounded-convergence theorem [1] implies that

zt\.

The above equality, linearity of the operators Ak — BKP for each realization of the
random variable wk, and linearity of the inner product in the first argument, lead to

= E

y=o

= E(((Ak - BKP)'rk;g) | Zk) = (E'((Ak - BKpyrk\Zk);g).

On the other hand, from linearity of the inner product in the first argument again, and
the fact that wk is Ik+i -measurable (cf. Property P2), we get,

J=o j=0

'k+j

Since the above identities hold for all g 6 H, the desired result follows. Q

Next consider the transformation U defined on #"0 © "V such that C/(̂ o, v) = u :=
(MO,UI,_) for all x0 e 5T0 andu € "f", where (UQ,^,-) is recursively defined as follows:

(i) XQ = x 0 ;
(ii) for k = 0 , l , _ :

= PAkxk + rk- PB(N + B*PBYxB\PFxk + rk),

= -N-*B'E'(rlk+l\Zk),

(8)

(9)

(10)

LEMMA 1 Suppose that (M,F) is detectable and FB is not empty. Then
U € B[#o© "T,%\ with range (U) C %. Moreover, for each k = 0,1,_,

uk = -[KPxk + (N + B'PB)-lB'fk). (11)
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Proof. To verify the identity in (11), proceed as follows. According to the indepen-
dence of wk and Zk (by Property PI), and recalling that xk is Zk-measurable, we
obtain, in a similar way as in the proof of Propositions 2 and 3 of Ref. 8, that

E'(Akxk\Zk) = Fxk. (12)

Thus, from (5), (8), (9) and (12), and recalling that xk and fk are Immeasurable, we get

uk = -N-1BtE'(Vk+l\Ik)

= -N-xB*E'(PAkxk + rk- PB(N + B*PB)-xB*{PFxk + fk) I Zk)

= -N-lB*[PE'(Akxk | Zk) + E(rk| Zk) - PB(N + B*PB)-xB'{PFxk + fk)}

= -N~l[B'PFxk + B*fk - B*PB(N + B*PB)~X B*{PFxk + fk)]

= -N~l[I - B'PB{N + B'PB)-l]B*(PFxk + fk)

= -{N + B*PBYxB'{PFxk + rk)

Now let V : "V —* 3C be a transformation such that V(v) := v = (vo,vu-) where

vk = -B(N + B*PBYxB*rk + Dvk.

From Proposition 3 it follows that V is linear and 11 v \ \ s ^ d§ \ \ v \ | y for some do > 0,
so that V € B[~r,9r]. From (10) and (11),

xk+l=(Ak-BKP)xk + vk; (13)

also, from Theorem 1, r(FgKf) < 1 (i.e. KP e F). These results and Proposition 1 yield

I l * l l * ^ i ( l l * o l k + I I « I M (14)
for some d\ ^ 0. From (11), (14), and Proposition 3, we obtain

/ oo \ i

for some d ^ 0. Linearity of the operator U is immediate from expressions (11) and
(13), by linearity of the operators R and V. Moreover U(x$, v) € 4r according to (14),
completing the proof of Lemma 1. •

PROPOSITION 5 Suppose that (M,F) is detectable and TB is not empty. Then

Xk) = Vk- Mxk for each k = 1,2, _ .

Proof. From (8) it follows that

E'(A'kVk+i | Ek) = E'(Ak[PAkxk + rk- PB(N + B'PB)~] B*{PFxk + fk)} | Ek)

- E'(AkPB(N + B*PB)-xB'{PFxk + fk) \ Zk).
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From the independence of wk and Ik (by Property PI), and recalling that xk and fk are
Ek-measurable, we get, using the same arguments as in (12) and in Ref. 8, that

E'(A'kPB(N + B*PB)-lB*(PFxk + rk) \ Ik) = F*PB{N + B*PB)^B'{PFxk + fk)

and

{E'{A*kPAkxk\Zk)-g) = E((A'kPAkxk;g)\Ik) = (F*(P)xk;g)

for all g e H, so that

E'{A'kPAkxk\Zk) = F*(P)xk.

Therefore, from (4) and (5), and recalling that fk = E(rk\ Ik), we get

E'(^rfc+1 | Zk) = F*(P)xk + E'(A'krk\ Zk) - F*PB(N + B*PB)->B'(PFxk + fk)

- [F*(P) - F*PB(N + B'PBYxB'PF)xk + E'((Ak - BKP)'rk\ Ek)

= (P-M)xk + E'{(Ak-BKPYrk\Zk) (k>0). (15)

From (10) and (11) it follows that

*k ~ Dvk_x = Ak_{xk_x + Buk_x = Ak_xxk_x - B(N + B'PB)'1 B'{PFxk + fk).

Recalling that vk_\ is Ik-measurable, we obtain from (6) and Proposition 4 that

rk_, = PDvk_x

IV-1

_/=0

,_, - BKPyPDvk+J

j=o \L/=o

= PZH;*., + E'{(Ak - BKp)*rk11*).

Putting these results together, we get from (5), (8), (10), and (11) that

= (P - M)xk + rk_x - PDvk_x = P{xk - Dvk_x) + rk_x - Mxk

= P[Ak_xxk_x - B(N + B*PB)-lB*{PFxk + fk)] + rk_x - Mxk

= PAk_xxk_x + rk_x - PB(N + B'PBYxB\PFxk + fk) - Mxk

a
Set rfo = A*OT}X + MXQ. For v and XQ fixed, take u = (UQ, "I , - ) G * and consider x =
(JCQ, JCI , _) G 2t given by (1) as a function of such a u.

PROPOSITION 6 Suppose that {M,F) is detectable and YB is not empty. Then

k=0
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Proof. From Proposition 5 and (1), recalling that rjk and xk are Ek-measurable, we
get

k=0

t=0

\Zk)+Vk)-((xk+

i+Vk))\Zk)-((x>

(xk;r)k) - (xk+l;r]

(xk;vk) - {xk+\;v

i - Akxk);T)k+i))

t+l - Akxk)',Vk+l))

k+i) + (Akxk;T)k+l))

lk+\) + (Akxk;T)k+i))

t=0

From (8) and arguments as in the proof of Proposition 4, it follows that
II JT -> 0 as n -> oo (in fact, J2kLo II Vk \\]r < <»)• Since u 6 4t, it follows that
and hence || xn+l || _<» —> 0 as n —• oo. Therefore

CK^+n^+i ) ! ) | | , I + i | | j r l l ? » + i l l j r - > 0 a s n - » o o .

Thus

- ((Buk + Dvk);Vk+l)) = Ed^rjo)). D
*=o

LEMMA 2 Suppose that (A/, F) is detectable and VB is not empty. Then, for JCQ 6
and n e f fixed and any iie^f,

. First notice that

*=0 t=0 *«-0

\*=o / \t=o /

so that the last term in the above sum is well defined. According to (9), and recalling
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that uk is Ek-measurable and N € G+[W], we get

= E{(uk; S*E'(%+11 Zk))) = E{(Nuk; AT'/rE'fa+i | Zk)))

=-E((Nuk;uk)).

Thus, from (2) and Proposition 6,

J{x0,u)-2ReE({x0;r)o))

t=o

||5r - 2ReE«A/*jct; Af *

|| A/i(xt - xk) ||5r + || JV*(«* " fifc) II*-- + 2ReE«r; t+1;Dt; t»] -
t=o

D

We can now present the main result of the paper.

THEOREM 2 If {M,F) is detectable and TB is not empty, then U, as denned by (8),
(9), and (10), belongs to B[3"o © T^ I* ] - Moreover, for any x0 e 3CQ and « 6 f , the
sequence it = U(XQ,V) belongs to Ql and it is the unique optimal solution to (3).
Furthermore,

i n f ( o > ) ( o , ) « j b ; o »

Proo/. From Lemma 1 it follows that [ / 6 B [ f o © f , * | with U{x0, v) G 4r for every
x0 e S'o and « 6 f . From Lemma 2 it is immediate to conclude that the infimum of
J(xo,u) is achieved if and only if u = u. •

6. Concluding remarks

In this final section we shall consider the particular assumption made in Ref. 2
and compare the present result with the one obtained there. Thus suppose that
v = (vo,vi,~) e ^ c f (see definition of "Vw in Theorem 1). In this particular
case there is no loss of generality in assuming that the construction of In is
such that vi is independent of Zn (by Property PI) whenever / > n. From the defi-
nition of rk (see (6)), and using the fact that vt is zero-mean, independent of wt

and Ek+i for i > 0 and I > k+ 1, and Zk+\-measurable for / = k, k+ 1, it follows
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that

rk = PDvk + (F- BKPyPDvk+i. (16)

Moreover, repeating the above arguments, we obtain fk = E(rk | Ik) = PDvk. From
this and (13) we get

**+i = (Ak ~ BKP)xk + vk, vk = [I- B(N + B*PBTxB*P]Dvk. (17)

In a similar fashion, we get from (15) and (16) that

E'(4tf&+11 Zk) + Mxk = Pxk + E'((Ak - BKP)*rk \ Ik) = Pxk + (F - BKPyPDvk;

hence, from Proposition 5,

ife+1 = E'(Ak+iT,k+21 Ik+l) + Mxk+i = Pxk+l +(F- BKP)*PDvk+x (18)

for every k > 0. Let us show now that

E((7ft+1;£t/*» = E({Pxk+l;Dvk)) = E ( ( [P - PB(N + B'PB)-1 B'P)Dvk;Dvk)).

(19)

From (17) it follows that, for k $t 0,

U
/=o

Let {fm\m ^ !} be any orthornormal basis for the Hilbert space H. From the inde-
pendence of vk and x0, vh and wt for / < k and / ^ 0, and since E'(vk) = 0, we have

»»=i y=i V \ L H

Similarly we can show that E(((F - BKP)'PDvk+i; Dvk)) = 0. Therefore, from (18),
it follows that

;Z>t7*» = E({Pxk+l+(F-BKPyPDvk+];Dvk))

= E((Pxk+uDvk)) + E(((F - BKPyPDvk+x;Dvk))

proving (19). Recalling that (see (18))

E'fa, | r0) = E\Alm | Zo) + Mx0 = Pxo + (F- BKPyPDv0,
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and repeating the same arguments used above, we obtain

E{(xo;(F-BKP)tPDv0))=E((Px();x0)). (20)

From (19), (20), and Theorem 2 it follows that the optimal solution for this case is
given by

uk = -KPxk + (N + B*PB)-lB*PDvk (21)

with associated cost

/(*b,«) - E«Pxo; xo) + £ E« [P - PB(N + B*PB)~lB'P] Dvk; Dvk».

Notice that

0 < i>i(l + M B A T ' B * ? * )"'/>* = P- PB(N + B*PB)~XB'P ^ P,

and therefore

0 < /(*<>;«) < E((Pxo\Xo)) + J)E((PDt; t;ZH; t». (22)

The term on the right-hand side of (22) represents the cost associated with the optimal
solution derived in Ref. 2 (i.e. uk = -KPxk), which is larger than the one obtained
here. This is so because feedback solutions were imposed in Ref. 2 (see Theorem 1)
but not here. Note that uk obtained in (21) has a linear (feedback) term in xk, as
well as a linear term in vk. If vk = 0 for k > 0, then the solution in (21) and that in
Ref. 2 coincide. In other words, for the case with no additive input disturbance, the
best of all solutions actually is in a feedback form, with the optimal feedback loop
characterized by the linear operator KP given in (5).

In summary, by allowing any t; G Y", the sequence u = (uo,U),~) = U(xo,v), with
uk as in (11), minimizes (3) (by Theorem 2). By restricting vtoi^cY and imposing
uk = Kxk for some K G TB, it follows that uk = -KPxk minimizes (3) (by Theorem 1).
At the extreme case of v = 0, the same feedback solution uk = -KPxk also is the mini-
mizing solution to (3), even though a feedback restriction is not imposed apriori.
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