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Stability for time-varying discrete linear systems in a Banach space is investigated.
On the one hand is established a fairly complete collection of necessary and
sufficient conditions for uniform asymptotic equistability for input-free systems.
This includes uniform and strong power equistability, and uniform and strong
/,,-equistability, among other technical conditions which also play an essential
role in stability theory. On the other hand, it is shown that uniform asymptotic
equistability for input-free systems is equivalent to each of the following concepts
of uniform stability for forced systems: /p-input ^,-state, Eo-input to-state,
bounded-input bounded-state, €p-input bounded-state (with p > 1), to-input
bounded-state, and convergent-input bounded-state; these are also equivalent to
their nonuniform counterparts. For time-varying convergent systems, the above is
also equivalent to convergent-input convergent-state stability. The proofs pre-
sented here are all 'elementary' in the sense that they are based essentially only
on the Banach-Steinhaus theorem.

Key words. Discrete-time systems, linear systems, infinite-dimensional systems,
stability theory, time-varying systems.

1. Introduction

CONSIDER the class of infinite-dimensional discrete dynamical systems, operating
in a deterministic environment, whose models are described by a linear difference
equation evolving in a Banach space. Such a class can be naturally split into four
subclasses, according to whether the models are homogeneous (i.e. input-free
systems) or inhomogeneous (i.e. forced systems) on the one hand, and auton-
omous (i.e. time-invariant systems) or nonautonomous (i.e. time-varying systems)
on the other hand. These comprise the whole class of systems that we shall be
dealing with in this paper. Thus we omit, from now on, the qualifications
infinite-dimensional, discrete, linear, and deterministic, since they will be
implicitly understood.

The stability problem (mainly strong and uniform asymptotic stability) for
input-free time-invariant systems has been investigated by several authors (e.g.
see [3, 5, 6, 8, 12]). A few results for forced time-invariant systems have also
been considered in the literature (e.g. see [3, 7, 12]). Some interesting results on
stability for time-varying systems, which comprise the central theme of this paper,
have recently appeared in the literature. For input-free systems, the relationship
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2 7 0 C. S. KUBRUSLY

between weak, strong, and uniform power equistability, as well as between strong
and uniform ^,-equistability, was analysed in [11]; and further results on strong
and uniform asymptotic equistability were presented in [9]. For forced systems, it
was shown in [10] that /'p-input bounded-state stability (with p > 1) implies
uniform power equistability under the assumption of uniform equicontroUability.
As far as the stability problem for continuous-time systems is concerned, see e.g.
the references in [11].

In this paper, we shall be dealing with the uniform-stability problem for each of
the four subclasses described above, with emphasis in forced time-varying
systems. In Section 2, we present a fairly complete collection of necessary and
sufficient conditions for uniform asymptotic equistability. Section 3 is concerned
with a discussion of the results obtained in Section 2. These two sections deal with
input-free time-varying systems. Their purpose is fourfold. They contain the
auxiliary results that will be needed in the sequel, survey the previous results,
introduce further new results, and present 'elementary' proofs for some known
results which were originally established by 'nonelementary' means. Sections 4
and 5 investigate the stability problem for forced time-varying systems. The
particular case of convergent time-varying systems is also considered.

The notation used throughout this paper is summarized as follows. N will
denote the nonnegative integers (i.e. including zero). X will denote a Banach
space and i[X] the Banach algebra of all bounded linear operators of X into
itself. We shall use ||»|| to denote both the norm in X and the induced uniform
norm in B[X]. As usual, tp(X) (for any real number p 2= 1), to(X), t(X), and
£»(X) (with their standard norms ||»||p, ||»||», ||*|U, and ||»||«,, respectively) will
stand for the Banach spaces of all X-valued sequences x = (x(i): i e N) e XN such
that

Up

i(_,» \\x(i)\\ = 0, lim,_^, ||JC(I) — x|| = 0 for some x eX, and

||x|U=sup||;t(0||<oo,

respectively, so that tPiX) <= i^iX) cz e(X) <= ^«(X)- Given a sequence (A()t): Jt e
N) of operators in B[X]. set <P(k, k) = l (the identity in B[X]) for every k 3= 0, and

k+l-l

for every / 3= 1 and k 3= 0, so that

<P(k + I + m, k) = <P(k +1 + m, k + l)<P(k + I, k)

for every k,l,m 5* 0. The double sequence (0(k + I, k) : k,l e N) e B^f 2 will be
referred to as the evolution operator process associated with (A(k): k e N).
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DISCRETE LINEAR SYSTEMS 271

2. Input-free systems

Given any integer k 3= 0 and an arbitrary x e X . consider the sequence
(x(/) : / e N ) e / X

N recursively denned by the following nonautonomous homoge-
neous difference equation.

(la) *(/ + l) = A(/fc

whose solution is

(lb) x(l) = &(k + I, k)x V/>0,

where (<P(& + /, k) : k,l e I\J) is the evolution operator process associated with the
( )

( ( ) ) p p
operator sequence (A(k) : k e M) e Br̂ X"]*. The purpose of this section is to
present, in a unified way, several necessary and sufficient conditions for uniform
asymptotic equistability.

DEFINITION 1. The model (1), or equivalently the operator sequence (A(fc): k e
N), is uniformly asymptotically equistable if, for each e > 0, there exists an
integer le 3= 0 such that

or equivalently if sup*^ || <P(k +1, k)\\ -*• 0 as l—> oo.

THEOREM 1. Consider the model (1). The following assertions are equivalent.

(A) lim^» sup t > 0 || <P(k + I, k)\\ = 0.

(B) sup*;,o II 4>(Jt + /, Jt)|| < 1 V / 5= /, for some lt 3= 1.

(C) suptB,o||A(fc)||<oo and sup k>0 \\ <P(k +10, k)\\<l forsomel0^\.

(D) l i m s u p ^ sup.,0 || <P(k +1, k) || '" < 1.

(E) 77iere exisr real constants y > 1 and <* e (0 ,1 ) such that

(F) For ei/ery p>0, there exists a positive number ap such that

/-o
(G) For every p>0, there exists a positive number ap such that

i
/-o

(H) For some q > 0, f/tere extsty a positive number aq such that

(I) For jome <y > 0, r/i«re crisis a positive number aq such that

f, \\<P(k + I, k]xW> ^ aq \\x\\" Vk^O V*eX-
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2 7 2 C. S. KUBRUSLY

(J) For every p>0, there exists a positive number \ip such that

(K) For some q>0, there exists a positive number \nq such that

(L) For every p > 0, there exists a positive number pp such that
i

2 \\<P(k +1, k + m)\\p *zpp Vk,l&0.
m—0

(M) For some q>0, there exists a positive number pq such that

m—0

(N) Um^. s u p t ^ supv>0 || £?;; <P(k +1, k)\\ = 0.

Proof. To begin, let us remark that it is implicitly assumed in (A), (B), and (D)
that the underlying nonnegative sequence (supk^ \\<P(k +1, k)\\ : I e N) is well
defined, i.e. sup*,,) \\<P(k +1, k)\\ <°° for every / > 0 , so that (for / = 1)

||A(Jfc)|| <°°. Now consider the following auxiliary assertions.

(O) There exist real functionals y(»),ar(«) : X ^ K such that y(x)3= ||JC||, a(x) e
(0,1), and

(P) For every p > 0, there exists a real functional op(
m):}(.—* U such that

(Q) For some q >0 , there exists a real functional oq{*) :?C—*U. such that

2 \\<?>(k +1, k]x\\**z oq(x) Vk^O V

(R) There exist real functionals q(*),o(*) : X~+ R such that q{x) > 0 and
oo

2 ^ o(x) VkzsO VxeX-
i-o

(S) For every p >0, there exists a real functional np(*) :^C-*U such that

(T) For some q > 0, there exists a real functional /*,(•) : ?(—* R such that

||<P(fc + / ,*)x| |««(/ + l)-Vi,(*) VA:,/^O V x e X

(U) There exist real functionals <?(•),/*(•) : X ^ R such that ^ (x)>0 and
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DISCRETE LINEAR SYSTEMS 273

We shall verify the implications as indicated in the following diagram.

P >S
H

F

O E

A
D C

n * i-

1 \
- • L

I
N M-

First we show that (C)^>(E). Suppose (C) holds, and set

a = sup ||<P(k + /„, Jfc)||l//o<l.

It is readily verified by induction (on n) that

sup||0(A+/i/o,Ac)||«<r-'» V n > 0 .

For each / > 0, let nt be the least positive integer greater than or equal to l/l0 (i.e.
0 =£ n, - 1 =s ///0 =£ «,), so that 0 =£ / - (n, - l)/0 =s /0 and a"'0 =£ a1 for every / 3= 0.
Thus, for any k,l>0, we have

/, k)\\ ^ \\<P(k (n, - l ) /0 ,

a "max p

Hence (C)=>(E). Next we verify that (P)=>(S). Let p be an arbitrary positive
real number. For any k,l^0, we have

I ' =

m—O
\\0(k + I, k + m)\\" \\<P(k + m, k)x\\"

for all x eX- Note that (P) obviously implies that, for any p > 0,

for all x eX and every k,l 5* 0. Thus, by the Banach-Steinhaus theorem (e.g. see
[2: p. 66]), there exists a positive constant j] such that ||4>(A: + /, &)|| =e r/ <<» for
every k,l>0. Therefore, for any k,l^0, we get

« rfop{x) <oo
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2 7 4 C. S. KUBRUSLY

for all x e X , whenever (P) holds. Hence (P)=>(S). Proceeding in a similar
fashion yields

m=0
m)\\" ||4>(* + m, k)\\"

for every k,l^0, whenever (M) holds. Hence (M)4>(K). By combining the two
approaches used above, we finally supply a proof for (R)=>(T). Suppose (R)
holds and, for each x eX, let n(x) be the least positive integer greater than or
equal to q{x) (i.e. 0 =£ n{x) - 1 =£ q(x) =£ n(x) < °°), so that 0 =£/=£(/ + l)"(jt) - 1
for all x e X and every / > 0. Thus, for any k,l > 0, it follows that

(/ + l)*w ||<P{k +1, k)x\\«M «s (/ + l)" ( j r ) ||<P(k +1, k)x\\"ix)

2) \\<P{k + I, k + m)\\q(x) \\<t>(k + m, k)x\\q(l)

m—O

for all xeX- Since (R) obviously implies that ||<P(Jt + /, A:)x|| « o(x)Uqix) <<*> for
all J t e X and every k,l^0, we get \\<P(k +1, k)\\ «r/ <<» (for some positive
constant 77) for every k,l^=0, by using the Banach-Steinhaus theorem again.
Therefore, for any &,/s=0, we obtain

2 \\<P(k + m,
m-0

for all xeX- Hence (R)^-(T) with q = 1. A straightforward application of the
Banach-Steinhaus theorem yields (S)=>(J) and (T)^>(K). The remaining
implications in Diagram 1 are trivial. Note that, since i\X] >s a Banach space,
assertion (N) means (by definition) that the family of series {Er=o^(^ + /, k)
: k 5= 0} is uniformly equiconvergent. D

3. Remarks

Remark 1. (Further equivalent assertions). The set of equivalent assertions in
Theorem 1 is certainly not exhaustive. For instance, 'sup' (whenever it appears
implicitly or explicitly in Theorem 1) can be replaced by 'limsup'. To illustrate
this, we shall show that each of the assertions below, which will be required later
in this paper, is also equivalent to the assertions (A-U)

(A') lim limsup || <P(k +1, k)\\ = 0.
/-MO *—«

(D') limsup limsup ||<P(A: + /, ik)||"'< 1.

This is readily verified as follows. Consider the following auxiliary assertions: (B')
and (C) obtained by changing 'sup t :a0 ' to 'limsup*_»' in (B) and (C), re-
spectively; and (E') obtained by changing the requirement 'VA:S=0' to 'V k^ko

 at M
onash U

niversity on N
ovem

ber 29, 2015
http://im

am
ci.oxfordjournals.org/

D
ow

nloaded from
 

http://imamci.oxfordjournals.org/


DISCRETE LINEAR SYSTEMS 275

for some ko^0' in (E). Note that (A)^(A')^>(B')^>(C) and (E')=>(D')z>
(B') trivially. Moreover, it is a simple matter to show that (E') =>(E). Finally, by
applying exactly the same technique used to establish that (C) => (E) in the proof
of Theorem 1, it can be shown that (C) ^ (E'). Therefore, each of (A') to (E') is
equivalent to (A-U).

Remark 2. (Time-invariant systems). For the particular case of a constant
operator sequence (A(k) = A : k e W), the associated equivalent assertions in
Theorem 1 are trivially obtained by changing <t>(k +I, k) to A' in the theorem
statement. Many of these equivalent assertions for time-invariant systems are well
known (e.g. see [6]). Among them, the following will be needed in the sequel
(here r(A) denotes the spectral radius of A € B[X]): For an arbitrary A e B[X], the
assertions below are equivalent.

(A) l im,_| |A' | |=0.

(D) r (A):=Um^| |A ' | | 1 / '< l .

(N) (E"-o A' :neN) converges uniformly.

(No) E7-o A'-*(I- A)"1 e %[X] uniformly as n->«.

Whereas (N) is the time-invariant version of (N), the assertion (No) has clearly no
time-varying interpretation in general. However, it is well known (e.g. see [2: p.
567]) that (D)=>(N0), and (N0)=>(N) trivially. Note that the natural time-
invariant counterpart of Definition 1 is: The autonomous version of model (1) (or
equivalently an operator Ae8[,X]) is uniformly asymptotically stable if ||A'||—•()
as /—>°°.

Remark 3. (A brief review). The equivalence between (A) and (E) is well known
(e.g. see [9]). Assertion (E) (resp. (O)) is usually referred to as uniform (resp.
strong) power equistability (cf. [9-11]). The expression in the left hand side of
(D) was called the generalized spectral radius of the sequence (A(k) : k e M) in
[11], where the equivalence between (D) and (E) was analysed. Note that,
according to Remarks 1 and 2, the inequality in (D') also generalizes the spectral
radius condition in (D). Assertion (I) (resp. (Q) and (R)) was referred to as
^-uniform (resp. €q-strong and fq{x)) equistability in [11], in which was also
established the equivalence between each of (E-G), (I), and (O-R), for the case
of p,q > 1, by using the Baire category theorem. If we agree that "in this context
a proof is 'elementary' if it does not use the Baire category theorem" (see [4: p.
13]) and recalling that (even in a Banach-space setting) the Banach-Steinhaus
theorem has an 'elementary' proof (see [1: p. 98]), we conclude that the proofs
presented here are substantially simpler than those in [11], since we have used
(beyond really elementary analysis) just the Banach-Steinhaus theorem for
establishing the equivalence between each of (A-U). Now consider the following
assertion which, according to Definition 1, is naturally referred to as strong
asymptotic equistability.

(A.) lim sup ||<*>(Jt+ /,*:)*||=0 V
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2 7 6 C. S. KUBRUSLY

Note that (A)=>(A,) trivially, but (A,)=£>(A) in general. Actually, (A,)=£>(A)
even for a constant sequence (A(&) = A : k e I\J), although (A,)=>(A) for the
particular case of an operator sequence constantly equal to a compact operator
(e.g. see [6]). However, (Ag)=>(A) whenever supt»0 II ^ ( ^ + A)» k)\\ < 1 for some
l0 s* 1 (recall that (C) => (A) in Theorem 1). By using the above result, it has been
proved in [9] that (A,) => (A) whenever (A(k) :J teN) is collectively compact
(i.e. whenever the set

\J {A(k)x:xeX,\\x\\^l}

is relatively compact in ,X~)- Note that a constant sequence (A(fc) = A: k e (Si),
with A e i[X], is collectively compact if and only if A is compact.

Remark 4. (Time-varying convergent systems). If an operator sequence con-
verges uniformly, then it shares the same stability properties with its limit.
Precisely: Let (<P(k + I, k): k,l e M) be the evolution operator process associated
with an operator sequence {A(k): k e M) e B[X]N which is supposed to converge
uniformly to AeB[X]. Since limfc_» ||A(&) — A|| =0, it is readily verified by
induction on / that lim^,, || <P{k + /, k) — A'\\ = 0 for every / s= 0. Hence

lim ||#(& + /, Jfc)|| = ||A'|| V/2=0.
k-

By combining the above result with Remark 1 we get

(A) O (A') O (A) <» limlim ||<P()t + /, *:)||=0,

with assertions (A), (A'), and (A) as in Theorem 1 and Remarks 1 and 2.

4. Forced systems

Given a sequence u = (M(I') : i e I\J) ePCN, consider another sequence x =
(x(i) : i e N) recursively defined by the following nonautonomous inhomogeneous
difference equation.

whose solution is

(2b) x(i) = Jl0(i,j)u(j) VissO,
y-o

where (<P(j + / , ; ' ) : / ' , / e W) is the evolution operator process associated with the
operator sequence (A(i) : i e N) e B[X]N. The purpose of this section is to
investigate some aspects of (uniform) input-state stability.

THEOREM 2 Consider the model (2). The following assertions are equivalent.

(a) (A(J') : i e N) is uniformly asymptotically equistable.

(b) For every p^\, there exists a positive number kp such that

11*11, «AP Hull, V«e*,GX).
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DISCRETE LINEAR SYSTEMS 277

(c) For some q^l, there exists a positive number kq such that

11*11, ̂  A, H I , Viie<,CX).

(d) There exists a positve number k^ such that

(e) u e <,(X)4>xe^(X) for every p^\.

(f) u e <f,CX) =>jr e <,C>0 for some q3*l.

(g) «

(h) ii

Moreover, the assertion below implies the above ones.

(i) uee(X)=>xee(X).

Proof. If (a) holds true then, from (E) (cf. Theorem 1) and (2b) we get

(3) \\x(i)\\<Yi--=Il«'-ipj

for some pair of constants y5*l and ore (0,1), with /3, = y ||M(/)||, for every
/" 3= 0. Recall that the convolution (or the Cauchy product) c = (y, : i e N) = a*b of
a scalar sequence a = (ai: ieN) in €] and a scalar sequence 6 = (/?,: i e N) in ^
lies itself in €p, with ||c||p =s ||a||, \\b\\p, for any p 3= 1 (see [2; p. 529]); which
clearly also holds if we set p = &>. Hence, since ]]fl||i = E"-o <̂  = (1 ~ Q")'. it
follows from (3) that (b) and (d) hold, with Ap = A«= y(l - a-)"1 for any p 3= 1.
Thus (a)=>(b, d). Note that (b) => (e) => (f) and (d)=>(g) trivially. Now we show
that (g)=>(d). For each i^O, consider the transformation 0, : ̂ {JK)-*X given,
according to (2b), by

*(')= 0/« = i>(',7>(7)

for all u = (u(j) :j e N) e ^.(X), which is clearly linear and bounded (i.e.
0,eB[4(X),;<]: actually ||0,||,«lCx,.xi«£;:-oll*(«,;)ll). If (g) holds, then

sup||0(u||<co V u e ^ W ,

so that sup1>0 l|0/ll(i<Ltx').Xi = A*, for some positive constant A«, by the Banach-
Steinhaus theorem. Hence (d) holds, since sup/>0 ||0fu|| ^ k^ \\u\\m for all o e
^»,(X)- Thus (g)^>(d). In a similar fashion we can show that (f)^>(c). For each
n 3= 0 and an arbitrary u = (u(j) : / e N ) e Sq(X), set xn = (*„(/): i e M), with

*-('•) = / -o

.0 ifi>n,

so that xn € ^i(X) S ^ ( X ) ; and consider the transformation Wn : €q(J<)-
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2 7 8 C. S. KUBRUSLY

for all u e Sq(/<), which is clearly linear and bounded (i.e. Wn e Bf^CX)]: actually

for q > 1). If (f) holds, then

( 1 \ l/<7

2n*(0in
i-0 '

for every n 5=0, whenever u e €q(/K), according to (2b). Therefore,

so that sup,,^ || VnWue{?<)\~ K> ^o r s0016 positive constant kq, by the Banach-
Steinhaus theorem. Hence

= sup || •P.HII, ^ A, | |«||, V u e
0

according to (4). Thus (f)=>(c). On the other hand, each of (c) and (d) implies
(a). To verify this, take an arbitrary u e,X" and, for each k 5=0, set

«* = ("*('): J e N) e €q(X) c ,

for any q 5= 1 as follows:

fa if i = k,

if i # k,

so that 111**11, = | |«*||.= ||a|| for each )t3=0 and any q 3= 1. Thus, for each A: 3=0,
we get xk = (xk(i) : i e N) from (2b), given by

f <P(i, &)w if i 5= /:,
X* lO if 0^i<k.

If (c) holds, then

CD 00

~ •/, *)«n* = 2 w . *)«ir = II**II3«A«

for every k 3=0 and all u e X , so that (I) (cf. Theorem 1) holds. Thus (c)=>(a).
Now, for each k 3=0, let yk = (yk(i) : i e N ) be recursively defined by model (2)
with u = (M(I) : I e M) replaced by x* = (**(/) : i e IM), so that

(i - k + l)<P(i, k)u if 13= it,

0 if 0 =s i < k,

according to (2b). If (d) holds, then

sup (/ + 1) ||<P(£ + '» *)MII = SUP (i — k +
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DISCRETE LINEAR SYSTEMS 279

for every A: 3=0 and all u e X , so that (K) (cf. Theorem 1) holds. Thus (d)4>(a).
Next we show that (a)O(h). First recall that

(5)

for every convergent scalar sequence (£i : / e N ) if and only if \a\ < 1 (e.g. see
[7]). From (3) and (5) it follows that (a)=>(h). On the other hand consider the
following auxin'ary assertions.

(h')

(h") ll
for some positive constant Ao. We claim that

(h) => (h') O (h").

Actually (h)=>(h')<=(h") triviaUy, and (h')4>(h") as follows. For each i&O, let
0? e B[Eo(X)> X ] be the restriction of 0, e B[CCX)> X ] on the Banach space
«o(X) c £»(X)- Proceeding as in the proof of (g) => (d), we get

for some positive constant A<,, whenever (h') holds, so that

for all u e eo(X)- Thus (h') => (h"). Now, for an arbitrary u e X and each k 3= 0,
consider the sequences uk, xk, and yk defined above. Note that

l|jr*ll-«^ll«tll- = Ao||«||

for every k=sQ whenever (h) holds, since (h)=>(h") and u teeo(X) f°r every
k 3=0; and

for every k 3= 0 whenever (h) holds, since x t e ^(X) for every A: 3= 0 whenever (h)
holds (because uk e ^(X) for every k 5= 0) and (h) => (h"). Therefore,

susup (/ + l

for every k 3=0 and all u e X so that (K) (cf. Theorem 1) holds. Thus (h)=>(a).
Finally consider the following further auxiliary assertions.

0') «ee(X) => xe
0") I|x||-«A||«|U V«ee(X)
for some positive constant A; and let 6', e B[e(X), X ] be the restriction of
0, G B[4,(X). X ] on the Banach space e ( X ) c <?~(X)> for each /3=0. Proceeding
exactly as in the proof of (h)=>(a), we get (i')O(i"), so that (i)z>(i"), which
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2 8 0 C. S. KUBRUSLY

implies that (i)=>(a). Note that (a)4>(0; e.g. take A(i) = 0 for even i and
A(i) = $1 for odd i, and u(i) = u ¥= 0 e X for all i > 0. D

COROLLARY 1. Suppose (A(i) :/elVl)eB[X]N converges uniformly to AeB[X].
77ien a// f/ie assertions (a-i) in Theorem 2 are equivalent. Moreover, they are also
equivalent to the following further one:

G) 3 ( / - A)"1 e BJ^] and limx(i) = ( / - A)"1 lim u(i) VueeCX)-

Proof. According to Theorem 2, we just need to show that (a)=>(j), since
(j)z>(i) trivially. First recall that (a)=>(h). Now take the limiting operator
Ae B[̂ C] and, for an arbitrary ueX, set

*(0 = 2 [*('. 7) - A-^u, u(i + 1) = [A(/) - A] £ <P(i, /)«,
y-o y-o

for each / > 0. It is readily verified that

je(i + 1) = Ac(i) + «(i + 1) Vi>0 , Jc(O) = u(0) = 0.

If (a) holds and ||A(t) — A||—»0 as /—><», then the above autonomous model
is uniformly asymptotically stable, according to Remark 4, so that (h) also applies
to it in particular. Moreover, linv.,, ||M(I)|| =0 whenever linv.^ ||A(i) —A|| = 0
and (a) holds (since (a) => (L) in Theorem 1). Thus

(6) lim E [*(', /) " A ' -1M| = lim ||JE(i)|| = 0.

On the other hand, (2b) gives

y-o y-o y-o
for any u e X and every i 5= 0, so that, if (a) holds, then (E) gives (cf. Theorem 1)

|
y-o II y-o lly-o II

where i)i = y ||M(I) — M||, for every i&0, with y ^ l and are (0,1) as in (3).
Hence, (5) and (6) give

Urn \\u(i)- u\\ = 0 ^> lim \\x(i) - 2 A'u\\ = 0
<—» *—«II y-o II

whenever (a) holds. Moreover, since A(/)—• AeBf^C] uniformly as /—><», it
follows from Remarks 2 and 4 that (a) implies (No) in Remark 2. Thus
since

\\x(i) -(I- A)"1!*!! « L(i) - £ A'J + I t A' - (/ - A)"1! ||u||
II y=o II Hy-o II

for any u e X and every i s= 0. •
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5. Concluding Remarks

Remark 5. (^,,-input Estate stability (with p > 1), «o-input C-state stability, and
e-input ^,-state stability). For q > 1, the result (f)=>(a) in Theorem 2 becomes a
particular case of that presented in [10]. Indeed, each of the assertions below is
also equivalent to (a-h).

(b') For every p > 1 there exists a positive number r\p such that

(c') For some q > 1 there exists a positive number r]q such that

11*11-^, INI, VHG^C*) .

(e') u e <fp(,X)=>x e €m(JK) for every p > 1.

(f) u e <f,(X) 4>x e £«,(X) for some g > 1.

(h') « e e o ( X ) ^ x 6 ^ ( X ) .

(h") ||x||«,^ r/o ||«IU for all u eeo(X), for some positive constant r/0.
/ : »\ „ c , / V'\ -̂ v *• ez P ( \"\\1 ) U € C(/\ ^ ^ X 6 tco^/^ J.

(i") HJCIIOO =e 77 ||u||«, for all u ee^X), for some positive constant r\.

This can be verified as follows. From (E) (see Theorem 1) and (2b), we get
(a)=>(b') by using the Holder inequality. Note that (b')=>(e')=>(f) trivially.
For each / ^ 0 , let the transformation diq: €q{^C)—*X be the restriction of
#,: £oCX")—»/X on €q(X), which is clearly linear and bounded (i.e. dlqe
BK,t>0, X ] : actually

y-o

for any q > 1). Proceeding as in the proof of (g)=^(d) in Theorem 2, we get
(f')^>(c'). It can be shown that (c')=>(a) by using the same technique proposed
in [10], which is essentially the following. Let e e (0,1) and, for an arbitrary
u e X and for each k 3= 0, set

e'-k<P(i,k)u if iss/fc,

3 if 0^i<k.

For each k 3=0, let x^ = (*i0): i e N) be the response to u'k = (u'k(i) : i e N) in
(2b), so that

/, Jt)w V M ^ O .

Note that (c') implies ||<I>(/c + /, &)|| ̂  r)g for every k,l^0 (consider the se-
quences uk and xk defined in the proof of Theorem 2), which implies

Hence ||je;(Jfc + /)|| ^ | |*i|U* IJ5(1 - £*)""* ||u|| whenever (c') holds. Therefore

sup || <P(k +1, k)\\ « rfJl - £)(1 - e ' )" 1 ' ^! - e'""1)"1 V / s= 0.
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2 8 2 C. S. KUBRUSLY

Since q>\, we have (1 - e)(l - eqyUq-*O as e-*l. Then, by taking e =
£) e (0,1) sufficiently close to 1, there exists /, = /((e,) large enough so that (B)
(cf. Theorem 1) holds true. Thus (c')=>(a). Finally note that (g)=>(i')=>(h')=>
(e') and (d)^(i")=>(h")^(h') trivially.

Remark 6. (^,-input ^-state stability). By setting A(k) = / e B[X] for every k s= 0,
it is trivially verified that (f) >̂ (a) for q = 1 in Remark 5. Actually, the assertions
below are equivalent.

(a,) ||<l>(k +1, k)\\ •=£ r] for all k,l^0, for some positive constant rj.

(CI) ||x||« =s t] \\u\\\ for all u e ^i(X), for some positive constant T).

(f,) u e

The verification is straightforward: (ai)^>(c,)=>(f,) trivially; (C|)=>(a,) by using
the sequences uk and xk defined in the proof of Theorem 2; and (f])=>(ci) as
follows. Let 6U e B[^(X), X ] be defined as in Remark 5 (so that ||0,,IIIBI<>,CX').XI *=

ŷ , || <P(i, j)\\), and proceed as in the proof of (g) => (d) in Theorem 2.

Remark 7. (An illustrative application). Suppose a given operator sequence
(/\(/): i e IM) e B[X]N converges uniformly to AeB[X], and consider the state
sequences i = ( i ( i ) : i e N ) e X N and x = (x(i): i e N) e X " generated by the
models

(2a) x(i + 1) = A(i>(i) + u(i + 1), JC(0) = M(0),

(2a) x(i + 1) = Ar(/) + u(/ + 1), Jc(O) = «(0),

for arbitrary bounded input sequences u = {u{i):i e IVJ) e fJ^X) and u = (u(i)
: i e N) e €JJK), respectively. We claim that the nonautonomous uniformly con-
vergent model (2a) is an asymptotic state estimator for the limiting autonomous
model (2a) (i.e. l inv.. ||*(/) -x( / ) | | =0 whenever lim,_^ ||u(i) - "(Oil =0) if and
only if the limiting autonomous model (2a) is uniformly asymptotically stable. In
other words, by setting u = u — u and x=x— i, we claim that the assertions
below are equivalent.

(a) AeB[X] is uniformly asymptotically stable (cf. Remark 2).

(h) fiecbtX)=>ie(bCX).
This can be verified as follows. First recall that (a) is equivalent to (a) in Theorem
2, according to Remark 4, since lim^^ \\A(i) — A\\ = 0. By setting A(i) = A(i) —
A for each i 3= 0, we get from (2a) and (2a) the model

(2a) x(i + 1) = Ax(i) + w(i + 1), x(0) = u(0) = H<(0),

with w = (w(i): i e l\l) e X N given by w(i + 1) = A(i)jt(j) + u{i + 1) for each i 3= 0.
Now suppose (a) holds. Recall that (a) implies (g) in Theorem 2, so that
x e £o(X), since u e €a,(/X). Hence, u e eoC^) implies w e eo(X), since
linv_«o ||A(i)|| =0, which implies x e ^(X) in (2a) whenever (a) holds, according
to Theorem 2 (for the particular case of a constant sequence). Thus (a) => (h). On
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DISCRETE LINEAR SYSTEMS 283

the other hand, set u = 0 in (2a), so that u = u and x = x. Hence (h) implies that
xe6o(X) whenever ueeoCX); or equivalently, (h) implies (h) in Theorem 2,
which implies (a) according to Theorem 2. Thus (h)^>(a).
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