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Abstract.

Infinite-dimensional discrete-time bilinear models driven by Hilbert space-

-valued random sequences can be defined as the uniform limit of finite-dimensional

bilinear models.

In this paper we shall investigate the limiting properties of

the

state expectation and correlation sequences for infinite-dimensional stochastic
discrete bilinear models, where sufficient conditions for mean square stability will

be presented.
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1. INTRODUCTION

Stability for stochastie infinite-dimensional
continuous-time bilinear systems has been inves-
tigated by some authors (e.g. see Zabczyk, 1979;
Ichicawa, 1982). In this paper we shall consider
the mean square stability problem for infinite-
dimensional discrete-time bilinear systems oper-
ating in a stochastic environment, whose model is
formally given by the following difference
equation.

Xiq = [AD + kgi Ak-:wi;ek)]xi U,

where {Ak; k20} is a sequence of bounded linear
operators on some separable Hilbert space H,

{egs kz1} is an orthonormal basis for H, and
{uj; 120}, {w;; 120} and {x;; i20} are H-valued
random sequences. If H is finite-dimensional,
then such a model characterizes a finite-dimen-
sional stochastic discrete bilinear system, for
which the evolution of the state moments is easy
to obtain under independence assumptions (e.g.
see Kubrusly, 1985b). Therefore, mean square
stability can be investigated by analysing the
asymptotic properties of the state moments (e.g.
see Kubrusly and Costa, 1985; Kubrusly, 1985b;
and the references therein). On the other hand,
if Ap=0 for every k21, then the above model is
naturally reduced to a linear one. In this case
the evolution of the state moments are easily
obtained, even when H is infinite-dimensional, so
that the analysis of their asymptotic behaviour
becomes feasible. Actually, some problems related
to mean square stability for infinite-dimensional
stochastic discrete linear systems have already
been properly addresced in the current literature
(e.g. see Zabeczyk, 1975, 1977; Hager and Horowitz,
1976; Kubrusly, 1985a). The purpose of the
present paper is to supply sufficient conditions
for mean square stability for the general case,
where H is infinite-dimensional and {Ap; k20! is
any uniformly bounded sequence.

2. NOTATIONAL AND CONCEPTUAL PRELIMINARIES

Throughout this paper we assume that H is a
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separable nontrivial Hilbert space, with ” " and
<;> standing for norm and inner product in H,
respectively. Let B[X,Y] denote the Banach space
of all bounded linear transformations of a Banach
space X into a Banach space Y, and set B[X]=B[X,X].
We shall use the same symbol [ to denote  the
uniform induced norm in B[X,Y]. Let C*€B[H] be the
adjoint of CeB[H], and set B[H]*+={CeB[H]: 0sC=C*},
the closed convex cone of all self-adjoint non-
negative (i.e. 0% <Ch;h>¥heH) operators on H. Let
c'/*eB[H]* be the (unique) square root of CeB[H]*,
and set {c|=(c*c)1/253[u]+ for any CEB[H]. The
class of all compact operators from B[H] will be
denoted by B [H]. If CeB,[H] (or equivalently,
JClEBm[H]), let {A20; kZ1} be the nonincreasing
nonnegative null sequence made up of all singular
values of C (i.e. eigenvalues of CI], each non-
zero one counted according to its multiplicity as
an eigenvalue of |C|. Set ” C"i =zk-1kk and let
Bi(H]={CeB_[H]: || C|| <=} be the cIass of all
nuclear (or trace-class) operators on H. Actually
1 1is a norm in B;[H] (the so-called trace-
-norm), and (Bl[H],l }; ) in a Banach space. We
set By[H]*=B,[H] nB[H]*, the class of all correla-
tion operators on H. For any f,géH define the
outer product operator (fog)eB;[H] as follows:
(fog)h=<h;g>f for all heH, such that (fof)eB,;[H]".
The above standard concepts may be found, for
instance, in Gohberg and Krein (1969) and Schatten
(1970).

Let (:,Z,u) be a probability space, where I is a
c-algebra of subsets of a nonempty basic set =,
and U is a probability measure on L. Let H be the
set of equivalence classes of H-valued measurable
maps x defined almost everywhere (a.e.) on 7, such
that
[
Il x”; £EF E{“ x (|2} = | x¢)||? du < =,

where Z stands for the expectation operator for
scalar-valued random variables. The following
inner product in H,

def.
x3y>y =

r

<x(w),y{w)>dy

It

efex(u)yylw)>? =

for all x,yeH, induces the above norm in H. Thus
H=Lz(7,u3H): the Hilbett space of all second onden
H-valued randem variables. Given any xeH there
exlsts a unique element in H, say E{x}, which is
referred to as the expectation of xeH, such that
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<Eix};h> = e{<x(w);h>} VheH .

Moreover, for any x,yeH there exists a unique
operator in B;[H], say E{xoy}, referred to as the
cornelation of xeH and yeH, such that

<Elxoylf;g> = £{<f;?(w)> <x(w);g>} Wi,geH .

Note that || E{xo " g Il vllu E{xox,eB;[H]
and ” E{x} {xox} f{ T for every
x,y€H. Now conSLder a famlly GH Fez=p}
random variables. For each £e= %et fer ks k>1} be
an orthonormal basis for H made up of "all 21gen-
vectors of E‘X-OXP]531[H]+| whose existence is
ensured by the Spéctral Theorem. Such a family is
said to be stwcturally simifar if there exists an
orthonormal basis for H, say {eg; k21}, such that
{er ki ke I,-{ek, k21} for every £eZ. {e ; k21} is
reférred to as the common othonowmal baé{A for
H of *x’eH £e=}, Note that structural similarity
may be thought of as generalization of correlation
stationarity. Actually, a family {xgeH; £ez=g} is
corvrelation stationarny iff there exists Q€B,[H]*
such that E{x.ox }=Q for every Z€%, and it is
expectation sfaticnary iff there exists geH such
that E{x;}=q for every £€Z., For any family
{xieH; £€ =P} we set

1 &=} " {yet: y is independent of {x_eH;Ee=}}.

{x,;&e=

F
L

£

In particular, for any xeH,

I = {yeH: y is independent xeH}.

Finally, we shall also need in the sequel the
following auxiliary result, which involves the
concept of Cauchy summable sequence: a Cauchy
sequence {y;€Y; iz 20} in_a normed linear space Y
is Cauchy swmable iff Z osquJOH Vi yi"< ®

Proposition 1: Let /i€B[X] be uniformly asymptoti-
cally stable and @:X+X be a proper contraction
on a Banach space X, such that

| A% s oal  ¥iz0
| ox-eyll = off x-y[|  wx,yex ,
a+op<1

for some real constants ©°1, 0771, 0%p<1, Lf
1vj€X; i 0’ is a Cauchy summable sequence then
‘zijeX; 10!, given by

z, =Mz, +0z_ +v, z €X arbitrary ,
i+1 i i i o

is also Cauchy summable, and its limit z€X does
not depend on zoex.

Proof: See Kubrusly (1985b).

3. AUXILIARY RESULTS

The purpose of this section is to define properly
the infinite-dimensional stochastic discrete
bilinear model that has been formally introduced
in section 1, and to present the expectation and
correlation evolution for the state sequence
generated by such a model.

Lemma 1: Let {w;EH; i20} be a structurally similar
sequence with a common orthonormal basis

{ej; k2 1} for H, and let {Ay€B[H]; k20} be an
uniformly bounded sequence of operators. Set

W
1

o T . ; 5
A“i - Ao + Lk=1ﬁk<wi'ek> | H

for every i20, where the above series converges
uniformly. That is, for each 120,

"Aw.v- [A°+ :: IAkcwi;ek?aiv"H
1 =

¥ vl

+0

SUPhaye]
as n+e,

Given x,€HM and {u;eH; 120}, assume further that
x el, and
e %o

wy® I{x u u w 1
J 0, o"", j'-l’ 0,"',wj_1-

j21. Then the difference equation in H

o
X = [A + E
+1 o e

for every

<w,;e *[x. .
1 Ak wie ]x1 + Uy

has a unique solution, which lies in I,.for every
120, given by x1=Aw°x0+uo and, for every 122,

x.=4A oA x +El_IA S I T
i W, w_ o ¥ W, w., j=1
i-1 o i=1 i-1 i

Proof: Ste Kubrusly (1986).

Lemma 2: Let {w;eH; i20} be a structurally similar
sequence with a common orthonormal basis {Ek’ kz1}
for H, and let {AkEE[H] k20} be uniformly bounded.
Given X, €H and {u.EH 120}, assume further that

v, eI and
D

w: & I{ u u w w. 1
] xoi O)---rj 3evey 1

-1""0 j=1

for every jz1. Now consider the state sequence
{x: st ;3 120} generated by the difference equation

- -
*ie1 T [Ao * zk_lﬁk<wi;ek>}xi kMg

with

Awi-A+Z Ak<u;e>l_*H

defined as in Lemma 1 for each i20. We claim that
the state expectation {E{xj}€H; 120} and correla-
tion {E{xjox;}eB,[H]*; i?O} sequences evolve
according to the following difference equations:

(a) E{xi+l} = FwiE[xi} + E{ui}

} = * 3
(b) E{xi+l°xi+Tr FwiE{xioxi}Fwi+ Twi[E{xioxiJ]

+ E{A x.ou,}+E{A x.ou.}*+E{u.ou.}
w it w.o1i ii

i

with {F, GB[H], iz0} and {7 eB[B[H]];
by 1

T
iz0; given

F =A + zk=1 Ak<E1wi];ek> i

b = 1 .
Twi[Q] Ek £=T<(E{wiwi, Elw, JoE{w, e, e, »A QA

for all Q€B[H], where the above convergence is in
terms of the uniform operator norm topdogy (i.e.
the above series converge in B[H] and in B[B[H]],

respectively). Moreover, if XGGI{U 5 3 and
oo
{uj,wj} is independent of {xo,ua,.,uj_i,wo,.,u5_1}

for every jz1, which implies the above indepen-
dence assumption, then
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(e) E[xi+l

ox. .} = F Elx.ox,}F* +
i+l wi ) R ¢ wl

ui
+ Twi[E{xioxi}}+-Vwi[E{xi]]

i
where {wa:ﬂ-*Bl[HJ; 120} is defined by the formu-
la ¥

Lti Lli ui % E{ }
vwi[h] = Pwilh] + Pwi[h] + Efu ou,
s
for all heH, with {owanfn,nl[n]]; i20} given by
1
uj ot
Pwi[h] = ﬁohoE{ui} + 1=‘Akh0ﬂuiowi }ek

for all heéH, where the above series converges
uniformly (i.e. it converges in B[H,Bi[H]]).

Proof: See Kubrusly (1986).

4. MAIN RESULTS

Consider an infinite-dimensional discrete bilinear
model evolving in a stochastic environment as
defined in Lemma 1. In this section we shall be
interested in the asymptotic behaviour of the
state expectation and correlation sequences, whose
evolution was given in Lemma 2. In particular, we
shall investigate sufficient conditions on the
maps {Ay.} to ensure that those sequences converge
for any "admissible initial condition x, and input
disturbance {ui}, and their limits do not depend
on x,.

Assumption 1: In order to reach a proper balance
between generality of results and simplicity of
analysis we make the following assumptions. Let
{wiGH; i20} be an expectation and correlation
stationary sequence, and set

s=Elw,} e H , s=E{wow} € By[H]T ,

for every i20. Let {ey; k21} be the orthonormal
basis for H made up of all eigenvectors of
SeBy[H]*, and let {AyeB[H]; k20) be an arbitrary
uniformly bounded sequence. Given x,€H and

- A
(ujeH; 120}, assume cthat x €l(, . ; and

{uj,wj}xs independent of {xo,ua..,uj_‘,wo,.,wj_1}

for every j21. Set, for every iz0,

r. = E{ui} € H 5

=
[}

E{uioui} e By(H]Y

«
)

E{uiawi} & By[H] s

and suppose G;=Y;G, for some scalar sequence
{TiEE; 120}. "Assume further that {TiEE; iz0},
{rjeH; 120}, and {RisBllﬂl*; i20} are Cauchy
summable sequences 1n [,H, and B[H], respectively;
and SUP. . Ri 1< =,
Now, under Assumption 1 and according to Lemma 1,
consider the state sequence {xjely;; 120}
generated by the difference equation

Te o)
= <W.3 >lx. .
X [ﬁ°+ Ek-1 A ey ]x1 U, (1)
and set for every iz0

q;=Eix;} 6 B, Q;=Elxox;} e By[H]" .
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By Lemma 2 it follows that, for every 120,
q,¢ = Fa; + 1 (2)
Q;,, = FO F*4T(Q;] + v,lay) (3)

with F,MeB[H], TeB[B[H]], {P;eB[H,B,[H]]; i20} and
{Vi:H+By[H]; 120} given by

0
FeA +M, M= Ek_1 A <sie >

TlQ) = |

<(S-sos)e, e, >A QA*
i 3o A Q%

WQeB[H] ,

o
P;[h] = A hor, + {k_| AhoGie , VheH

*
Vi[h] = P.[h] + B, [n)" + R, ¥heH

according to Lemma 2. Note that, if Ay=0 or M=0,
then

FQF* + T[Q] = | 5 Akakqai ¥QeB[H] (4)
k=

where A,=1 and X 20 is the eigenvalue of seB,[H]*
associated with the eigenvector e, for each k1.

Definition 1: The infinite-dimensional stochastic

discrete bilinear model in (1) is mean square
stable if, for any initial condition x,€H and
input disturbance {u;eH; 120} satisfying I
Assumption 1, there exists qéH and Q€Bq[H]
independent of x, €M, such that

@ [laj-all 0 as i»e,
(b) "Qi-Q" +0 as iwe=

Theorem 1: Consider the evolution equations (2)
and (3). If there exist real constants 021 and
O<a<! such that

| ¥4l s oal %i20 and o2eo?| 7)< 1 ,
then the model in (1) is mean square stable.

Sketch Proof: First consider equation (2). Since
[rjeH; 120} is Cauchy summable, it follows from
Proposition 1 that Definition 1(a) is satisfied,
with {q;eH; 120} being a Cauchy summable sequence.
Now consider equation (3). Set G=TeB[B[H]] and
A[Q)=FQF* for all QeB[H], where A\eB[B[H]] is such
that

| ad = || ¥ s o%at vizo .

Thus we have from Proposition 1 that {Qj€B,[H]*;
iz0} is a Cauchy summable sequence in B[H], whose
limit QeB[H] does not depend on the initial
condition, whenever {V;[qj]eB,[H]; 120} is Cauchy
summable in B[H]. Moreover, Q€B[H]* since B[H]"
is closed in B[H]. Hence Definition 1(b) is
satisfied since (cf. Kubrusly, 1986): from the
Cauchy summability of {YiGE; iz01, {qiEH; 120},
{rjeH; i20}, and {R;eB[H]; i20} it follows the
Cauchy summability of {V;[qj]eB[H]; i20}; and
from the uniform boundedness of {l Rinl : iiOl

it can be shown that the uniform limit QeB[H] is
actually nuclear (i.e. QeB,[H]™).

Theorem 2: Consider the evolution equations (2)
and (3). Suppose M=0, such that equation (4)
also holds true. For each 220 let A, ,0_,6B[B[H]]
be given by o

Agla] = A.aQa% , e,lQ] = EE:? M A QAK
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for all Q B[H], and let ©
constants such that

> >
E-l and ug-ﬂ be real

Iakf 7 a2 Akl s opof  wizo .

If i“f”ho(°i+ci" 01" } <1, then the model in (1)
is mean square stable.

Sketch Proof: It is readily verified that
gl < el
whenever izm. If inf,. (ai+02" GEH ) < I,Ithen

there exists m20 such that umgi and IIGm I <1,
since op21. Moreover, M=0 implies that

¥izo

i o. . i
s el

Iell2= lo,ll if m>o0

Therefore || Fi||soal for every i20, with o=0421
and 0Q<it<1, where either a=a, if m=0 or

| e “ /%< g <1 if m>0. Now consider equation
(2), and recall that equation (3) can be written
as

Qi+'| 5. ﬁm[Ql] + Om[qi.] x Vi[qi] »

according to equation (4). Then the desired
result follows from Proposition 1 exactly as in
the proof of Theorem 1.

5. CONCLUSIONS

In this paper we have established sufficient
conditions for mean square stability of infinite-
dimensional discrete-time bilinear systems driven
by H-valued second order random sequences. The
stochastic environment under consideration was
characterized by independence and structural
similarity with arbitrary and unknown probability
distributions.

The main results appeared in Theorems 1 and 2,
which were supported by Lemmas 1 and 2. Existence
and uniqueness of solutions for infinite-dimen-
sional stochastic discrete bilinear models were
considered in Lemma 1, and the evolution of the
state expectation and correlation sequences was
presented in Lemma 2. The mean square stability
conditions supplied in Theorems 1 and 2 extended
to infinite-dimensional models the finite-dimen-
sional results proposed by Kubrusly (1985b).
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