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Let H be a separable Hilbert space and let #? be the Hilbert space of all second
order //-valued random variables. This paper deals with limiting properties for
random sequences in 3if. Quadratic-mean convergence is investigated under the
assumption of asymptotic weak uncorrelatedness. This leads to degenerate
quadratic-mean limits. The mean-square stability problem for infinite-dimensional
discrete linear systems driven by asymptotically uncorrelated input disturbances is
analysed in detail. It is shown how mean-square stability acts on the quadratic-
mean convergence of the state sequence.

1. Introduction

STOCHASTIC convergence for finite-dimensional random sequences, and asymptotic
stability for finite-dimensional discrete linear systems driven by random distur-
bances, are presently rather settled and well-documented research topics (e.g. see
[7] and [6], respectively). Although an infinite-dimensional treatment of these
topics has already received some attention, several important questions still
remain open. As far as stochastic convergence in infinite-dimensional linear
topological spaces is concerned, see, for instance, the monograph [10]. Some
partial results on stability properties for special classes of infinite-dimensional
discrete stochastic linear systems can also be found in the recent literature (e.g.
[3,5,13,14]).

Here we shall be investigating quadratic-mean convergence and mean-square
stability for infinite-dimensional discrete linear systems. The paper is organized as
follows. Basic concepts that will be needed in the text are summarized in Section
2. The main results appear in Sections 3 to 5. In Section 3, we give a necessary
and sufficient condition for quadratic-mean convergence of asymptotically weakly
uncorrelated sequences, and we show that its quadratic-mean limit has to be a
degenerate random variable. The mean-square stability problem deals with
convergence preservation between input and state, for the expectation and
correlation sequences. Such a problem is considered in Section 4, where the
asymptotic behaviour of the state expectation and correlation sequences is
analysed in detail. The results on quadratic-mean convergence and mean-square
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94 C. S. KUBRUSLY

stability are combined together in Section 5. There, it is shown that state
quadratic-mean convergence is too strong a requirement, whenever the input
disturbance is asymptotically uncorrelated.

2. Preliminaries

In this section, we pose the notation and basic results that will be used
throughout the text. Throughout this paper X and H will denote a Banach space
and a separable nontrivial Hilbert space, with ||«|| and (• ; •) standing for norm
in X or H and inner product in H, respectively.

Deterministic Stability and Nuclear Operators

Let B[X] denote the Banach algebra of all bounded linear operators of X into
itself, with ||«||0 and rCT(») standing for the uniform induced norm and spectral
radius in B ^ , respectively. Recall that

for any T e B[X]. By B^X] we shall denote the class of all compact operators
from B[X]. Now consider a sequence (u, e X: i ss 0) given by

ui+i = Tu,, uo = ueX.

The above free linear system (or equivalently, the operator TeB[X]) is:
uniformly asymptotically stable if ||r'||0—•() as /—»°°, and strongly asymptotically
stable if || T'u || -» 0 as i-* » for all u e X.

Remark 1. Let us recall some well-known properties related to asymptotic
stability that will suffice our needs in Section 4.

(a) The following assertions are equivalent (e.g. see [5]): (1) ra(T) < 1, (2)
||7"||o-»0 as i-*•«>, and (3) there exist real constants CT5=1 and 0 < a r < l such
that || r'||o «£ ooS for every i > 0.

(b) If the above holds (i.e. if T e B[X] is uniformly asymptotically stable), then
(/ — T)"1 = E"=o T' e B[X], where the convergence is in the uniform norm
topology and / denotes the identity operator in B[X] (e.g. see [1, p. 567]).

(c) Obviously, uniform asymptotic stability implies strong asymptotic stability.
The converse is true whenever T e BJ[X], but it is not generally true for
7"6B[*](e.g.see[5]).

(d) Also recall that |a | < 1 if and only if

lim 2 (/-'-% = (1 - a)'1 lim £,
I—*0O.- = Q I—»oo

for every convergent scalar sequence (£,: 13* 0). This is a corollary of the
Silverman-Toeplitz theorem (cf. [1, p. 75]).

(e) Consider an A"-valued sequence (M, : I ̂  0) given by

TUi + vh uoeX,
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QUADRATIC-MEAN CONVERGENCE AND MEAN-SQUARE STABILITY 95

where T e B[X] and (t/,: j 5* 0) is a sequence in X. If T is uniformly asymptoti-
cally stable, then ._v

lim u, = (/ - T)"1 lira u, = lim 2 P'^Vj,
/—•CO I—>oo i—»a>j=o

whenever (u, e A": i s* 0) converges in X On the other hand, if (M, e X: i s* 0)
converges in AT for every initial condition u0 e X, to a limit which does not depend
on u0, then T is strongly asymptotically stable. This deterministic stability result
can be derived easily by the above properties.

Let T*eB[H] denote the adjoint of TeB[H], and recall that | | r | | 0 = ||r*||0.
The standard notation T 3= 0 will be used if a self-adjoint operator T = T*e B[H]
is nonnegative (i.e. (Tu ; u> 2*0, VueH). We set B[#]+ = {TeB[H] : 72=0},
the closed convex cone of all nonnegative operators on H. Let T? e B[H]+ be the
(unique) square root of T e B[H]+, and set

for any T e B[H], so that B[H]+ = {T e B[H]: T = |7 |}. Since

for any orthonormal bases (en : n 5* 1) and (fn : n s* 1) for H, whenever the above
series converge, set

Bl[H] = \T eB[H]:*Z (\T\en;en)

i.e. the class of all nuclear (or trace-class) operators on H. Recall that
BJ//] c Boo[£/] c B[H]. The subspace Bx[i/] is moreover a two-sided ideal of
B[H]. For any T e Bjf/f], define its trace as usual:

which does not depend on the choice of the orthonormal basis {en : n s= 1) for H,
and set

Ili-Ilt = t r | r | .

Recall that tr : B^f/]—»C is a linear functional, and 11*11! is a norm in Bi[H], the
so-called trace norm. Actually, (Bi[//], ||#||i) is a Banach space. Notice that
B,[//] = {TeB^H]: \\T\\,<«,}. We set

B,[H]+ = B,[H] fl

so that 11711! = t rT>0 whenever T*0eBi[H]+. Given u,veH, define the
outer product operator (u°v)e Bi[H] by

(u°v)s = {s ;v)u for all s e H,

so that (u°u)eB1[/J]+ . For a systematic presentation on nuclear operators, the
reader is referred to [2,8,12].
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9 6 C. S. KUBRUSLY

Remark 2. The following further properties, which are readily verified, will also
be needed in the sequel.

(a)

(b)

(c)

(d)

(e)

(f)

max

(u°u)*

(«

max{|trT|, ||r||0} =
/llTCll II ?Tll \ < II
iP'-Hli- IP* Hi/^11
|o=||u>u||1»||u||||t

= «•«, 5(w°u)r*

+ u)»(r + i) = u»rH

uow — r°s = (u — r)

sl|7ili
S\\o\\T

A\. tr
= (5«)

h U°S -4

°v + r

= 117-11,
Hi VSe

(«•«) =

°(ru)

V T G B ,

:B[/f], V]

(u;v)

[//].

Vu,veH.

Vu,veH, VS,TeB[H].

-u o r + uo5 Vu,u,

°(u-5) Vu,v,r,s

r,s eH.

eH.

Second-order H-valued Random Variables

Let (Q, si, n) be a probability space, where si is a o-algebra of subsets of a
nonempty basic set Q and /* is a probability measure denned on .stf. Let $f be the
set of equivalence classes of //-valued measurable maps x defined almost
everywhere (a.e.) on Q, such that the so-called second-order property

|x((w)||2d|i <°°

holds true. Here £ stands for the expectation of scalar-valued random variables.
Recall that x =y with probability one (w.p.l), which means that x((o) =y(<o) a.e.
on Q, if and only if ||x -y ||* = 0. Now set the following inner product in #f,
which generates the above norm:

(x;y)x:=E(x;y)=f (x(co);y(co)) Afi
Ja

Thus 9€ = \s2(Q,n;H): the Hilbert space of all second-order H-valued random
variables. Let (en : n s= 1) be any orthonormal basis for H, and let* and y be
//-valued measurable maps defined a.e. on Q. If x,y 6 #?, then

^{x\y) = ^ {x;en){en;y) = ^Z{{x;en){en;y)),
n n

so that £||A:||2 = eEn | (x;en>|2 = En£|<x;en)|2 . Conversely, if En £|<x;en)|2<co,
then x e #?. The above results can be derived easily by combining the Fourier-series
theorem with the Lebesgue dominated-convergence theorem. They supply an
equivalent definition for the inner product ( • ; • )# in 5if, which will play a
fundamental role for supporting the properties presented in Remark 3 below.
Now let x e Sif, and consider the linear functional (•;x)x : H—*C, given by

(u;x)x = E(u;x) for all ueH,

which is bounded. Then, by the Riesz representation theorem, there exists a
unique element in H, say Ex, such that

(Ex;u) = (x;u)x Vwe// .
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QUADRATIC-MEAN CONVERGENCE AND MEAN-SQUARE STABILITY 97

EJC is referred to as the expectation of x e %€, and E : %!-* H is a bounded linear
transformation. For any x,y e Sif, consider the sesquilinear functional

given by

v)) for all u,veH,

which is bounded. Then (cf. [12: p. 120]) there exists a unique operator in B[/f],
say E(x°y), such that

(E(x°y)u;v) = ((x°y)u;v)x Vu,veH.

E(x°y) is referred to as the correlation, and E[(x— Ex)°(y-Ey)] =
E(x °y) - Ex o Ey as the covariance, of x e %t and y eift!. Actually, E(x °y) e Bj[H]
and E(x <>x) e Bi[//]+ for any x,y e W.

Remark 3. The following properties will be needed in the sequel. They are
readily verified by using the equivalent forms for the inner product in %C
presented above. Let x,y,w,z e V€and S,T eB[H]. Then:

(a) E(x°y) = E(y°x)*, E(Sx°Ty) = SE(x°y)T*.

(b) E[(x +y)°(w + z)] = E(x°w) + E(x°z) + E(y OM>) + E(y°z).

(c) E(x°x) - E(y°y) = E[(x -y)°(x -y)] + E[(x-y)»y] + E[yo(x-y)].

(d) E(7i) =

(e) ||Ex|| « \\x\\x,

(f) txE(xoy) = (

Finally, consider the following standard concepts. The random variables x,y e X
are uncorrelated if E(x°y) = Ex°Ey. They are orthogonal if {x;y)fe = Q, or
equivalently, if tr E(x °y) = 0 (cf. Remark 3(f)). A random sequence (x( e VC: i s* 0)
is stationary in expectation and correlation if there exist q e H and Q e Bi[f/]+

such that Ex, = q and E(jt,-•>*,•) = Q for every / 2= 0. It is wide-sense stationary if, in
addition to the above conditions, there exists a sequence of operators (Qk e
B^H]: k^l) such that E(xi+k °x,) = Qk for every / 2» 0. We shall also need in the
sequel a weaker version of uncorrelatedness and a stronger version of or-
thogonality, as follows. The random variables x,y e 96 are weakly uncorrelated if
{x;y)x= (EJC; Ey), or equivalently, tr E(*°.y) = tr(ExoEy) (cf. Remarks 2(c)
and 3(f)). They are hyperorthogonal if E(x°y) = 0, so that a random sequence
(Xi e ic: (s= 0) is a vv/itVe noise if J:, and Xj are hyperorthogonal for every i #;'.
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9 8 C. S. KUBRUSLY

3. Quadratic-mean convergence

The purpose of this section is to prove Lemma 1 below, which gives a necessary
and sufficient condition for an asymptotically weakly uncorrelated sequence in $?
to be quadratic-mean convergent, and shows that its quadratic-mean limit has to
be a degenerate random variable. We begin by posing the appropriate definitions.

DEFINITION 1 x e 26 is said to be a degenerate random variable (or equivalently,
the random variable xe%6 degenerates to qeH) if x=qeH w.p.l (i.e.
II* ~<7ll» = 0)- The sequence (JC, e #?: i == 0) is said to be a degenerate random
sequence if JC, e W degenerates for every i 3= 0. A random sequence (JC, e Sif: i 3= 0)
is quadratic-mean convergent (or equivalently, it converges in the quadratic mean)
if (JC, e 3€: i 5= 0) converges in $?. That is, if there exists x e 3€ such that
\\Xi:— x\\x—»0 as i—*°°, which is referred to as the quadratic-mean limit of
(xi e 3€: i 3= 0). A random sequence (JC, e 96: i 3= 0) is asymptotically weakly
uncorrelated or asymptotically uncorrelated in the trace norm if, respectively,

(a) \{xr,Xj)x-(Exr,Exj)\^0 as i-»co V/^0,

(b) llEOt.-o^-Et-E^II^O as i-^cc V;s=0.

Remark 4. Note that (b)=>(a) in the above Definition. Moreover, it is also easy
to show that:

(a') !<*,;*,)*-<9;E*,)|-*o as i^°° v/^o,

whenever (x, e $?: i 5= 0) is asymptotically weakly uncorrelated and (Be, e H: i s= 0)
converges weakly to <? e H;

(b') HEOcoj^ -g .ExJ^O as i^oo v / ^ 0 ,

whenever (x, e S€: i 5= 0) is asymptotically uncorrelated in the trace norm and
(Ex, e if: i s= 0) converges (strongly) to qeH. Furthermore, (b') => (a').

PROPOSITION 1 A random variable x e 3% degenerates to q e H if and only if
Ex = q and E(jc°;t) = q°q.

Proof. This is clear by Remarks 2(c) and 3(c, e, f). •

PROPOSITION 2 The sequence (JC, e Si?: i s= 0) converges in the quadratic mean to
x e9C if and only if || E[(x, — x) ° (x,,— x)] || t —» 0 as j —» », w/iic/i implies that

Proof. The equivalent form of stating quadratic-mean convergence is straightfor-
ward from Remark 3(f). The remaining results follow from Remarks 3(c, e). D

PROPOSITION 3 If a given sequence (*, e #?: i 2= 0) is such that

| |Ex,-?||-»0 and HEfeojcOHi-^lk'^lli « J^00-
/or some qeH, then it converges in the quadratic mean to the degenerate
quadratic-mean limit qeH.
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QUADRATIC-MEAN CONVERGENCE AND MEAN-SQUARE STABILITY 99

Proof. Actually, by the definition of £t,,

-ZKe \q; t t , ; - » u as i-*<*>,

since HjCfĤ-—> \\q\\ as i-*<*>, by Remarks 2(c) and 3(f). D

PROPOSITION 4 / / (JC, e #?: i 2* 0) iv asymptotically weakly uncorrelated and
converges in the quadratic mean, then it has a degenerate quadratic-mean limit
q = lim,_oo EJC, e H.

Proof. Recall that, for every i,k 3= 0,

II v v l|2 II-. 112 1 || 112 <} ¥}„ / „ . „ \
\\xi+k Xt\\x— \\Xi+k\\x-t- \\Xt\\x— iiSA \Xi+k,Xi)ge.

Since lim,_oo ||JC, — x\[pc = 0 for some x e W, it follows that

lim sup ||x,-+Jfc — AT.-Har = 0
j-»oo k&0

(i.e. (xi: i 2=0) is a Cauchy sequence in X) and lim,.^ \\Xi\\x = \\x\\x. Moreover,
by Proposition 2, linv.,* ||EJC,- - Ex|| = 0. Therefore, by Remarks 2(c), 3(f), and 4,

0 = lim sup \\x,+k -Xi\\x> lim Urn \\xi+k - xtf*

But E(xojO-Eje°£ceB1[H]+, so that E(x°x) = Ex°Ex. Thus x = Ex eH w.p.l,
according to Proposition 1. D

LEMMA 1 / / (*, e3€:i^0) is asymptotically weakly uncorrelated, then it is
quadratic-mean convergent if and only if

\\E(Xi°x,)-q°q\\i-*0 as i-»°°

with q = lim,-,*, Ex,. Moreover, if the above holds, then the quadratic-mean limit
of (XJ &dK:i^Qi) degenerates to qeH.

Proof. Combine the results in Propositions 1 to 4. •

Remark 5. The following conclusions can be drawn from Lemma 1.
(a) An asymptotically weakly uncorrelated random sequence (x, e Sif: 1 =» 0)

will not converge in the quadratic mean whenever its correlation sequence

converges (in any topology) to a limit Q±q°q, where q = lim,_»Ex, e H.
(b) Let (x, e 3€: i ss 0) be an asymptotically weakly uncorrelated random

sequence. If it is stationary in expectation and correlation, then it will converge in
the quadratic mean only if it is a constant degenerate random sequence, i.e. such
that xt = Exi = q eH w.p.l for every i 5* 0.
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100 C. S. KUBRUSLY

(c) In particular, if (*, e 5if: i =* 0) is a wide-sense stationary zero-mean white
noise, then it will converge in the quadratic mean only if it is a null degenerate
random sequence, i.e. such that *, = 0 e / / w.p.l for every i 3= 0.

We recall finally that stochastic convergence (and, in particular, quadratic-
mean convergence) of //-valued random sequences to a degenerate random
variable has been investigated by several authors. For instance, see the results on
stochastic approximation algorithms in Hilbert space in [4,9,11]. Indeed, from
the point of view of parametric estimation, convergence to a degenerate random
variable plays an important role, even though this may be regarded as a hard
constraint from the point of view of stochastic stability. We shall return to this
point in Section 5.

4. Mean-square stability

Consider a discrete time-invariant linear dynamical system in H, driven by a
second-order //-valued random sequence, as follows.

(1) Xi+l = AXi + Wj, X0 6 #f,

where A e B[//] is the system operator and (w, e 5if: 13= 0) denotes the input
disturbance. On iterating (1) from i = k onwards we get, by induction,

(2) j
y=o

for every k 3= 0 and I s* 1. Hence, setting k = 0, it is clear that ||x,-||x < °° for every
i 2s 0, according to Remark 3(d), so that x, e SJf for every i 2* 0. Now set, for every
i > 0 ,

(3) Vt = AE(x, o Hi) + E(Wi °xt)A* + E(w, ° wt).

Actually, Vt e Bj(/f), since the above correlations are always in B^/f], which is a
two-sided ideal of B[//].

Remark 6. Throughout this section, L will stand for an operator in B[B[//]]
associated with A e B[/f ], which is given by

LP=APA* VPeB[H].

It is a simple matter to verify that L is B1[//]
+-invariant. Then set

the restriction of L in the Banach space Bx[//]. It is readily verified that
L e B[B[//]] is uniformly asymptotically stable if and only if A e B[H] is uniformly
asymptotically stable, since

= sup
11*110=1
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QUADRATIC-MEAN CONVERGENCE AND MEAN-SQUARE STABILITY 101

Moreover, Lx e B[Bi[H]] is uniformly asymptotically stable whenever A e B[H] is
uniformly asymptotically stable, since by Remark 2(b),

HI.illBIBlI«]]= sup WA'PA^U* sup Ilil'HgllPH^P'llg V /^0 .
i\p\h=i \\P\U=I

PROPOSITION 5 The state sequence (*, e 'X: i s» 0) generated by (1) has the
following properties (the empty sum denoting zero):

(a) Ec,+1 = AExf + Ew( VJ s* 0.

(b) Ex^^A'Ex. + '^A'-'-'Ewj^ Vi.fc^O.

(c) E(jCj+1ox,+1)=LE(x|o*i) + Vl Vi^O.

(d) E(*i+*oXl+k) = VE{xk°xk) + 2 V^V^ Vi,k >0.

(e) E(jc,-+fc+1 o *,-) =AE(xi+k°Xi) + E(WI+*°JC,) Vi,fc > 0.

(f) E(jel+*»x,) = i4*E(x,•*,) + 2 ^^-^(wy+yox, ) Vi,fc ^ 0.

Proo/. The results in (a) and (b) are straightforward from (1) and (2),
respectively. It is a simple matter to show the result in (c) by (1), (3), and
Remarks 3(a, b). On iterating (c) from i = k onwards we get the result in (d) by
induction. The result in (e) is readily verified by (1) and Remarks 3(a, b). On
iterating (e) from k = 0 onwards we get the result in (f) by induction. •

Now consider the following assumptions regarding the asymptotic behaviour of
the input disturbance.

ASSUMPTIONS l.v (v = 0, 1)

(a) llECxo0^,) — Ejco°Ewi||v-*0 as i-><*>,

(b)
sup ||E(wj°Mi) —Ewj-°Ewi||v-»0 as i - »» .
i*t

ASSUMPTION 2 There exists r e H such that

r | | -»0 as i'-*<».

ASSUMPTIONS 3.V (v = 0, 1) There exists R e B[H]+ such that

- /? | |v-»0 as i -»».

Remark 7. Clearly, Assumptions 1.1 and 3.1 imply Assumptions 1.0 and 3.0,
respectively. Note that the convergence in Assumption 3 necessarily implies that
R € B[//]+ , since B[/f]+ is closed in B[H], and the trace-norm convergence in
Assumption 3.1 also implies that R e B,[//j. On the other hand, just the uniform
convergence in Assumption 3.0 does not necessarily imply that R is a nuclear
operator. However, if we expect that a random sequence (wt,e "St: i 5= 0) has a
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102 C. S. KUBRUSLY

correlation sequence converging uniformly to a correlation operator, such that
R = E(w°w) for some w e 3€, we have to assume further that R is nuclear in
Assumption 3.0, since E(w°w)eB1[H]+.

The purpose of this section is to consider the following stability questions.
Under which conditions is it the case that: (i) the state sequence (*, e #?: / s* 0)
has a convergent expectation sequence and a correlation sequence converging to
a correlation operator whenever the input sequence (w, e 5Sf: i s= 0) has the same
property; (ii) the state expectation and correlation limits remain unchanged if the
initial condition x0 e 5if is perturbed? Such questions will be investigated in
Lemma 2 below, but first let us pose our stability problem properly.

DEFINITION 2 Set either v = 0 or v = 1, and consider the following statement.
For any initial condition x0 e #? and input disturbance (M$ e Si?: i 3s 0) satisfying
Assumptions l.v, 2, and 3.v with R e B^H]*, there exist q e H and Q e Bi[#]+

independent of x0 e %C such that

| |Ex , - g | | - »0 as i-»», | |E(*,oj: , .)-e| |v^0 as i->».

The linear system in (1) is mean square stable if the above statement holds for
v = 0, and it is mean square stable in the trace norm if the above statement holds
for v = 1.
LEMMA 2 Consider the linear system in (1) and the following assertions.

(a) A e B[H] is uniformly asymptotically stable.

as i-*oo VA;3=0, and as £—»°° V/s^O.

(aa.v) HEC^o^-Ex^ExylU-^O as / ->» V/&0.

(a3) (JC, e 3€: i 2= 0) is asymptotically weakly uncorrelated.

(b) There exists q eH such that:

|| Ezjc,- — ^ || —»• 0 as i-*«>.

0>i) q = (I-A)-lreH.

(b2) E - 4 ' ' ' ~9 ~*° is '-*00-

(b3.v) \\^(x,«Wt+k)-q'r\\y^Q as i->°° Vk^O.

(c) There exists Q e B[H]+ such that

| |E(x fojr f)-Q||0-»o as »-»oo.

(ci) Q = (I - L)~lV e B[H]+, where
V = A(q°r) + (r°q)A* + Re B[H],

which is the only solution of Q =AQA* + V.

£ - ( ? -^0 as
l l ; = O Ho
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QUADRATIC-MEAN CONVERGENCE AND MEAN-SQUARE STABILITY 103

(c,) Qe
(c4) Q = q°q *> R = r°r.

(d) There exists Q e Bt[H]+ such that

(dx)

We c/aim
true.

) G I - » 0 <« i - > 00.
Hy=o Hi

tfie implications among the above assertions indicated below hold

(a^v) under Assumption l.v (v = 0, 1),
(b, bi) under Assumption 2,
(c, Cj) under Assumptions l.v, 2, and 3. v (v = 0, 1),

. (d, dj) under Assumptions 1.1, 2, and 3.1.

(a, ai.v) => (a2.v) (v = 0, 1), (a2.l) => (a3), (a,bO => (b2),

(a^v, b) ^ (b3.v) under Assumption 2 (v = 0, 1),

(a,cO => (cj.Ca), (bi.Cj) ^> (c4), (d) 4> (c).

Moreover, consider the following further assertions.
(b() Assertion (b) holds true for every xoe 26 satisfying Assumption 1.0(a), and

the limit q eH does not depend on x0-
(c') Assertion (c) holds true for every xoe 26 satisfying Assumption 1.0(a), and

the limit Q e B[H]+ does not depend on x0.
(d') Assertion (d) holds true for every xoe 26 satisfying Assumption l.l(a), and

the limit Q e Bt[H]+ does not depend on x0.
We also claim that each of (b'), (c'), and (d') imply (a) whenever A e BJ[H].

Proof. By the system solution in (2) with k = 0, Remarks 3(a, b) and 2(b, d, e),
and Proposition 5(b) with k = 0 we get., for every i s= 0 and k 2= 0,

sup
i - l

which goes to 0 as k—*™, for every i^0, according to Assumption l.v; also it
goes to zero as i—»°°, for every k^0, according to Remark l(a), whenever
assertion (a) and Assumption l.v hold true. (Here, we read the empty sum, and
empty supremum in Us,0, as zero.) Thus (a)^(at .v). By Proposition 5(b,f) and
Remarks 2(a, b, d, e) and 3(a) we have

,) - EtI+/°Ec,| ^'llo \\E(x,oXl) - Ex,oEx,\\v

*=o
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104 C. S. KUBRUSLY

for every i > 0 and /s»0. Thus, (a, a1 .v)^(a2 .v), according to Remarks l(a, d).
Moreover, (a2.l)=>(a3), according to Remark 4. By Assumption 2, Proposition
5(a), and Remark l(e) with X = H, it follows that (a)=>(b, bx). Moreover,
(a,b!)4>(b2), since

II/=O II

^ 2 A' — (/ — AY\ Ikll^O as i—>°°,
\\j=o Ho

according to Remark l(b). By using Remarks 2(c, f) we get

||E(x(- o wi+k) - q or||v =£ ||E(x,« wi+k) - Ex,-° Ewi+k\\v

+ ||Ex/-9||||EH4+J + |k||||EM4+t-r||,

for every i,k^0. Hence (ax.v, b)^(b 3 .v) under Assumption 2, by taking the
limit as i—»«. Now, under Assumptions 1.0, 2, and 3.0, set

V = A(q or) + (roq)A* + Re B[H]

whenever (b) holds true. By the definition of Vt in (3), and Remarks 2(b, d) and
3(a), we get, for every / > 0,

whenever (a) holds true, since (a)=>(a!.O, b)=>(b3.0). Then, by Proposition 5(c)
and Remark l(e) with X = B[H], the assertion (a) implies the convergence in (c),
with Q = (I-L)~1V eB[H], which is the only solution of V = (I-L)Q =
Q-AQA*. Actually, QeB[H]+, since E(x,"x,)eB[ffl+ (i^O) and B[H]+

is closed in B[H]. Thus (a) => (c, cx). Moreover, (a, Cj) ^> (C2), since

I t A'VA*' - Q\\ = \\(i L> - (/ - L)"1)
ll/=o Ho llv=o 1

\LL>-{l-Lr\ HVIIO-0 as
ll/=o H

according to Remark l(b). Now we show that (a, c O ^ ^ ) . Actually, by

QeB^H] => i? = G

Also note that V eB^H] whenever ReBi[H]. Thus, by Remark 2(b) and
according to assertion (a) and Remark l(a),

R e B , [ H ] ^ s u p | S |
l»0 ||y=0 111 >=0

which, together with the uniform convergence in (C2), implies that Q e Bt[H] (cf.
[12 : p. 179]). To verify that (b1; c , ) ^ ^ ) , notice that Aq = q - r whenever (bi)
holds true. Hence, by Remarks 2(d, e),

A(q°q)A* = q°q + ror — qor — r°q, V = qor + r°q+R—2r°r.
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QUADRATIC-MEAN CONVERGENCE AND MEAN-SQUARE STABILITY 105

Therefore q°q =A(q°q)A* + V - (R -r°r). Then (bi,Ci)^(c4) since, accord-
ing to (c^, QeB[H]+ is the only solution of Q=AQA* + V. Now retain
Assumption 2 and replace Assumptions 1.0 and 3.0 by the stronger Assumptions
1.1 and 3.1. By Remarks 2(c, b, d) and 3(a), it follows that VeB,[//] and that
IW!~ 1̂11 ^ 2 \\A\\0 \\E(XjoWj) — qorWi + ||E(ni°Ht) — /?||i~*0 as /—»<», whenever
(a) holds true, since ( a )^ (a ! . l , b )^ (b 3 . l ) . Then, by Proposition 5(c) and
Remarks l(b,e) with X = B1[H], we have (a)=>(d) with Q = (I-Lly

1V =
(/ - L)~lV e Bi[tf]+, since (a) => (c, Cj). Therefore,

| | |( )
\\j=o 111 l lv=o ' Hi Hy=o

which tends to 0 as i-*<*>, by Remark l(b). Thus ( a )^ (d , d t). The derivation of
(d)4>(c) is trivial (cf. Remark 2(a)). Finally, let

Ho= {p e H : p = EK0 for some x0e 2Csatisfying Assumption 1.0(a)},

B1[//]+ = {PeB 1 [ / / ] + : / > = E(xo0JCo) for some *(0) e Sif satisfying
Assumption l.v(a)}.

It is a simple matter to verify that H0 = H and Bt[H]t = Br[H]+ for v = 0, 1.
Then, by Proposition 5(a, c) and Remark l(e) with X = H, X = B[H], or
X = Bi[H], it follows that each of (b'), (c'), or (d') imply (a), respectively,
whenever A e B»[/f], according to Remark l(c). •

5. Concluding remarks

In this paper, we have considered asymptotic properties for Hilbert-space-
valued random sequences, with applications to the stability analysis of infinite-
dimensional discrete linear systems.

In Lemma 1 was given a necessary and sufficient condition for an asymptoti-
cally weakly uncorrelated random sequence to be quadratic-mean convergent,
and it was shown that its quadratic-mean limit necessarily degenerates to its
expectation limit. Therefore, the possibility of an asymptotically weakly uncorre-
lated (or, in particular, an uncorrelated) sequence to converge in the quadratic
mean to a nondegenerate random variable has been dismissed. Further conclu-
sions have been drawn from Lemma 1 in Remark 5.

A fairly complete set of results, on the asymptotic behaviour of discrete linear
systems in Hilbert space driven by random disturbances, was derived in Lemma
2. In particular, it was established that uniform asymptotic stability for the free
system is sufficient to ensure mean-square stability (and also mean-square stability
in the trace norm) for the randomly driven system in (1) and, on the other hand,
that such a condition is also necessary whenever the system operator is compact.
The limiting state moments were given in terms of the limiting input moments,
and it was shown which properties are preserved between input and state limiting
correlations.

According to Definition 2, mean-square stability means essentially that
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106 C. S. KUBRUSLY

convergence in H of the expectation sequence, and convergence in B[H] of the
correlation sequence to an operator in Bj[//]+ (such that its uniform limit is a
correlation operator for some random variable in 3€), are preserved through the
linear system in (1). If, instead of investigating mean-square stability, we turn our
attention to analysing whether convergence in dfC, rather than in H and B[//], is
preserved through the linear system in (1) (i.e. whether quadratic-mean conver-
gence is preserved between input and state, which essentially means quadratic-
mean stability), then we come across with some noteworthy conclusions. First, by
combining Lemmas 1 and 2, it can be verified that the following remark holds
true.

Remark 8. Take the linear system in (1) under Assumption 1.1, and consider the
following assertions.

(a) (xt e 3C : i 5= 0) is quadratic mean convergent.

(b) (wt e 3€: i s* 0) is quadratic mean convergent.

If A e B[H] is uniformly asymptotically stable, then (a) and (b) are equivalent.
Moreover, if they hold true, then the quadratic-mean limits in (a) and (b)
degenerate, respectively, to

q = lim Ec, e H, r = lim EM$ e H.
/ - •oo ,-»oo

Now, by Remarks 5 and 8, we conclude finally that quadratic-mean convergence
for the state sequence is too stringent a result to be sought when the input
disturbance is an uncorrelated random sequence (or, more generally, when it
satisfies Assumption 1.1). Actually, if the free system is uniformly asymptotically
stable, so that mean-square stability is ensured by Lemma 2, then quadratic-mean
convergence between uncorrelated input and state is preserved. However, in such
a case, quadratic-mean convergence will happen only if the quadratic-mean limits
are degenerate random variables. Therefore, state quadratic-mean convergence
will never happen if the uncorrelated input is a nondegenerate random sequence
that is stationary in expectation and correlation. In particular, quadratic-mean
convergence for the state sequence will never happen if the input disturbance is a
non-trivial zero-mean wide-sense stationary white noise.
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