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Abstract.

Equivalent conditions for weak convergence of power operator sequences are

established and, in particular, the special case of weak asymptotic stability for

discrete time-invariant free linear systems in Hilbert space is considered.

Necessary

spectral conditions are provided, and the relationship between weak asymptotic
stability and similarity to contraction is investigated.
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1. NOTATION AND TERMINOLOGY

Throughout this paper H will stand for a nontrivial
complex separable Hilbert space, with inner

and norm || || . B[H] will denote the
Banach algebra of all bounded linear operators of

oroduct <;>

H into itself, with the upper star * denoting
adjoint, as usual. We shall use the same symbol
[| || to denote the uniform induced norm in B[HJ.
By an invertible operator in B[H] we mean an
operator which is also bounded from below and maps
H onto itself. G[H] will stand for the group of
all invertible operators from B[H]. The orthogonal
complement of any subset M =H will be denoted by
Ml, and the null space and range of an operator
TeB[H] will be denoted by N(T) and R(T),
respectively. For any TeB[H], o(T) is its
resolvent set, -(T) its spectrum, nP(T) its point
spectrum, GR(T) its residual spectrum, and cC(T)
Recall that
the spectral radius rq(T):=supReﬂ(T)1}| and the

its continuous spectrum, as usual.

numerical radius m(T};=sup|]x“=T|<Tx;x>| of any
operator TeB[H] are related as follows: rﬂ(T}:
ATz || Tl 226(T) s and w(D)=||T]|=>r_(D=]|T]|. T is
said to be normaloid if «(T)=||T||, and spectraloid
if r_(T)=w(T). Clearly any normal operator is
normgloid. any normaloid operator is spectraloid;
and these inclusions of classes are both proper.
By a contraction (a strict contraction) we mean

an operator TeB[H] such that ||T[[=1 ([[T]<1).
Thus, an operator TeB[H] is similar to a
contraction (s.c.), or similar to a strict
contraction (s.s.c.), iff there exists QeG[H] such
that || QTQ7*||<1, or | oT™ || <1, respectively.

We shall write T —— 1, T_
if a given sequence of operators {TneB[H]: n:zt}

W
> 1, or Tn =il
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converges to TeB[H] uniformly (i.e. ]imn+wHTn'TH=
0), strongly (i.e. limn+m[|{Tn-T)x|i=0 VxeH), or
weakly (i.e. Timn*w|<(Tn-T) x3y>|=0 ¥x,yeH, which
“(Tn-T)x;x>]:U YxeH),
The open unit disc and the unit

is equivalent to ]imnﬁw|
respectively.
circle (in the complex plane, centred at the
origin) will be denoted by 4 and T', respectively,
Finally, for any A< C, set A*={%el: Xeil, with

the upper bar denoting complex conjugate.

2. INTRODUCTION

Consider a discrete time-invariant distributed
free linear (bounded) system, described by the
following autonomous homogeneous difference
equation in a separable Hilbert space H.

(1} o

= T %
n+1 n’

The model (1) (or equivalently the operator
TeB[H]) is strongly asymptotically stable if the
state sequence {xn=Tner; n:0} converges to zero
for all initial conditions xeH (i.e. T" -2 0).
If the above convergence holds uniformly for all
initial conditions xeH, or equivalently if
sup|]x“51||T"x|l+ﬁ as noo (i.e. [[T]|50 nee),
then the model (1) (or the operator T) is said to
be uniformly asymptotically stable (i.e.

1" Y., 0). On the other hand, if the state
sequence converges weakly to zero for all initial

conditions xeH (i.e. if <T"x;y>+0 as n+» ¥x,yeH),
then the model (1) (or the operator T) is said to
be weakly asymptotically stable (i.e. PR 0).
Therefore, asymptotic stability of a discrete
distributed linear system modelled as in (1) turns

out to be equivalent to convergence to zero for
the system operator power sequence {TNeB[H]; n20}.
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According to the topology for which the above
sequence may converge to zero it is naturally
associated the concepts of weak, strong and
uniform asymptotic stability. These are trivially
related as follows: T" 45 0 = 7" 25 0 —>

Ly

Uniform asymptotic stability for discrete infinite
dimensional linear (bounded) systems has been
investigated by several authors (e.g. see Zabczyk
(1974, 1975), Kamen and Green (1980), Przyluski
(1980, 1988), and Kubrusly (1985, 1989)). Strong
convergence for power sequences of bounded linear
operators on Hilbert space has received an unified
treatment in the book of Nagy and Foias (1970),
where its relationship with the invariant subspace
problem (perhaps the most celebrated unsolved
problem in operator theory) is deeply analysed.

On the other hand, very little has been written

on weak asymptotic stability for discrete infinite
dimensional linear (bounded) systems, comparing
with what has been done in the uniform topology.

There are at least two good reasons to attempt to
an investigation of weak asymptotic stability.

One of them is that state weak convergence to zero
is enough to ensure (strong) output convergence to
zero, when the system evolution is observed
through a compact operator. Suppose KeB[H] is
compact and Jet {zn=Kxﬂ=KTner; nz0} stand for the
model output sequence, through which the system
evolution is observed. Since a compact operator
takes weakly convergent sequences into strongly
convergent sequences, it follows that Hzn||+0 as
n for all initial conditions xeH whenever

™ Y. 0. In particular, if dim[R(K)]<e, then
we have an important special case which describes
the situation where the infinite-dimensional
linear model (1) can only be observed in a finite-
dimensional subspace of H. A second motivation is
that weak asymptotic stability is somewhat related
with another important unsolved problem in
operator theory, namely the characterization of
similarity to contraction, as we point out in
section 4 and discuss in section 5.

In this paper we shall be focusing on the
convergence of power operator sequences in the
weak topology and, in particular, on weak
asymptotic stability. Our aim here is to
establish equivalent conditions for weak
convergence of power operator sequences, and to
analyse the special case of weak convergence to
zero. This will supply necessary spectral
conditions for weak asymptotic stability. We
shall also investigate in which extent (or for

Vieira

which class of operators) one can ensure an equiva
lence between weak asymptotic stability and
similarity to contraction.

3. WEAKLY CONVERGENT POWER SEQUENCES

The purpose of this section is to present equiva-
lent conditions for weak convergence of power

operator sequences, as well as necessary spectral
conditions. This will be achieved in Theorem 1
below. We begin by establishing two auxiliary

results that will suffice our needs.

Proposition 1. Consider a complex double segquence
(i.e. an infinite complex matrix) {ankeE; n,kz1}l,
and let « be a positive constant. The following

assertions are equivalent.

(i) vim, Ja | =0 k21,
{a) n nk
(1) oyl s @ yn, k=1,
(i) vim  Jo qla 1&g ] =0
¥X=(E;,€,~,...)GF‘,1,
() | -
(i1) Supng1ik=1|“nk||£k| s ol x||L
Ux=(£ ,€,,-.. )62, .

Sketch proof. Take an arbitrary x=(£,,£,,...)et,.
By the double limit theorem (e.g. see Hoffman

{1975, p.180)) it is a simple matter to show that
'Iirnn_wo SUpy .y |an||£k| =0
Note that (a-ii) trivially

whenever (a) holds.
implies that

ET::} San?l iunkl l£k|< -

The dominated convergence theorem says that the
above two conditions are enough to ensure that
(b-1) holds (e.g. see Theorem 1 in Kubrusly
(1986)), so that (a) = (b-i). Since (a-ii) ==
(b-ii) trivially, we get (a) ==> (b). On the
other hand, take an arbitrary integer 2:1 and set
x,=(0,...,0,1,0,...)e’, with 1 at the Lth position
a;d zeros elsewhere, so that (b-i) —> (a-i) and
(b-ii) == (a-ii). Thus (b) —=> (a). O

Proposition 2.
basis for H.
H,={xeH: Ek:1|<x;ek>l<m} is dense in H.

Let fe ; kz1} be any orthonormal
The linear manifold

Sketch proof. Let DeB[H] be a diagonal operator
with respect to a given orthogonal basis

{ek; kz1} for H. That is, set
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Dx = Jyg Ay <xie e, VxeH

for some bounded complex sequence {Ak; kz1}. Since
D is normal, GR(D}=B. Now assume that A =0 for
every kz1, so that USOP(D). Hence R(DJ=H, because
Oeo.(D)Up(D). Assume further that E:=||kk|2<w,

so that

E:=1F/Dx;ek | -~
oo 241/2 020 1/
(Zk=1|hk1 ) (2k=1|<“ek [y
for all xeH. Thus R(D) < H,. Then H, =H. 0

Lemma 1. Take an arbitrary orthonormal basis

{ek; kz1} for H. Let TeB[H] and consider a
sequence {TneB[H]; [P Tn X T if and only if
supngll]Tn||<m and Ifmnﬁw:(Tn-T}ek;eE>=D for
every k,L21.

Proof. The "only if" part follows immediately by
the Banach-Steinhaus theorem. On the other hand,
suppose sup . |IT, || <= (so that sup ., |<(T -T)xsy>|s
(supog Il TN TID I [ 1yl ¥x,yeH), and also
that limn+m<(Tn‘T)ek;E£3=0 for every k,2°1, for
some orthonormal basis {ek; kz1} for H. Thus,

by the Fourier series theorem,

11msupn*m|<(Tn_T)ek;y}
Vimsup o ([<(T -Te ;e >|[<e sy>| = 0
for each kz1 and every yeH , since (a) —=> (b-1)

in Proposition 1, with H, < H defined as in
Proposition 2. Hence

limsupn_m|<x;(Tn—T)*y‘
1imsupn*wE:=1lc{Tn-T)ek;y‘[|<x;ek-| =0

for every x,yeH , since (a) == (b-1) in Proposi-
tion 1. Therefore, Iimnnrf(Tn—T}x;y>=0 for every
x,yeH,. However, the limit actually holds for
every x,yeH (i.e. T, X o T), since

sup .4 [T, [[<= and H =H according to Proposition 2

(e.q. see Weidmann (1980, p.81)). O
Theorem 1. Let T,PeB[H], and let {ek; kz1} be an

arbitrary orthonormal basis for H. The following
assertions are equivalent.

(a) Y £, LPS )3

(b) PT=TP=P2 =P and (T-P)" 2> 0.
n
(¢) sup oyl T"[[ <=  and
1imn+m<Tnek;eQ> = Pek;e_- ¥k, 214

Moreover, if the above holds, then

(d) ry(1) <1,

(e) oplT) <4,
(f) op(Mcau {1},

(g) P =0 <=> op(T) C A <= 1¢0,(T).

Proof. First note that the equivalence

(a) <=> (c) is a particular case of Lemma 1.
Recall that r_(T)"=r _(T")s]T"|| for every nz1, so
that r_(T)<1 whenever supnaIHT"H<w. Thus

(c) = (d). It is readily verified by induction
that (T-P)":T"-P for every nzl whenever
PT=TP=P2=P, so that (b) == (a). From now on,
suppose (a) holds. Then T W, o,

T Y pr, and Tt s 1o, Hence. by
uniqueness of the weak limit, PT=TP=P; which
implies by induction that PT =P for every nzl, so
that p=pT" M P*. Thus PT=TP=P2=P, which implies
by induction that (T-P)"=T"-P for every nz1, so
that (T-P)" X 0 (i.e. (a) =—> (b)). Now recall
that oP(T) 1] cR(T)=mp(T) UoP{T*)* for any TeB[H].
If xeop(T) U 0p(T), then there exists x eH, with

|l x Il =1, such that Tx =ix_ or T*x =X x_. Hence,

in both cases,

n_.n .
A= X <xo,xn. =

N * + . “ ]
<Tx 3%,> = <Px 5x, el as -,
Thus, either |A|<1 or i=1. Therefore
(h) op(T) U op(T) ca U {11,

which implies (f). Moreover, if P=0, then A0
as n+=, so that |i[<1, Hence

(i) P=0 == tﬁP(T) ] GR(T) e

We have already verified that (I-T)P=0, so that
R(P) c N(I-T). Therefore

(3) P20 <=> R(P)={0} —==> N(I-T)={0} <==> Teqp(T).

By (i) and (j) we finally get: 1¢JR(TJ, so that
(h) implies (e); and op(T) =& == 1¢3,(T) >
P=0 —> GP(T) <4, so that (g) holds. i}

4. WEAK ASYMPTOTIC STABILITY

Take an arbitrary TeB[H], and recall that rc(T)=
infOEG[H]||0TQ'1]|, so that T is similar to a
strict contraction if and only if rr(T)<1 [y 2
Rota (1960)). According to the Gelfand formula
(ro(T}=1imnﬁwHT"H1/"), and recalling again that
ro(T)"=rj(Tn}S||T"|] for every nz1, it follows
that r_(T)<1 if and only if IT"]1+0 as nse.
Summing up leads to the following well-known
equivalence.

(2) r(T)<1 <= TV pe=s T j8 558,
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In this section we shall investigate what can be
said, in the light of the above equivalence, when
uniform asymptotic stability is relaxed to weak
asymptotic stability. More precisely, we shall be
looking for a relationship between weak asymptotic
stability and similarity to contraction, as well
as for the role played by the parts of the
spectrum in the characterization of such a
relationship. From Theorem 1 we immediately get
the following result.

f nj

(sup || T}l = (== r_(T)s1)

(8) ¥Vt g s [ 02 o '
lcP(T) u GR(T) cA.

Thus, according to (2), if the continuous spectrum
does not intersect the unit circle (trivial exam-
ple: compact operators), then all the three
concepts of asymptotic stability coincide. In
other words

n w
(4) ™" Yo 0 = [t
lcc(ﬂ nr=4g.

Now notice that weak asymptotic stability and
similarity to contraction share some common pro-
perties. For instance, if T is similar to a
contraction, than it is power bounded (i.e.

sup ¢ [[T"l|<=). This is trivially verified
(recall that T"=07'c"q for every n>1 whenever
QTQ*=C).
contraction, then its residual spectrum is

Moreover, if T is similar to a

contained in the open unit disc. This is a con-
sequence of the following fact: AeoR{C) sy
[x]<|l c]l (recall that cR{C):OP(C*}*\oP(C) for any
CeB[H], and take an arbitrary REGR(C), so that
0<|| ex-ax||% = |lex||2 + [2]?]|x]| *-2Re<Xx;C*x>=
[lcx|| 2= | x| 2|l x]|? for some O=xeH, which implies
that |x|<]|C]|). Since similarity preserves the
spectrum and its parts (e.g. see Halmos (1982,
p.42)), GR(T}=0R(C) whenever T is similar to C.
If C is a contraction, then cR(T)=oR(C) cA.
Summing up we get

sup ., || T" ||« (=> r_(T)£1),
{(5) T idig.c. == nz1 ¢

iop(T) <A,

For compact operators, similarity to contraction
is equivalent to power boundedness (cf. Nagy
(1958)). For spectraloid operators this is also
true, since T is similar to a contraction whenever
w(T)<1 (cf. Nagy and Foias (1970, p.95)). An
example of a power bounded operator which is not
similar to a contraction was given by Foguel
(1964). However, such an operator, say F, is not
weakly asymptotically stable. Indeed, by the

very construction of F (cf. Foguel (1964) and
Halmos (1964)), it is readily verified that
cP(F)=a, GR(F)=G, cC(F)=r, and F" %4 0, Thus,
not only the converse of (5) fails, but it also
fails the converse of (3). Couldn't one find
another power bounded operator, which is also not
similar to a contraction, but weakly asymptotically
stable? Putting it in another way. Is every
weakly asymptotically stable operator similar to a
contraction? Since the inclusion of the point
spectrum in the open unit disc is a necessary
condition for weak asymptotic stability, and since
this is clearly not necessary for similarity to
contraction (e.g. take the identity operator), the
converse of the above question should read as
follows. Does similarity to contraction imply
weak asymptotic stability for an operator with
point spectrum contained in the open unit disc?
Let us synthesize the above questions.

n w

Question 1. T o e TR 84047

¥ 507

Question 2. T is s.c. and cPfT) c A= "

5. CONCLUDING REMARKS

There are some partial evidences that the answer
to Question 1 may be negative, since a positive
answer would lead to a universal model for strong
asymptotic stability. Actually, a positive answer
to Question 1 would trivially ensure that

L A S -
above assertion holds, then (e.g. see Kubrusly
(1988)) strong asymptotic stability turns out to

However, if the

be equivalent to similarity to part of the adjoint
of a shift operator. On the other hand, Question
1 has clearly a positive answer for those classes
of operators for which power boundedness implies
similarity to contraction (e.g. compact or
spectraloid operators).

Finally, we show that Question 2 is equivalent to
the following one.

Question 2'. U is unitary and cP{U)=B

(TR

Recall that UeB[H] is unitary iff UeG[H] and
UT*=U*, so that o(U) =T and r_(U)=|[u]|=1. Thus,
a positive answer to Question é trivially implies
a positive answer to Question 2' (since U is a
contraction). To verify the converse, suppose T
is similar to a contraction C and set Z(C)=

ixeH: <CMx;x>»0 as n+o}. Note that Z(C)=H <==
" ¥ sp e 1" ¥ 0 (since QT":C“Q for every
nz1, for some QeG[H]). If Z(C)=H, then ||C||=1
(reason: Z(C)=H ==T" Mo g = T" Y5 0 = 7T
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is not s.s.c. => ||C||=1). Since [|C[[=1, Z(C) is
a subspace (i.e. a closed linear manifold) of H
which reduces C, and U:=C|z(c)1 in B[Z(C)l] is
unitary (cf. Foguel (1963)). Note that Z(C)L is
nontrivial (because Z{CJ=Z(C)=H). Since Z(C)
reduces C, """ @ u" for every nzl, with
U:=C{Z(c} in B[Z(C)], and V" X 0, according to
the definition of the reducing subspace Z(C).
Since U is unitary and z(¢)! is nontrivial,
c:rp(l.i]r.; {UP(C) nr). Now suppose oP(T}r:' A, and
recall that UP(C}=GP{T). Thus UP(U)=B. Therefore,
if Question 2' has a positive answer, then

u" X 0, so that C" 2 0. Hence T" X 0
(i.e. Z(C)=H). Conclusion: a positive answer to

Question 2' implies a positive answer to Question 2.
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