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An important problem regarding theory and practice of identification, state estimation, 
and control of distributed systems is the spatial location of sensors and controllers. A 
review of recent literature and a classification of methods indicate some directions for 

further research. 
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Abstract--A survey of the field of optimal sensors and/or DPS, as discussed here, will stand for dynamical systems 
controllers location for dynamical distributed parameter systems governed by PDE (opposite to LPS which are described by 
modelled by partial differential equations is presented. The recent ODE), as a class of dynamical systems modelled in an infinite 
contributions in this field are grouped according to the main goal dimensional state space (e.g. see Helton, 1976; Ray, 1978; 
for which the location problem is developed, namely: system Curtain and Pritchard, 1978; Pritchard, 1979; Fuhrmann, 1981; 
identification, state estimation, and optimal control. In order to and Tzafestas and Stavroulakis, 1983). Therefore, it seems 
pose the sensors and controllers location problem, the semigroup reasonable to say that the starting point for analysing DPS is the 
approach for modelling distributed linear systems is briefly PDE literature. Presently the available literature in PDE is 
reviewed together with its equivalent (infinite dimensional) and certainly huge. To mention just a few books, ranging from 
approximate (finite dimensional) Fourier expansion repre- introductory to advanced texts, published over the past three 
sentations. After presenting a concise general review of the several decades, see for example Courant and Friedrichs, 1948; Courant 
methods considered in the current literature, a classification of and Hilbert, 1962; Garabedian, 1964; Weinberger, 1965; 
methods is also proposed. The main classifying factor concerns Friedman, 1969; Mikhlin, 1970; John, 1981 ; Ames, 1972; Treves, 
the use of N-modal approximation schemes, and the different 1975; Schechter, 1977; Showalter, 1977; and Gustafson, 1980. 
stages of the optimization procedure in which they are required. Three of the main problems in system theory (and in particular 

in DPS) are system identification, state estimation, and optimal 
1. Introduction control (cf. Ray and Lainiotis, 1978 and Stavroulakis, 1983). 
A FUNDAMENTAL problem towards identification, state esti- OCL and OSL will be regarded here as intermediate problems for 

considering the above mentioned 'final' problems. Although little 
mation, and control of distributed systems is the sensors and literature has been written on DPS identification compared with 
controllers location (e.g. see Athans, 1970). This comprises the what has been done for state estimation and optimal control, 
arrangement, in an optimal fashion, of a limited number of some survey papers have already appeared in this field. For 
measurement transducers and control devices along the spatial instance, see Polls and Goodson, 1976; Kubrusly, 1977; Goodson 
domain. In this paper the several methods proposed for solving and Polls 1978; Ruberti, 1978; Burger and Chavent, 1979; 
such a problem are reviewed and classified according to their Chavent, 1979 and Polls, 1982. On the other hand the current 
main characteristics. To begin with it is advisable to give some literature on state estimation is much richer. For some complete 
abbreviations which will be of frequent usage throughout the books and surveys on the state estimation problem in DPS, 
text: regarding both theory and applications, see for example 

ODE: Ordinary Differential Equation(s). Bensoussan, 1971; Phillipson, 1971; Curtain and Pritchard, 
PDE: Partial Differential Equation(s). 1978; Sawaragi, Soeda and Omatu, 1978; Curtain, 1975; Ray, 
LPS: Lumped Parameter System(s). 1975; Tzafestas, 1978 and Bencala and Seinfeld, 1979. The 
DPS: Distributed Parameter System(s). optimal control problem in DPS has also been reported in several 
OCL: Optimal Controllers Location. books and surveys. For instance, see Wang, 1964; Lions, 1968, 
OSL: Optimal Sensors Location. 1972, 1978, 1980; Butkovskiy, 1969; Balakrishnan, 1980; Aziz, 

Wingate and Balas, 1977; Curtain and Pritchard, 1978; Ahmed 
and Teo, 1981; Tzafestas, 1982; Robinson, 1974; Curtain, 1978 
and Bensoussan, 1978. 

*Received 23 August 1983; revised 18 April 1984; revised 12 The present survey is organized as follows. In Section 2 the 
June 1984. The original version of this paper was presented at the semigroup approach for modelling DPS is briefly reviewed. After 
3rd IFAC Symposium on Control of Distributed Parameter describing a linear model for DPS in a separable Hilbert space, 
Systems which was held in Toulouse, France during June, 1982. and its equivalent (infinite dimensional) representation in terms 
The Published Proceedings of this IFAC Meeting may be of Fourier expansion, the so-called N-modal (finite dimensional) 
ordered from: Pergamon Press Limited, Headington Hill Hall, approximation is also presented. The OCL and OSL problems 
Oxford, OX3 0BW, Emzland. This Daoer was recommended for are motivated hv the modol cl~r~pnrl . . . . . .  t h  . . . .  t;~l I ~ t ~ .  mr 
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2. Modelling preliminaries with 
This section contains a brief summary on the following topics: 

(1) linear models for DPS; (2) equivalent model description; (3) v = (v~ . . . . .  v, le l" ,  voeI  = I0. 1, 21 : Vq = 1.2 . . . . .  17 
N-modal approximation; and (4) model dependence on the 
spatial location of controllers and sensors. The motivation for .L 
this will become clear in Section 3 when the several OSL and N = )., vq, such that 0 < Ivl _< 2, :~E('zll~t 
OCL methods will be reviewed. As it will be emphasized in q= 
Section 4, the major factor for classifying OSL and OCL methods (~l,I 
will rely on when optimization techniques are applied, either D"=  : H21~)--, L2(f~t 
before or after considering any model approximation; and the so- ~x~~... ~x~" 
called N-modal is the most used approximation technique in the 
OSL and OCL literature. Illustrative examples of optimal H2(f~) = {w~L2(f~): D~weLz{f]); I;'1 = 1,2{ 
location problems close the section. 

D(A) = {weH2(~): L w =  0 on ~ {  
Notation. The notation used in the paper is formally 

summarized as follows: where Ldenotes a linear operator defined on df~ (standing for the 
~" n-dimensional Euclidean space boundary conditions). Moreover, assume that there exists an 
?f2 boundary of f~ ~ ~". infinite divergent real sequence {2i;i = 1, 2,...} of eigenvalues of 
( ; ) ,  inner product in a Hilbert space H. A, which is bounded above and non-increasingly ordered. That is 
II [in norm in a Hilbert space H 
D(L) domain of a transformation L AOi =/ . i~i  
L* adjoint of a transformation L 
t r [P]  trace of a matrix P 2i+~ _< 2~ < ~ < -~ 
diag(/q . . . . .  #0 diagonal matrix 
~.' time derivative of w (~, = ?w/~t). ],~il ~ z: as i ~ z, 
E The expectation operator, as usual 
M [ ~ k , ~ ]  linear space of all real matrices 1 by k where {~ ieD(A) ; i  = 1,2,...} is an orthonormal basis for L2(~) 

[M [~k] = M[l~k ~k]) of eigenvectors of A. Then the solution in (2) has an unique 
BltEX, YI  normed linear space of all bounded linear Fourier series expansion 

transformations of X into Y, X and Y being 
normed linear spaces (BI t[X]  = Bl t[X,  X I). y(t) = ~ ai(t)4)i 15) 

The linear spaces 12, L2(0, T), L2({~ ), L210, T; H), C(0, T), C(f2), i~ 1 
C2(f2), and C(0,T;H) will have their standard meanings (e.g. see with coefficients a~e C(0, 7) 
Curtain and Pritchard, 1977 and Leigh, 1980). 

ai{t) = (y(t);~bi)£~nl. 
A linear modeljor DPS in L2(f~). Technical details are omitted 

throughout this section and the reader is here, once and for all, Hence, for y ( t ) eD(A)  
referred to the available literature. As far as Hilbert space 
methods are concerned see, for instance, Kato, 1980; Akhiezer ,4v(t = 2iai(t)qS; (6) 
and Glazman, 1981; Naylor and Sell, 1982 or Weidmann, 1980, - ;~ ~ 
among others. Classical references for the semigroup theory are 
Hille and Phillips, 1957; Dunford alad Schwartz, 1958 and and the semigroup {T~eBlt[L2(F~)];t >_ 0} generated by ,4 is 
Yosida, 1980. For an introduction to semigroups towards control given by 
theory see, for example, Balakrishnan, 1980 and Curtain and 
Pritchard, 1978. T~y(r) = ~ e~:a~(r)~bl. 

Let U (the input or control space), H ~the state space), and Z ~ 
(the observation or output space) be separable Hilbert spaces, 
and consider a linear dynamical system modelled by an Now set U = RP, and assume that the input transformation 
autonomous inhomogeneous abstract differential equation as B • Bit [[~v, Lz(f~)] is such that 

.f'= A3 + Bu: v0 = v o e H .  111 Bu( t )=  ~ fljuj(t) 
j= l  

where ueL2(0,T;U), Be  BltIU, H 1, and the (closed linear but 
possibly unbounded) operator A:D(A)-~ H is the infinitesimal with /3jeL2(f2) and ui~Lz(0,T) for each j = 1,2 . . . . .  p. By the 
generator of a strongly continuous semigroup Fourier series expansion of [~ one gets 
{ T, ~ Bit [H ]; t _> 01 , whose domain D(A) is dense in H. The mild 
solution of (1) is given by Bu(t} = 

( u(t ); t , , ) , :~;  ~7) 
i=l 

v{t = T, y0 + 71 ~Bu(rldr (2) where 

with yeC(0,T;H).  Furthermore, let v, zeLz(0,T;Z) and u = ( u ~  . . . . .  up)eLz{0,T;R v) 
Ce  BIt[H,Z], and suppose the state y is observed according to 
the following measurement equation bl = (( i l l  ; 4 i ) L 2 ( ~ )  . . . . .  (flp;(])i)Lz(l))" 

z =  C y +  ~. (3) Finally set Z =  ~ ' ,  and let the output transformation 
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An equivalent model in 12. Equations (5)-(8) supply an with as  = (a I . . . . .  aN)eC(0,T;~N), and 
equivalent representation in 12 for the system model (1)-(4) in 
L2(f~), as follows: T~' = e AN' = diag (e ~'', . . . .  e a~') • M [i~ N ]; t > 0. 

. . . . .  zm)~ L2(0,T,R m) is by d Aa + Bu; a(0)~:l 2 (9) The observation zN = (z N, N " given the 
following approximate version of (10) 

where B e Bit [[~P, 12 ] is such that 
zN = CNaN + t' (12) 

Bu(t) = (( Bu(t); qal)L21nl, ( Bu(t); q~Z)L2{n),. . .) 
with 

= ((u(t);bl)a,, < u(t);bz)ap,...) CN = [c~'... c~ ]* ~ M [R N, R" l 

eft = ((~/k;~I)L2(D) . . . . .  ('}tk;~bN)l.2iD)) 
and A : D ( A ) ~  12 is a closed densely defined linear operator, 

for each k = 1 . . . . .  m. 
Aa(t) = ( (  Ay( t ) ;  ~l)L2(il), ( Ay( t ) ;  (O2)L2tU),. . .) 

Model dependence on the spatial location of controllers and 
= ()qal(t), zEa2(t), .- -) sensors. Suppose the input transformation B in (7) depends on a 

vector x ~ = (x] . . . . .  x~,) ~ E"P as follows. Let the input (or control) 

D(A) = {co = (021,602,. . .)el2: ~ [~i¢j)i]2 < :30} coefficients depend on x ~ in the following way: 
i - I  

generating a strongly continuous semigroup {T, • Bh [12 ]; t > 0} 
where x ~ describes the controllers spatial location, such that 

Tea(z) = ((Tty(z);q~l)Lz(U), (Tty(I ' ) ;~2)L2tD), . . . )  B = B(x~)eBIt[R v, L2(~'~)] is given by 

= (ea"al(z)' ea2'a2(z)"" ")" [Bu(t)](x) = ~" &tx~u~(t). 
j = l  

The mild solution of (9) is then given by For instance, let 

£ a(t) = T,a(O) + T,_~Bu(z)dz 0 < e < inf inf IIx~ - xl[~,, 
l<_j<_p x s O ~  

witha  = (a~,a2,...)eC(O,T;IE).BytheFourierexpansionofykin such that the closed ball a,[x~] of radius e centered at x~ is 
(8) one gets the following equivalent representation in 12 for the contained in l) for each j = 1 . . . . .  p, and let/l~ > 0 be the usual 
measurement  equation (3) in L2(fl) measure of a~[x~]. Now set 

z = Ca + v (10) fl~(x) = [0;  otherwise. 

where CeBltCl2, R ~] is given by 
Hence 

Ca(t) ((a(t);cl)l . . . . . .  (a(t);c,.)l~) ( f l j ; ~ i > L 2 ( n )  = /~gl ~ thi(x)dx. 

with 
Therefore the approximate (N-modal) representation for the 

Ck = ((~/k;(~l)L2[O}, (7k ;  (~2>L2(U),-" ") input transformation in (11) is given by 

for each k = 1,2 . . . . .  m. BN = Bs(x ~) = 

An approximate model in N N. The so-called N-modal ax9 a.,,~,l 
approximation consists in truncating the Fourier series ,u~ -~ : : ~M[RP, I~N]. 
expansions involved in their first N terms, yielding a Galerkin- 
like approximation for the state y in (5), ~bN(x)dx f ~bN(x)dx 

yN(t) = ~ ai(t)cki 

~= ~ In a similar fashion, suppose the output  transformation C in (8) 

ys  • C(0, T;  Hs),  where Hu is the N-dimensional linear subspace depends on a vector x * = ( ~  . . . . .  x~,) • R '"  as follows. Let the 
of Lz(f~) spanned by {~b~;i = 1 ,2 , . . . ,N}.  This supplies an output  coefficients depend on x ~ in the following way: 

approximate representation in ~ s  for the equivalent system 
model (9) in 12, given by ~/k = ~/x~; X~ ~ ' )  C ~n 

f i u = A u a u + B u u ;  au(0)e[2 u (11) where x * describes the sensors spatial location, such that 
C = C(x*)eBlt[L2(f~), R"] is given by 

where Cy(t) = ((y(t);q'~])L2(f~ ~ . . . . .  (y(t);yx~,)Lz{ta)). 
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CN = C~,•(x ~) = assumed for each criterion• According to the separation principle 
I f ~  - [e.g. see Davis, 1977) the solution u~ = uN(x x, x ~) is given by 

,,ix.~]&i(x)d\ ... f ,  ON(x)dx 
dx~] u~.ltl = - B * ( x  ~ Q~. t)d~. t 

#,7 t i : • M [ ~ ,  ~"] .  
where the symmetric feedback control matrix Q~ t) in M [R ~ ] is 

0 ,{x)dv ( 0N(X)dx the unique solution of the backward Riccati equation / 
L J',+';,, ] J" ,.Ix:,,l 

0N(t} = Qu(tIBN(x~)B*4x~)QN(t) 

Before going further it is worth remarking on pointwise - Q s ( t ) A x - A * Q u ( t )  Ix; Qu(t) 1~ 
controllers and sensors. Consider a formal approach by letting e 

0. In such a case the input (or control) and output coefficients and ds(t)  denotes the Kalman Bucy filtered estimate of the state 
fi~5 and 7x~ can be thought of as Dirac measures, that is as(t)  

f i@x) = 61x - x~) dd,,,.(t) = [A~ - PN(tIC*(x'~)R~I 1C,dx~) 

?x~(X) = iJ(x - x~) - BN(X")B*(x'IQN(tI ]fiN(t)dt 

thus supplying approximate representations for the input and + Ry(t)C~lx~)R,7 ~dZN(t); fiN(0) = 0 
output transformations of the following form. 

where the error covariance P~.(t) = E{ jaN(t) -- aN{t)] ~au(t) 
[0,(X~) ... 4'I(X~,)] -d ,d t ) ]*}  in MIEN] is the unique solution of the Riccati 

BN(x ~) = i i equation 

Lq~N(X~) ... ~bN(X~} ~ PN(t} = A,,P,~.(t)+ P~s(tIA* + B*(x~)RwB~,.(x ') 

[F~)I!(X]) ' ' "  (~N(X'])-]/ - P.~,.(t)C*-(x~)R, 1CN(x~)P,,,4t); P,,,(0) = PI,. 

CN(X ~) ! " The optimal cost is then given by 

LOl(X~,) @,,,(x~)J 
i 

However the above formal approach leads to unbounded J[UN(X~,X~)] = tr[P~.It)] + J tr IPN(t)] dt 
• O 

transformations, and L2{~'~ ) is no longer an appropriate state , 
space. + | tr [QNlt)PN(t)C*(x~)R~: tCN(x~JPN(t)] dr. 

} 
Illustrative examples q l  O C L  and OSL problems. The idea 

behind the following examples is only to illustrate, in a formal An example of an OCL and OSL problem (for a fixed number of 
and most simplified way, two optimal location problems, sensors and controllers) is to select (x~,x~)•fF x f 2 " c  N"P 
Questions of well-posedness are not addressed here, but x ~"" which minimizes the cost J[uN(x'~,x~)] of the above 
discussed in the next section. The first example concerns OCL described optimal (closed-loop) control strategy. 
and OSL for optimal stochastic control, and the second one Example 2. Let 
regards OSL for system identification. 

Example 1. For simplicity consider a stochastic version of the w Bu = Blx'lu ~ W c  L~(0, T; L2(~)  
approximate model in (11), 112). 

denote the (transformed) input for the model in ( 1 ) (8), where W 
daN(t) = Auau( t )d t  + BN(X"j[u(t)dt + dw(t)] stands for an admissible class of inputs (or controls), which 

includes the possible controllers spatial configurations xq 
dz~(t) = Cs(x~)aN(t)dt + dr(t) According to the N-modal approximation scheme set 

where x ' •  YF c R "p and x ~  ~"  c ~.m are parameters charac- w~ - B~.u - B,¢(x'  }H e ~/,,. C L210, T : ~ I  
terizing the spatial location of controllers and sensors, 
respectively. Here {w(t); t _> 0] and {v(t); t > 0} are independent with Wu standing for the associated class of admissible truncated 
Wiener processes in B2P and ~", with incremental covariance (transformed) inputs wN. For simplicity consider again the 
matrices Rw•M[[R p] and R,•M[[R"] ,  standing for input approximate model in (11), (12) with the following further 
disturbance and observation noise, respectively. { u(t);0 _< t _< T] simplifications: aN(0) = 0 and r = 0. Then the model observation 
is an NP-valued second order stochastic control, that is zN = zN(2, x '~, w ) •  L210, T; ~") is given by 

{;7 } F 2 , z~(t) = C,~.(x s) e A:~O~' ~l'a',,.(r)dr (13) 

which depends only on the past observations (~zu(r);0 _< z _< t}; where E = ( )q , . . . , i t s ) •  Ns is a parameter to be identified in 
and aN(0) is a zero mean Gaussian random variable in R" with AN = As(2) = diag(2~ . . . . .  2~) • M iNN ], and x"• E ~- fl" c ~"m 
covariance matrix P 0 • M  [A N], which is independent ofw(t) and characterizes the sensors spatial location. Here Z stands 
v(t). A simplified version for the Linear-Quadratic-Gaussian for the admissible location strategies (e.g. Y may be a finite set 
(LQG)problem is to find a stochastic control u, as above, which properly defined to avoid sensor clustering). Now let 
minimizes the cost Zs = Zs(X ~, w ) •  L2(O, T; ~C m) be the observed output at x~• Z of a 
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Assume this is the case such that, for each x ~ E Z, the minimum an extra measurement point towards a possible improvement in 
cost J [2°(x ~) ] does not depend on w e W. An example of an OSL the parameter estimate, and presented a criterion for selecting the 
problem (for a fixed number of sensors) is to find x ~ e Z which location of it. 
minimizes the identification performance J[).°(x~)]. Rafajlowicz (1981)also presented a method for designing 

optimal experiments for the DPS identification problem, which 
3. A general review comprises sensors location and determination of classes of 

The purpose of this section is to present a brief review of recent random inputs. The SLI problem, for second order linear 
OSL and/or OCL methods considered in the current literature, hyperbolic PDE observed through noisy measurements, was 
The bibliography mentioned here comprises over 50 widely replaced by one of seeking an optimal probability measure 
available papers published in the last decade. The several corresponding to the position ofsensors. The approach is similar 
contributions in the field are primary grouped according to the to that considered in Qureshi, Ng and Goodwin (1980), where the 
main goal for which OSL and OCL problems are developed determinant of the information matrix is maximized. However 
(instead of using a chronological order), namely: System the information matrix was associated to the system eigenvalues 
Identification, State Estimation and Optimal Control. Since the rather than to the system parameters. Conditions for optimality 
main goal behind an OSL problem may be any of the above of the experiment design, including an upper bound for the 
mentioned, the following further abbreviations concerning the number of sensors, were derived (see also Rafajlowicz, 1983). 

methods dealing with OSL will be adopted: SLE (Optimal Sensors Location for State Estimation). Unlike 
SLI: OSL for System Identification. the SLI, the SLE literature is plentiful (cf. Tzafestas, 1978) and 
SLE: OSL for State Estimation. several methods share some common aspects. For instance, every 
SCL: OSL and OCL for Optimal Control. method discussed here considers white Gaussian observation 

noise when dealing with the (stochastic) filtering problem. 

SLI (Optimal Sensors LocationJbr System Identification). The Cannon and Klein (1971) and Caravani, Di Pillo and Grippo 
problem has received some attention in the DPS identification (1975)consider a dynamical equation without input disturbance, 
literature over the past decade. Some questions regarding the while the others always assume Gaussian input disturbances. 
effects of either number or spatial location of sensors on the Aidarous, Gevers and Install6 (1975, 1978) are the only to 
implementation of parameters estimation techniques have consider a discrete-time observation process. The main 
eventually been considered (e.g. see Seinfeld and Chen, 1 9 7 1 ;  characteristicofthemajorityoftheSLEmethodsana|ysed hereis 
Polis, Goodson and Wozny, 1973; Kubrusly, 1980;Carotenuto the reduction of an infinite dimensional system to a finite 
and Raiconi, 1980 and Kitamura and Taniguchi, 1981) .  dimensional one, by truncating the (infinite) Fourier expansion 
Moreover, since identifiability of DPS depends on the number of either the state or the estimates in its first N terms (N-modal 
and position of measurement devices, the SLI problem can also approximation), according to the increasing order of the partial 
be approached according to identifiability requirements (e.g. see differential operator eigenvalues. In this way the filtering 
Kitamura and Nakagiri, 1977; Nakagiri, 1983; Chavent, 1979a,  procedure is applied either in a finite dimensional state space or 
1979b, 1983; Courdesses and Amoroux, 1982; Courdesses, in an infinite dimensional one, respectively. Concerning the latter 
Amouroux and Polis, 1981a, 1981b and Polis, 1982). For a case, when the state estimate error covariance appears explicitly 
previous discussion on this topic, mainly based on observability in the performance index, such an approximation is applied on 
arguments, see also Goodson and Polis, 1978. However only the covariance operator rather than on the estimate itself. In the 
recently a few papers have appeared specifically on the SLI light of the above introductory discussion, the SLE bibliography 
problem, where optimal location strategies have been proposed, reviewed here can be gathered in three major groups. 

Le Pourchiet and Le Letty (1976) presented two algorithms, Group I. Yu and Seinfeld, 1973; Caravani, Di Pillo and Grippo, 
somewhat similar to each other, as an SLI procedure for 1975; Omatu, Koide and Soeda, 1978 and Sawaragi, Soeda and 
deterministic DPS. The basic idea was to maximize, at each Omatu, 1978 treated the SLE problem in a somewhat similar 
iteration, the identification error sensitivity (according to fashion. The idea behind the approach used was to represent the 
preestablished identifiability definitions) with respect to the state variable y(t) as an infinite series of eigenfunctions of the 
location of a new sensor. The first algorithm concerns the partial differential operator modelling the DPS. This yields an 
improvement in the sensitivity criterion by adding a new sensor equivalent model described by an ODE in the sequence a(t), 
to the set of all sensors already located in previous iterations; comprising the coefl%ients of that expansion. Such an infinite 
and the second one also takes into account the location of the sequence is approximated by an N-dimensional vector aN(t), 
new sensor at the preceding iteration. Both algorithms stop obtained by truncating it in its first N terms. This supplies the 
when the placement of a new sensor adds no substantial state N-modal approximation yN(t) (cf. Section 2). The state 
improvement as far as the identification error sensitivity is estimation problem is then approached by determining the finite 
concerned. It is worth emphasizing that in the above described dimensional estimate 6N(t) for the N-modal approximation 
approach it was not assumed an a priori fixed number of available estimate 37N(t). The SLE x ~ is finally determined through YN(t) by 
sensors, optimizing some appropriate criterion (cf. Fig. 1). 

Sokollik (1976b) considered both the number and location of In Caravani, Di Pillo and Grippo ( 1975) the location of a single 
sensors, as well as the measurement times, for identifying DPS. sensor for estimating the initial state in the one-dimensional heat 
The distributed model was approximated by a lumped one by equation was investigated. Homogeneous boundary conditions 
using finite-differences. In this way both time and space domains in the state were assumed, such that the DPS was excited only by 
were discretized with constant sampling rates. The optimal the unknown initial conditions. The noisy sensor placement was 
space-time net (i.e. the optimization of time and spatial location performed by minimizing the maximum mean square error for 
for the measurements) was given by minimizing the parameter the initial state. 
estimate covariance, which was performed by the stochastic The SLE was accomplished in Yu and Seinfeld (1973); Omatu, 
approximation schemes analysed in Sokollik (1974, 1976a). Koide and Soeda (1978)and Sawaragi, Soeda and Omatu (1978), 

Qureshi, Ng and Goodwin (1980) presented a method for by minimizing the trace ofthe estimate error covariance matrix at 
designing optimal experiments for DPS identification with noisy the final time. The effect of measurement location on 
observations. Besides the SLI, it was also considered the observability, as an extension of Yu and Seinfeld (1971) to a wide 
determination of boundary perturbations for identifying not class of linear DPS, was considered in Yu and Seinfeld (1975). A 



122 C.S. KUBRUSLY and H. MALEBRANCHE 

x $ 

' 
I 

0 TRUNCATION ~- 0 

FILTER ) I 

GROUP '[I I 

I i 
I I 
I ' - - - -  - F ILTERING . . . . . . . .  --.I FILTERING . . . . .  
I I 

' ' I I GROUP I 
I 

MODEL I 
I 

0 TRUNCATION ~ 0 
I 

( y ~ - - ~ a  ] I 
I ( YN 'F'~'~" N ) 
I 

INFINITE DIMENSIONAL SPACE '~---J---'*~' FINITE DIMENSIONAL S P A C E  

FIG. 1. N-Modal approximations for SLE. 

Group II. The methods discussed above (Group I) used (either treated as one of optimal control, where the control variable 
implicitly or explicitly) an N-modal approximation for the state characterizes the sensors location. Opposite to this approach, a 
y(t) and so they applied finite dimensional filtering algorithms to mild evolution operators approach was used for considering 
aN(t ). On the other hand, Bensoussan (1972); Aidarous, Gevers existence theorems for SLE, as well as necessary conditions for 
and Install6 (1975, 1978); Amouroux, Babary and Malandrakis optimality. 
(1978); Kumar and Seinfeld (1978a);Curtain and Ichikawa (1978) InNakamorietaLl1980),asinBensoussan(1972)andCurtain 
and Nakamori eta/. (1980) used a different approach. The idea and Ichikawa (1978), the SLE problem was approached as one of 
behind this was to apply infinite dimensional filtering to the state deterministic optimal control, whose basic cost function was 
y(t),and then to represent the state estimate)~(t)as an infinite series given by the trace of the estimate error covariance operator and 
with the coefficients sequence d(t); which is truncated in its first N by a further term standing for the control cost. Semigroup theory 
terms yielding the vector d~,(t) of the estimate N-modal was used as in Curtain and lchikawa (1978). An existence 
approximation (~,(t). theorem and sufficient conditions for optimality were established 

In such methods this approximation procedure was actually by using a sensitivity criterion given by the trace of the 
applied only on the covariance operator, rather than in the state information operator; which can be thought of as an extension of 
estimate itself. The great majority of the above mentioned papers the Fisher information matrix to infinite dimensional spaces. The 
faced the SLE problem by minimizing a cost function given in computational effort in connection with the above criterion was 
terms of the trace of the N-modal approximation for the estimate claimed to be smaller compared with that required for the trace of 
error covariance operator; thus supplying the SLE x'  (cf. Fig. 1 ). the filter covariance. For implementation an N-modal approxi- 

A theoretical treatment for the SLE problems was proposed in mation was suggested for that information operator. 
Bensoussan (1972) by using functional analysis techniques based Group III. Cannon and Klein ( 1970, 1971 ); Klein ( 1971 l; Ewing 
on the Lions (1968) approach to control theory for DPS. The and Higgins (1971); Chen and Seinfeld (19751" Kumar and 
existence of solutions for the SLE problem, as well as necessary Seinfeld (1978b) and Morari and O'Dowd (1980), also 
conditions for optimality, were established. This was achieved by investigated the SLE by considering the estimation problem in an 
formulating the SLE problem as one of optimal control on the infinite dimensional space. However in each one of the above 
Riecati equation describing the evolution of the estimate error papers a somewhat specific characteristic was presented, which 
covariance operator, suggests a separate review rather than an inclusion in the previous 

In Aidarous, Gevers and Install6 (1975) the location of a single groups. 
sensor was initially considered, and the procedure was then The heat equation in one-dimensional spatial domain and 
extended to cover the case of several sensors. They assumed without a forcing term was considered in Cannon and Klein 
discrete-time observations. The SLE problem was approached by (1970, 1971). Although the DPS was supposed to operate in a 
minimizing the spatial integral of the N-modal approximation deterministic environment, uncertainties were allowed in the 
for the estimate error covariance. In Aidarous, Gevers and initial and boundary conditions, as well as in the observation 
I nstall6 (1978) the existence of solutions for the SLE problem was process. The location of a single transducer, which was assumed 
proved, and also the location algorithm convergence, for the to average the measurements over a small neighborhood in the 
method presented in the earlier reference (1975). spatial domain, was investigated. The theory behind the method 

In Amouroux, Babary and Malandrakis (1978) a weighting applies analytical arguments for establishing an (upper bound) 
function for the terms in the trace of the error covariance N- estimate for the state, which was used to supply estimates for the 
modal approximation was used. This was done in order to error between the state itself and numerical approximations of it. 
increase the accuracy for the first coefficients ofthe state N-modal The SLE was then accomplished by minimizing these error 
approximation, estimates. The same approach was also considered in Klein 

In Kumar and Seinfeld (1978a) the computational problem (1971). 
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discete spatial domain. Although it was not considered a finite state N-modal approximation, it was then assumed that the 
dimensional approximation for the state space, the algorithm system is static (rather than dynamical), thus referring the OCL 
developed for sensor location requires at each iteration the problem to an ODE model approximated by an algebraic 
resolution of two matrix PDE (the covariance evolution and its equation. A geometrical approach was considered, by using 
adjoint), whose solution method was not discussed in this orthogonal projection arguments, for minimizing the distance 
reference. This method has been applied in Kumar and Seinfeld between the desired 'state' (for the static system) and the 
(1978b) for state estimation in tubular chemical reactors, where reachability linear subspace. 
they have used orthogonal collocation techniques for reducing Theoretical aspects regarding the OCL for pointwise controls 
the infinite dimensional system to a finite dimensional one. was investigated to some extent in chapter 4 of Lions (1972) for 

The SLE problem was investigated by Morari and O'Dowd deterministic DPS. A rigorous abstract approach for establishing 
(1980)whoassumedthattheDPSisdrivenbynonstationaryinput the existence of optimal position for Dirac measures was 
disturbances. Their approach was based on the Goodson Klein considered. 
observability criterion (cf. Goodson and Klein, 1970), whose 
conditions may not be satisfied for a limited number of sensors. In SCL (Optimal Sensors and Controllers Location). The SCL 
this way an SLE method was proposed to minimize the problem refers to the optimal location of both sensors and 
information loss associated to the nonobservable subspace. This controllers, generally for closed-loop optimal control problems 
optimality criterion is given by the spatial integral of the trace of in DPS. In case of feedback control, such a combined procedure 
the estimate error covariance operator. Such an error is caused involving OSL and OCL problems may eventually concern state 
mainly by the lack of observability due to the presence of estimation as well (and hence SLE as a special case of OSL), 
nonstationary input disturbances. Although the theory was not Such a problem has been investigated by Amouroux, Di Pillo 
developed in a finite dimensional space, they used state and Grippo (1976); El Jai (1977); Ichikawa and Ryan (1977, 
approximations for example implementation, including experi- 1979); Courdesses (1978); Malandrakis (1979) and Omatu and 
mental results. Seinfeld (1983). Instead of the author by author review procedure 

used so far, it seems more appropriate to review the above SCL 
OCL (Optimal Controllers Location). The OCL problem has literature according to the main characteristics used to face the 

been investigated mainly by the French school. Lions (1972); problem. This is motivated by the several common points shared 
Amouroux (1973); Amouroux and Babary (1973, 1975, 1978, by the subsets of the above mentioned set of papers. 
1979);Aidarous (1975);Aidarous, Gevers and Install6 (1976)and Concerning the environment in which the DPS was supposed 
Burger (1975, 1976) considered the optimal location of control to evolve, Ichikawa and Ryan (1977, 1979); Malandrakis (1979) 
points (actuators) for DPS. Generally these methods presented and Omatu and Seinfeld (1983) considered (Gaussian) 
several common characteristics, applied to somewhat similar disturbances corrupting the control action, and all the papers up 
mathematical models. For instance, those which considered to Courdesses (1978) assumed observation (Gaussian) noise 
feedback control assumed that the observation points (i.e. the corrupting the measurements. A completely deterministic 
sensors location) were a priori determined, as opposed to the SCL formulation was considered in Courdesses ( 1978 ). In every of the 
methods discussed later in this section, above mentioned papers continuous time operation was assumed, 

Like the SLE methods in Group I, the idea behind the OCL and E1 Jai (1977) was the only one to consider open-loop control 
approach used in Aidarous (1975); Aidarous, Gevers and Install~ and a variable number of sensors and controllers. Pointwise 
(1976);Amouroux(1973)andAmourouxandBabary(1973,1975, controls were assumed in Courdesses (1978) and Malandrakis 
1978, 1979) lies in truncating the coefficients sequence a(t) of the (1979). 
eigenfunction series expansion for the state y(t). After that, the For the SCL methods applied to stochastic DPS in the above 
optimal control strategy is determined for the system N-modal references the optimal control strategy was given according to the 
approximation. In this way the optimal control problem, for the separation principle, after performing the state estimation. The 
state N-modal approximation yN(t), is approached in a finite stochastic regulator problem for evolution equations was 
dimensional state space in terms of the truncated vector aN(t ). The considered in Ichikawa and Ryan ( 1977, 1979) and Omatu and 
same approximation technique was also used in Burger (1975, Seinfeld (1983) by using the semigroup approach. In Amouroux, 
1976), where the OCL problem was faced from a rather different DiPillo and Grippo (1976)thefilteringprocedurewas appliedina 
point of view. finite dimensional space by considering a state N-modal 

The results presented in Amouroux (1973) and Amouroux and approximation. On the other hand, Ichikawa and Ryan (1977, 
Babary (1973) are related to the concepts of controllability and 1979) and Malandrakis (1979) applied infinite dimensional 
reachability, rather than to the optimal control problem. The filtering and used N-modal approximation for operators 
main goal was to maximize, over all possible control points, the associated to the LQG (Linear-Quadratic-Gaussian) optimal 
volume of a hyperellipsoid in the state space comprising the control problem (i.e. they used N-modal approximation for the 
reachable states for bounded pointwise controls. The OCL was feedback and estimate error covariance operators). In a similar 
formulated according to the necessary and sufficient conditions fashion, the deterministic approach considered in Courdesses 
for reachability of the truncated system. (1978) involved N-modal approximation in connection to the 

The optimality criterion in Amouroux and Babary (1978, linear-quadratic (deterministic)optimal control problem. In the 
1979) was given by the overall control energy and by the state open-loop approach presented in El Jai (1977)the pointwise OSL 
accuracy at the final time. They also reviewed other two OCL was implemented for estimating the initial state, and the OCL for 
procedures besides the state truncation one: an iterative method reaching a desired final state using minimum energy controls. 
using gradient-like algorithms, and a parametrization method The optimality criterion for the method presented in 
using N-modal approximation for the distributed control. The Amouroux, Di Pillo and Grippo (1976) was given by the 
pointwise controllers considered in the first reference was minimization of the state estimate error at the final time and the 
extended to the case of zones of action in the second, where both overall control energy. Several possible criteria and practical 
approaches were compared. In (1975) they considered several considerations for the SCL problem, including the sensors and 
performance criteria for the optimal pointwise control problem, controllers number optimization, were discussed in E1 Jai (1977). 
For instance, the minimization of the truncated optimal control In the other papers the cost functional to be minimized 
and the final state error norms, were discussed among others, comprised three terms: final state accuracy, state accuracy along 

Differently from Amouroux and Babary, the approach in the whole trajectory, and the overall control energy. The 
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those described above, since the control was supposed to act only • Boundary conditions (BC}. They can be either homogeneous 
on af ixedboundarypoint .  Therefore this characterized an OSL (H), or inhomogeneous; whose external action in the 
problem for closed-loop control, rather than an SCL problem, boundary can be described either by a stochastic IS1 or by a 
The OSL problem towards feedback control was also discussed deterministic (D) process. 
by Goodson and Klein (1970); Yu and Seinfeld (1971) and 
Sakawa (19751 as an observability matter. Some theoretical • Initial conditions (IC). Both known and unknown IC are 
aspects regardingtheexis tenceofsolut ionsforapar t icularOSL denoted by (D) or IS), whenever they are given by 
problem in feedback control for deterministic DPS were deterministic or stochastic processes, respectively. When an 
presented by Lions (1972). As in Koivo and Kruh (1969), the unknown IC is to be estimated, it is denoted by (E). Null IC are 
OSLproblemforclosed-loopcontroloftemperaturedistr ibution represented by (0t. 
was also considered by Kaizer (1971). Further applications • Number of located points at simulated examples i # i .  For 
involving the SCL problem for DPS were investigated by Lee, SCL methods, the first number displayed concerns tile OCL 
Koppel and Lira (1973) as well. problem while the second one concerns the OSL problem. 

4. A classification ofmethods • Approach (Appr). This points out whether the filtering 
Approximation methods are closely related to DPS analysis, procedure (when applied) is developed either in a finite (FL~.~) 

As it has been commented on before (e.g. see Athans, 1970; or in an infinite dimensional space: the latter case presenting 
Kubrusly, 1977; Polis and Goodson, 1976; Robinson, 1971 ), two possibilities, (Fxj,l or (F~), according to filtering in 1,2(~} 
sooner or later one will be faced with approximation techniques or in 12, respectively. The symbol (C) stands for control lot 
(either for modelling or numerical and physical implementation) controllability) problems. 

when dealing with any problem in DPS. For OCL and OSL • Problem. The optimal location problem under consideration 
problems it can be noticed from the previous section that N- is characterized by the already given notation SLE, OCL, and 
modal approximation (also called truncation of eigenfunctions SCL. 
or Fourier, or harmonic expansion, as an approximation 
scheme resulting from the separation of variables technique) is 
certainly the most used for sensors and controllers location in Methods classification. The diagram in Fig. 2 presents a 
DPS. classification of methods in the light of N-modal approximation 

The purpose of this section is twofold. First of all some relevant schemes, The main classifying factor concerns the different stages 
characteristics of those methods for OCL and OSL in of the optimization procedure in which such approximations [or 
(dynamical) DPS which use, in one way or another, N-modal truncations) are required. In addition to the notation already 
approximation schemes are summarized. Such methods are then posed in this paper, the following has also been adopted in the 
classified according to the stage of the optimization procedure in diagram of Fig. 2. 
which N-modal approximations are used. 

L2~,12: Standing for the equivalent (infinite dimensional) 
Methods characteristics. Table 1 displays some models and system representation, either in L2(~2 ) or 12, according 

methods characteristics for that part of the literature reviewed in to the eigenvector series expansion. 
the preceding section which uses N-modal approximation. The /2 ~ [~x: Standing for the N-modal approximation; that is, the 
following notation has been adopted in Table 1, where the first truncation ofeigenvector series expansion in its first N 
four items concern the external action in the DPS. terms. 

• Input. The input (or forcing term)in the dynamic equation can Numbers between brackets concern the references mentioned in 
be described either by a stochastic disturbance (w)and/or  Table 1, and they point out the path which classifies the 
stochastic control (u), or by a deterministic control (ud). Null underlying method as follows: 

input is denoted by (0). Path H~:SCL methods using infinite dimensional filtering. 
• Observation noise. The presence or absence of noise Path FI2:SLE methods using infinite dimensional filtering. 

corrupting the measurements is denoted by either tvt or (0), Path FI3:SCL methods using finite dimensional filtering. 
respectively. Path [][4: SLE methods using finite dimensional filtering. 

TABLF 1. SUMMARY OF MODEL AND METHOD CHARACTERISTICS 

Obs. 
Reference Input noise BC 1C # Appr. Problem 

[1] Yu and Seinfeld (1973) w v H D 2 F~N 
[2] Caravani, Di Pillo and Grippo (1975) 0 v H E I /~r~ SLE 
[3] Omatu, Koide and Soeda (1978) w v H S 2 F ~  Igroup I) 
[4] Sawaragi, Soeda and Omatu (1978) w v H S 2 F,~,,. 

[5] Bensoussan (19721 w v D,H S 0 Fc~ 
[6] Aidarous, Gevers and Install6 (1975) w v H S 2 Ft,, 
[7] Amouroux, Babary and Malandrakis (1978) w v H S 2 F , SLE 
[8] Curtain and Ichikawa (1978) w v S,H D 2 FL, Igroup I1) 
[9] Kumar and Seinfeld (1978) w v H S 2 F~ 

[10] Nakamori, Miyamoto, lkeda and Sawaragi (1980) w v D,H 0 1 Fr,~ 

[l l  ] Amouroux and Babary (1973) Ud 0 H D I C 
[12] Amouroux and Babary (19751 u d 0 H D l ¢' 
[13] Aidaraous, Gevers and Install~ (1976) u + w ~] H . . . . . .  S 1 C OCL 
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FIG. 2. A classification of OCL and OSL methods. 

Path [Is : SCL methods approached in a deterministic environ- nonlinear DPS should be attempted (for instance, by using the N- 
ment. modal approximation theory considered by Banks and Kunish, 

Path H6: OCL methods approached in a deterministic environ- 1982). 
ment. (7) As already remarked here, N-modal is the most used 

approximation technique in OCL and OSL. Unlike other areas 
in the DPS field (e.g. in DPS identification) finite-differences is 

5. Comments and concluding remarks not a very popular scheme, even among the methods which 
Several remarks and some conclusions can be drawn from what approximate the PDE to an ODE (or difference equation) thus 

has been discussed in the preceding sections. A brief selection of reducing the DPS (modelled in an infinite dimensional state 
basic topics which deserve to be emphasized will be presented in space) to an LPS (modelled in a finite dimensional state space). 
this final section. (8) On the other hand, as in the whole DPS field, the question 

(l) Although this seems to be the first attempt to survey the of when to use approximation techniques does not seem to have a 
several OCL and OSL methods for DPS, practical motivations final answer yet. According to Section 4, approximations have 
for considering the problem were not addressed here. However been applied either before or after optimization schemes. When 
such motivations can be found in the surveys by Kubrusly (1977); the filtering problem was involved, it has been performed either in 
Polis and Goodson ( 1976); Ray (1975) and Robinson (1971 ), and L2 (f2), 12 or ~N; but the control problem was generally developed 
books by Butkovskiy (1969); Ray and Lainiotis (1978); Ruberti in R N. In any case the OCL and OSL strategies were always 
(1978) and Wang (1964) mentioned in Section I, in connection developed after applying approximation techniques. 
with identification, filtering, and control problems in DPS. See (9) Only in a few papers (e.g. El Jai, 1977; Le Pourhiet and Le 
also the recent survey by Johnson (1983). Letty, 1976), the optimal placement of a variable number of 

(2) Little literature has been written about OCL and OSL, sensors and/or controllers has been considered. The problem of 
compared with what has been published in either identification, optimizing (i.e. minimizing) the number of sensors and/or 
filtering or control of DPS. controllers should receive more attention. 

(3) In particular, more research is needed regarding the OSL (10) More research is also needed towards OCL for boundary 
problem for system identification (i.e. the SLI problem), controls, and OSL for boundary measurements. 

(4) Among the literature discussed here, Gaussian distribution (11 ) The SCL problem, in connection with the design of finite 
has always been assumed, for both input disturbance and/or dimensional compensators for DPS (e.g. Curtain, 1983a, b, 1984), 
observation noise, when the DPS is supposed to operate in a also deserves more investigation. 
stochastic environment. It would be interesting to have OCLand (12) The problem of determining the best kind of sensors 
OSL strategies for arbitrary (and eventually unknown) and/or controllers should also receive some attention. Funda- 
probability distributions, mental questions in this area are: point or distributed devices ? In 

(5) Experimental results show that the location of sensors the latter case, ira finite number of sensors and/or controllers act 
and/or controllers may be sensitive to the stochastic environment over neighborhoods on the spatial domain, which would be the 
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(14) Perhaps it is already time to have a comparison of Theory oJSystems Governed by Partial D!fferential Equation.s. 
effectiveness of some different OCL and OSL methods. The Academic Press, New York. 
classification introduced in Section 4 can be viewed as a first step Balakrishnan, A. V. (1980). Applied Functional Analysis, 2nd edn. 
for a qualitative comparison. It can also be used as a starting Springer-Verlag, Berlin. 
point for further works towards a quantitative comparison, since Banks, H. T. and K. Kunisch (1982). An approximation theory 
some different approaches for solving the OCL and OSL for nonlinear partialdifferentialequations with applications to 
problem have been grouped according to their main structural identification and control. SIAM J. Control & Optimiz., 20, 
characteristic. 815. 

(15) Finally it is worth remarking on the N-modal Bencala, K. E. and J. H. Seinfeld (1979). Distributed parameter 
approximation scheme again. Some models can survive filtering: boundary noise and discrete observations. Int. J. Syst. 
truncation (i.e. the transformation 12---, ~N in Fig. 2). For Sci., 10, 493. 
instance, equivalent models for parabolic or diffusion equations Bensoussan, A. (1971). Filtrage Optimal des Svst~;mes Lint;aires. 
which have spatially elliptical operators. However other Dunod, Paris. 
equivalent models in 12 for DPS cannot survive truncation. For Bensoussan, A. (1972). Optimization of sensors location in a 
instance, the finite propagation of wave travel is essentially distributed parameter system. In R. F. Curtain (Ed.), Stability 
destroyedin an N-modal approximation for a hyperbolic or wave (?l Stochastic Dynamical Systems, Lecture Notes in Mathe- 
equation, Therefore, before proceeding to approximate models, it matics, vol. 294. Springer-Verlag, Berlin. 
is advisable to verify (i) whether any approximation is actually Bensoussan, A. ( 1978 ). Control of stochastic partial differential 
needed (one may decide to place sensors and controllers equations. In W. H. Ray and D. G. Lainiotis (Eds.),Distributed 
somewhere in the spatial domain, not necessarily in an optimal Parameter Systems. Marcel Dekker, New York. 
fashion, without approximating the DPS), and (ii) whether the Burger, J. (1975). Determination de l'emplacement optimal des 
truncation (or discretization procedure) does not destroy actioneurs ponctuels dans un syst6me regi par une equation 
essential properties of the DPS, which may be inherent to infinite aux deriv6e partielles lin6aire. C.R. Acad. Sci. Paris, 280, 161. 
dimensional models. Burger, J. (1976). Emplacement optimal des actionneurs 
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