Automatica, Vol. 21. No. 2, pp. 117- 128, 1985
Printed in Great Britain.

0005-1098/85 $3.00 + 0.00
Pergamon Press Ltd.
« 1985 International Federation of Automatic Control

Survey Paper

Sensors and Controllers Location in Distributed Systems— A
Survey*

C. S. KUBRUSLY+f and H. MALEBRANCHE*+

An important problem regarding theory and practice of identification, state estimation,
and control of distributed systems is the spatial location of sensors and controllers. A
review of recent literature and a classification of methods indicate some directions for

further research.
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Abstract—A survey of the field of optimal sensors and/or
controllers location for dynamical distributed parameter systems
modelled by partial differential equations is presented. The recent
contributions in this field are grouped according to the main goal
for which the location problem is developed, namely: system
identification, state estimation, and optimal control. In order to
pose the sensors and controllers location problem, the semigroup
approach for modelling distributed linear systems is briefly
reviewed together with its equivalent (infinite dimensional) and
approximate (finite dimensional) Fourier expansion repre-
sentations. After presenting a concise general review of the several
methods considered in the current literature, a classification of
methods is also proposed. The main classifying factor concerns
the use of N-modal approximation schemes, and the different
stages of the optimization procedure in which they are required.

1. Introduction

A FUNDAMENTAL problem towards identification, state esti-
mation, and control of distributed systems is the sensors and
controllers location (e.g. see Athans, 1970). This comprises the
arrangement, in an optimal fashion, of a limited number of
measurement transducers and control devices along the spatial
domain. In this paper the several methods proposed for solving
such a problem are reviewed and classified according to their
main characteristics. To begin with it is advisable to give some
abbreviations which will be of frequent usage throughout the
text:

ODE:
PDE:

Ordinary Differential Equation(s).
Partial Differential Equation(s).

LPS: Lumped Parameter System(s).
DPS: Distributed Parameter System(s).
OCL: Optimal Controllers Location.
OSL: Optimal Sensors Location.
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DPS, as discussed here, will stand for dynamical systems
governed by PDE (opposite to LPS which are described by
ODE), as a class of dynamical systems modelled in an infinite
dimensional state space (e.g. see Helton, 1976; Ray, 1978;
Curtain and Pritchard, 1978; Pritchard, 1979; Fuhrmann, 1981;
and Tzafestas and Stavroulakis, 1983). Therefore, it seems
reasonable to say that the starting point for analysing DPS is the
PDE literature. Presently the available literature in PDE is
certainly huge. To mention just a few books, ranging from
introductory to advanced texts, published over the past three
decades, see for example Courant and Friedrichs, 1948; Courant
and Hilbert, 1962; Garabedian, 1964; Weinberger, 1965;
Friedman, 1969; Mikhlin, 1970; John, 1981; Ames, 1972; Treves,
1975; Schechter, 1977; Showalter, 1977; and Gustafson, 1980.

Three of the main problems in system theory (and in particular
in DPS) are system identification, state estimation, and optimal
control (cf. Ray and Lainiotis, 1978 and Stavroulakis, 1983).
OCL and OSL will be regarded here as intermediate problems for
considering the above mentioned ‘final’ problems. Although little
literature has been written on DPS identification compared with
what has been done for state estimation and optimal control,
some survey papers have already appeared in this field. For
instance, see Polisand Goodson, 1976 ; Kubrusly, 1977; Goodson
and Polis, 1978; Ruberti, 1978; Burger and Chavent, 1979;
Chavent, 1979 and Polis, 1982. On the other hand the current
literature on state estimation is much richer. For some complete
books and surveys on the state estimation problem in DPS,
regarding both theory and applications, see for example
Bensoussan, 1971; Phillipson, 1971; Curtain and Pritchard,
1978; Sawaragi, Soeda and Omatu, 1978; Curtain, 1975; Ray,
1975; Tzafestas, 1978 and Bencala and Seinfeld, 1979. The
optimal control problem in DPS has also been reported in several
books and surveys. For instance, see Wang, 1964; Lions, 1968,
1972, 1978, 1980; Butkovskiy, 1969; Balakrishnan, 1980; Aziz,
Wingate and Balas, 1977; Curtain and Pritchard, 1978; Ahmed
and Teo, 1981; Tzafestas, 1982; Robinson, 1974; Curtain, 1978
and Bensoussan, 1978.

The present survey is organized as follows. In Section 2 the
semigroup approach for modelling DPS is briefly reviewed. After
describing a linear model for DPS in a separable Hilbert space,
and its equivalent (infinite dimensional) representation in terms
of Fourier expansion, the so-called N-modal (finite dimensional)
approximation is also presented. The OCL and OSL problems
are motivated by the model dependence on the spatial location of
controllers and sensors. Section 3 comprises a brief review of
recent OCL and OSL literature, emphasizing the ‘final’ problem
(i.e. system identification, state estimation, or optimal control)
for which the OCL and OSL problems were developed. A
classification of methods is proposed in Section 4, where the
methods reviewed in Section 3 are compared according to their
main structural characteristics. The paper ends with some
comments and concluding remarks in Section 5.
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2. Modelling preliminaries

This section contains a brief summary on the following topics:
(1) linear models for DPS; (2) equivalent model description; (3)
N-modal approximation; and (4) model dependence on the
spatial location of controllers and sensors. The motivation for
this will become clear in Section 3 when the several OSL and
OCL methods will be reviewed. As it will be emphasized in
Section 4, the major factor for classifying OSL and OCL methods
will rely on when optimization techniques are applied, either
before or after considering any model approximation; and the so-
called N-modal is the most used approximation technique in the
OSL and OCL literature. Illustrative examples of optimal
location problems close the section.

Notation. The notation used in the paper is formally
summarized as follows:

R" n-dimensional Euclidean space

Q boundary of Q < R".

{on inner product in a Hilbert space H.
I lIn norm in a Hilbert space H

D(L) domain of a transformation L

* adjoint of a transformation L
tr[P] trace of a matrix P

diag(y.. .., ux) diagonal matrix

W time derivative of w (w = ¢w/ét).

E The expectation operator, as usual
M [R* R linear space of all real matrices | by k

(M[R*] = M[R* R*])

normed linear space of all bounded linear
transformations of X into Y, X and Y being
normed linear spaces (B/r[X ] = BIt{X,X]).

The linear spaces /,, L,(0, T), L,(€2), L,(0, T;H), C({0, T), C(Q),
C?(Q), and C(0, T;H) will have their standard meanings (e.g. see
Curtain and Pritchard, 1977 and Leigh, 1980).

Bit[X.Y]

A linear model for DPS in L,(€). Technical details are omitted
throughout this section and the reader is here, once and for ail,
referred to the available literature. As far as Hilbert space
methods are concerned see, for instance, Kato, 1980; Akhiezer
and Glazman, 1981; Naylor and Sell, 1982 or Weidmann, 1980,
among others. Classical references for the semigroup theory are
Hille and Phillips, 1957; Dunford apd Schwartz, 1958 and
Yosida, 1980. For an introduction to semigroups towards control
theory see, for example, Balakrishnan, 1980 and Curtain and
Pritchard, 1978.

Let U (the input or control space), H (the state space), and Z
(the observation or output space) be separable Hilbert spaces,
and consider a linear dynamical system modelled by an
autonomous inhomogeneous abstract differential equation as

v = Ay + Bu. v(0)=y,eH. (1)

where ue L,{0,T;U), BeBIt[U,H], and the (closed linear but
possibly unbounded) operator 4:D(4) — H is the infinitesimal
generator of a  strongly  continuous  semigroup
{T,e Bit[H 1;1 > 0}, whose domain D(A) is dense in H. The mild
solution of (1) is given by

1

W0 =T + [ T Buto) de @)

0

with ye C(0,T;H). Furthermore, let v,zeL,(0,T;Z) and
CeBIt[H,Z], and suppose the state y is observed according to
the following measurement equation

z=Cy+ (3)

Now set H = L,(Q), Q being a simply connected open set in R,
and consider a linear time-invariant DPS governed by a
parabolic PDE as in (1). For example suppose a special case
where the system operator A is a second order elliptic self-adjoint
one of the form

A=Y oD )

with
v=(v,.... voel, voel =30.1,2}: vg=1.2..., n

W =3 v,suchthat 0 < v <2, a,eCQ)

4=t
ol

D'= ———: H*Q)-L,(Q)

axyioLooxgy
H*(Q) = {we L,(Q): D'wel,(Q): |y =12

D(4) = {weH*Q): Lw=0o0naQ]
where Ldenotes a linear operator defined on ¢Q (standing for the
boundary conditions). Moreover, assume that there exists an

infinite divergent real sequence {4;;i = 1,2,...} of eigenvalues of
A, which is bounded above and non-increasingly ordered. That is

Adi = L
Jivi S A<I< L
|4 = o as i —
where {¢;eD(A);i = 1,2,...} is an orthonormal basis for L,(€2)

of eigenvectors of A. Then the solution in (2) has an unique
Fourier series expansion

W =Y dne; (5)
it
with coefficients a'e C(0, T)
d'(1) = {0300 La-

Hence, for y(t)e D(A)

Ap(r) =Y, Ad{t); (6)
i=1

i=

and the semigroup {T;eBit[L,(Q)];t > 0} generated by A4 is
given by

Ty(t) = Y e*d(r);.
i=1

Now set U = R’ and assume that the input transformation
BeBIt[RP, L,(Q)] is such that

P
Bu(t) = Z Biui(t)
Jj=1

with ;€ L,(Q) and u;€ L,(0,T) for each j = 1,2,....p. By the
Fourier series expansion of §; one gets

Bu(t) = Z (u(t); b durd; (7
i=1

where
u = (uy,..., u,)e L,y(0,T;R?)

bi = (B ;00 L0 BpidDLy0)

Finally set Z=R" and let the output transformation
CeBIlt[L,(Q),R™] be given by

Cy(t) = (VBT O L@ -+ S Tm) L) (8)
where v, € Ly(Q) for each k = 1,2,..., m, such that
2dt) = (WL + tlt)

with z = (z(,...,Zn), 0= (0y...., Op)€ Lo (0, T R™).
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An equivalent model in l,. Equations (5)-(8) supply an
equivalent representation in I, for the system model (1)-(4) in
L,(Q), as follows:

a=Aa+ Bu; a(0)el, 9)
where Be BIt[R?,[,] is such that
Bu(t) = ({Bu(t);d 1 Dr, (Bult); @201, -}
= (ult):bome, <u(t):bz)we,...)
and A:D(A) — [, is a closed densely defined linear operator,

Aa(t) = (CAY(t); 1D Lam, (V) @ 2010000 - )

= (;‘lal(t)’)'laz(t)v"')
D(A) = {w = (w1, w3,...)ely: i [Aiwi]? < o0}

generating a strongly continuous semigroup {T,e Blt[I,};¢ = 0}

Tea(t) = KTY(); @0, Ty )20 L0, )

= (e**al(z), e*'a?(n),...).
The mild solution of (9) is then given by
{4
a(t) = T,a(0) + f T,_.Bu(z)dr
0

witha = (a!,4%,...)e C(0, T;l»). By the Fourier expansion ofy, in
(8) one gets the following equivalent representation in I, for the
measurement equation (3) in L,(Q)
z=Ca+v (10)

where CeBlt[l,, R™] is given by

Ca(t) = (Ka(t);e1D1y - - <alt);md1,)
with

& = (YD1 01200 Vs P2La0ps- )

foreach k =1,2,....,m.

An approximate model in RY. The so-called N-modal
approximation consists in truncating the Fourier series
expansions involved in their first N terms, yielding a Galerkin-
like approximation for the state y in (5),

N
() = 3 ()

yn € C(0, T;Hy), where Hy is the N-dimensional linear subspace
of L,(Q) spanned by {¢;;i=1,2,...,N}. This supplies an
approximate representation in RY for the equivalent system
model (9) in I,, given by

dn = Ayay + Byu;  an(0)eRY (11)

where
Ay = diag(iy,..., Ax)e M[R"]
By = [by,...,bxJ*e M[R?, RY]

whose solution is

4
an(t) = TVax(0) + f T .Byu(r)de
4]

with ay = (a',...,a%)e C(0, T;R"), and
TV = e* = diag(e*”,...,e**) eM[RY]; >0

The observation zy = (z},...,z5)€ L2(0, T;R™) is given by the
following approximate version of (10)

iy=Cyay + v (12)
with
Cy=[F.. .ch*eM[RY R™]
& = (P L@ Y PNdL@)

foreachk=1,....m

Model dependence on the spatial location of controllers and
sensors. Suppose the input transformation B in (7) depends on a
vector X° = (x,...,x5)e R" as follows. Let the input (or control)
coefficients depend on x° in the following way:

Bi=Bx; xjeQc R

where x° describes the controllers spatial location, such that
B = B(x®)eBlt[R?, L,(Q)] is given by

14
[Bu()](x) = 3 Bus(xhus(r).
j=1

For instance, let

0<e¢< inf inf {|x§ — xllan
Lgjsp xeif

such that the closed ball g,[x5] of radius ¢ centered at xj is
contained in Q for each j = 1,...,p, and let g4, > 0 be the usual
measure of o.[x$]. Now set

Brelx) = {“;1; ifxeo. L)

0; otherwise,

Hence

Birddrua = 1" J;; dilx)dx.

elx5]

Therefore the approximate (N-modal) representation for the
input transformation in (11) is given by

By = By(x) =
[ swar o [ g
aelxS] adxs)
p! : : MR, R
f frix)dx j Sxlx)dx
el aelx]

In a similar fashion, suppose the output transformation C in (8)
depends on a vector x* = (xj,...,x},)€R™ as follows. Let the
output coefficients depend on x* in the following way:

Yk =Txs XREQER

where x* describes the sensors spatial location, such that
C = C(x*)eBlt[L,(Q), R™] is given by

Cy(t) = (Y7 Do -« - <FO)5Yas DLaan)-
For instance, set

if xeo [x3]

-1
He
YXi(x) = {

0; otherwise

where o, [x} ] is defined as ¢, [x} ], with x° replaced by x°. Therefore
the appropriate (N-modal) representation for the output
transformation in (12) is given by
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Cy =Cy(x") =

f dy(x)dx f $n(x)dx
aelx5] aelxs]
! : : e M[RY, R™].

j $lx)dx f Pn(x)dx
aulxd,] aulxs,)

Before going further it is worth remarking on pointwise
controllers and sensors. Consider a formal approach by letting ¢
— 0. In such a case the input (or control) and output coefficients
ﬁ*i and v, can be thought of as Dirac measures, that is

ﬂxj(x) = dfx — ’(5)
YagX) = 0(x — x3)

thus supplying approximate representations for the input and
output transformations of the following form.

Fd) 1(x7) d1(x5) ]
By(x) =] :
Lonx) o dwix)) |
[10x) e
Culxy=| S
L910m) o Palxn) |

However the above formal approach leads to unbounded
transformations, and L,(Q) is no longer an appropriate state
space.

Hlustrative examples of OCL and OSL problems. The idea
behind the following examples is only to illustrate, in a formal
and most simplified way, two optimal location problems.
Questions of well-posedness are not addressed here, but
discussed in the next section. The first example concerns OCL
and OSL for optimal stochastic control, and the second one
regards OSL for system identification.

Example 1. For simplicity consider a stochastic version of the
approximate model in (11), (12).

day(t) = Anan(t)dt + By(x) [u(t)dt + dw(t)]
dza(t) = Cu(x)an(t) dt + de(t)

where x‘eQ? = R and x*e Q™ < R™ are parameters charac-
terizing the spatial location of controllers and sensors,
respectively. Here {w(r);t > 0} and {¢(t);t > 0} are independent
Wiener processes in R” and R™, with incremental covariance
matrices R,eM[R”] and R.eM[R™], standing for input
disturbance and observation noise, respectively. {u(#);0 < t < T}
is an RP-valued second order stochastic control, that is

T

E{jlul o0, 5:0m) = E{ fiw(e )t dt} <

0

which depends only on the past observations {zy(7);0 < 7 < t};
and ay(0) is a zero mean Gaussian random variable in R” with
covariance matrix P, e M[R"}, which is independent of w(t) and
v(t). A simplified version for the Linear-Quadratic-Gaussian
(LQG) problem is to find a stochastic control u, as above, which
minimizes the cost

Jw) = Elllan(o)z} + E{llasll? 0,12}
+ E{flult 0. 1:i07)
where the first two criteria characterize the accuracy in which the
state can be driven to zero at the final time and along the whole

trajectory, respectively, and the third one stands for the control
energy. For simplicity. identity weighting matrices have been

assumed for each criterion. According to the separation principle
(e.g. see Davis, 1977) the solution uy = uy(x* Xx*) is given by

uylt) = — BE(X)Qn(t)dy(t)

where the symmetric feedback control matrix Qu(r) in M [R™ ] is
the unique solution of the backward Riccati equation

Qn (1) = Qu(f)By(x)BF(X*)Qn(1)
— Qn) Ay — AFQn(1) — Iyt Qnir) = Iy

and dy(t) denotes the Kalman-Bucy filtered estimate of the state
awlt)

ddx(t) = [Ax — Py(0CHXR, 'Cr(x%)
— Ba(x)B¥(x)Qn(t) Jan(r) dr
+ Py()CH(X*)R, Mdznlt); dn(0) =0

where the error covariance Py(t) = E{[an(t) — anlr)] [antt)
— dn(1)]*} in M[RY] is the unique solution of the Riccati
equation

Pu(t) = AxPu(t) + Py(t)4% + BE(X)R,,Bw(x")
= Py()CHx* )R, 'Cu(x*)Pyit): Py(0) = Py,

The optimal cost is then given by

I lun(x6,x)] = tr(Palt)] + J tr[Py(t)] dt

O

.
+ f tr [Qu()Ph{ICH(X*)R, ' Culx*)Py(1) ] dt.

4]

An example of an OCL and OSL problem (for a fixed number of
sensors and controllers) is to select (x4, x%)ef¥ x Q" < R
x R™ which minimizes the cost J[uy(x‘,x%)] of the above
described optimal (closed-loop) control strategy.

Example 2. Let
w=Bu=B(xWwe Wc L,(0,T: L,£))

denote the (transformed) input for the model in (1)-(8), where W
stands for an admissible class of inputs (or controls), which
includes the possible controllers spatial configurations x°.
According to the N-modal approximation scheme set

wy = By = By(x ) e Wy < L(0, TRy

with Wy standing for the associated class of admissible truncated
(transformed) inputs wy. For simplicity consider again the
approximate model in (11), (12) with the following further
simplifications: ay{0) = Oand ¢ = 0. Then the model observation
zv = zp{A. X%, wye L, (0, T:R™) is given by

4

2x(t) = Culx®) f VAN y(r) de (13

O

where 4 = (4,....4x)€R" is a parameter to be identified in
Ay = Ay(1) = diag(4y,.... Ax)eM[RY], and x*eX = Q" = R™
characterizes the sensors spatial location. Here X stands
for the admissible location strategies (e.g. £ may be a finite set
properly defined to avoid sensor clustering). Now let
zg = zg(X%, w)e L,(0, T;R™) be the observed output at x*¢ X of a
real system driven by w e W, and consider the following criterion

J(4) = |Ixs = ZllL 0.1

The class of models, given by the input—output maps in (13) for
every Ae RY, is said to be identifiable (with respect to the criterion
under consideration) if there exists a unique 2°¢R", for each
x*e X and for all we W, such that the cost J(4) is minimized (e.g.
see Kubrusly, 1984 and Crouch, Kubrusly and Pritchard, 1982).
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Assume this is the case such that, for each x°e X, the minimum
cost J[1%(x*)] does not depend on we W. An example of an OSL
problem (for a fixed number of sensors) is to find x*€ X which
minimizes the identification performance J[A°(x*)].

3. A general review

The purpose of this section is to present a brief review of recent
OSL and/or OCL methods considered in the current literature.
The bibliography mentioned here comprises over 50 widely
available papers published in the last decade. The several
contributions in the field are primary grouped according to the
main goal for which OSL and OCL problems are developed
(instead of using a chronological order), namely: System
Identification, State Estimation and Optimal Control. Since the
main goal behind an OSL problem may be any of the above
mentioned, the following further abbreviations concerning the
methods dealing with OSL will be adopted:

SLI: OSL for System Identification.
SLE: OSL for State Estimation.
SCL: OSL and OCL for Optimal Control.

SLI (Optimal Sensors Location for System Identification). The
problem has received some attention in the DPS identification
literature over the past decade. Some questions regarding the
effects of either number or spatial location of sensors on the
implementation of parameters estimation techniques have
eventually been considered (e.g. see Seinfeld and Chen, 1971;
Polis, Goodson and Wozny, 1973; Kubrusly, 1980; Carotenuto
and Raiconi, 1980 and Kitamura and Taniguchi, 1981).
Moreover, since identifiability of DPS depends on the number
and position of measurement devices, the SLI problem can also
be approached according to identifiability requirements (e.g. see
Kitamura and Nakagiri, 1977; Nakagiri, 1983; Chavent, 1979a,
1979b, 1983; Courdesses and Amoroux, 1982; Courdesses,
Amouroux and Polis, 1981a, 1981b and Polis, 1982). For a
previous discussion on this topic, mainly based on observability
arguments, see also Goodson and Polis, 1978. However only
recently a few papers have appeared specifically on the SLI
problem, where optimal location strategies have been proposed.

Le Pourchiet and Le Letty (1976) presented two algorithms,
somewhat similar to each other, as an SLI procedure for
deterministic DPS. The basic idea was to maximize, at each
iteration, the identification error sensitivity (according to
preestablished identifiability definitions) with respect to the
location of a new sensor. The first algorithm concerns the
improvement in the sensitivity criterion by adding a new sensor
to the set of all sensors already located in previous iterations;
and the second one also takes into account the location of the
new sensor at the preceding iteration. Both algorithms stop
when the placement of a new sensor adds no substantial
improvement as far as the identification error sensitivity is
concerned. It is worth emphasizing that in the above described
approach it was not assumed an a priori fixed number of available
Sensors.

Sokollik (1976b) considered both the number and location of
sensors, as well as the measurement times, for identifying DPS.
The distributed model was approximated by a lumped one by
using finite-differences. In this way both time and space domains
were discretized with constant sampling rates. The optimal
space-time net (i.e. the optimization of time and spatial location
for the measurements) was given by minimizing the parameter
estimate covariance, which was performed by the stochastic
approximation schemes analysed in Sokollik (1974, 1976a).

Qureshi, Ng and Goodwin (1980) presented a method for
designing optimal experiments for DPS identification with noisy
observations. Besides the SLI, it was also considered the
determination of boundary perturbations for identifying not
necessarily linear systems. The optimization criterion to be
maximized was the determinant of the Fisher information matrix
associated to the parameters to be identified, which depends on
both boundary perturbations and spatial location of the
observation points. The design method was developed for
hyperbolic and parabolic PDE.

Carotenuto and Raiconi (1981)considered the identification of
the parameter appearing in an one-dimensional static (rather
than dynamical) diffusion equation. They analysed the effects of

an extra measurement point towards a possible improvement in
the parameter estimate, and presented a criterion for selecting the
location of it.

Rafajlowicz (1981) also presented a method for designing
optimal experiments for the DPS identification problem, which
comprises sensors location and determination of classes of
random inputs. The SLI problem, for second order linear
hyperbolic PDE observed through noisy measurements, was
replaced by one of seeking an optimal probability measure
corresponding to the position of sensors. The approach is similar
to that considered in Qureshi, Ng and Goodwin (1980), where the
determinant of the information matrix is maximized. However
the information matrix was associated to the system eigenvalues
rather than to the system parameters. Conditions for optimality
of the experiment design, including an upper bound for the
number of sensors, were derived (see also Rafajlowicz, 1983).

SLE (Optimal Sensors Location for State Estimation). Unlike
the SLI, the SLE literature is plentiful (cf. Tzafestas, 1978) and
several methods share some common aspects. For instance, every
method discussed here considers white Gaussian observation
noise when dealing with the (stochastic) filtering problem.
Cannon and Klein (1971) and Caravani, Di Pillo and Grippo
(1975) consider a dynamical equation without input disturbance,
while the others always assume Gaussian input disturbances.
Aidarous, Gevers and Installé (1975, 1978) are the only to
consider a discrete-time observation process. The main
characteristic of the majority of the SLE methods analysed here is
the reduction of an infinite dimensional system to a finite
dimensional one, by truncating the (infinite) Fourier expansion
of either the state or the estimates in its first N terms (N-modal
approximation), according to the increasing order of the partial
differential operator eigenvalues. In this way the filtering
procedure is applied either in a finite dimensional state space or
in an infinite dimensional one, respectively. Concerning the latter
case, when the state estimate error covariance appears explicitly
in the performance index, such an approximation is applied on
the covariance operator rather than on the estimate itself. In the
light of the above introductory discussion, the SLE bibliography
reviewed here can be gathered in three major groups.

Group L. Yu and Seinfeld, 1973; Caravani, Di Pillo and Grippo,
1975; Omatu, Koide and Soeda, 1978 and Sawaragi, Soeda and
Omatu, 1978 treated the SLE problem in a somewhat similar
fashion. The idea behind the approach used was to represent the
state variable y(t) as an infinite series of eigenfunctions of the
partial differential operator modelling the DPS. This yields an
equivalent model described by an ODE in the sequence a(t),
comprising the coefficients of that expansion. Such an infinite
sequence is approximated by an N-dimensional vector ay(t),
obtained by truncating it in its first N terms. This supplies the
state N-modal approximation yy(t) (cf. Section 2). The state
estimation problem is then approached by determining the finite
dimensional estimate dy(¢) for the N-modal approximation
estimate yy(t). The SLE x° is finally determined through y,(t) by
optimizing some appropriate criterion (cf. Fig. 1).

In Caravani, Di Pillo and Grippo (1975) the location of a single
sensor for estimating the initial state in the one-dimensional heat
equation was investigated. Homogeneous boundary conditions
in the state were assumed, such that the DPS was excited only by
the unknown initial conditions. The noisy sensor placement was
performed by minimizing the maximum mean square error for
the initial state.

The SLE was accomplished in Yu and Seinfeld (1973); Omatu,
Koide and Soeda (1978)and Sawaragi, Soeda and Omatu (1978),
by minimizing the trace of the estimate error covariance matrix at
the final time. The effect of measurement location on
observability, as an extension of Yu and Seinfeld (1971) to a wide
class of linear DPS, was considered in Yu and Seinfeld (1975). A
recursive algorithm was also proposed in this last reference,
which determines the optimal location of one sensor in terms of
the previously located sensors.

In Omatu and Seinfeld (1983) and Sawaragi, Soeda and
Omatu (1978) some existence theorems concerning the solution
of the SLE problem in infinite dimension were presented.
Theorems establishing necessary and sufficient conditions for the
SLE, before considering any state space approximation, were
also presented.
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Fi1G. 1. N-Modal approximations for SLE.

Group 11, The methods discussed above (Group I) used (either
implicitly or explicitly) an N-modal approximation for the state
y() and so they applied finite dimensional filtering algorithms to
ay(r). On the other hand, Bensoussan (1972); Aidarous, Gevers
and Installé (1975, 1978); Amouroux, Babary and Malandrakis
(1978); Kumarand Seinfeld (1978a); Curtainand Ichikawa (1978)
and Nakamori et al. (1980) used a different approach. The idea
behind this was to apply infinite dimensional filtering to the state
v(t),and then to represent the state estimate y(r)as an infinite series
with the coefficients sequence d(t); which is truncated in its first N
terms yielding the vector dy(t) of the estimate N-modal
approximation yx(t).

In such methods this approximation procedure was actually
applied only on the covariance operator, rather than in the state
estimate itself. The great majority of the above mentioned papers
faced the SLE problem by minimizing a cost function given in
terms of the trace of the N-modal approximation for the estimate
error covariance operator; thus supplying the SLE x° (cf. Fig. 1).

A theoretical treatment for the SLE problems was proposed in
Bensoussan (1972) by using functional analysis techniques based
on the Lions (1968) approach to control theory for DPS. The
existence of solutions for the SLE problem, as well as necessary
conditions for optimality, were established. This was achieved by
formulating the SLE problem as one of optimal control on the
Riccati equation describing the evolution of the estimate error
covariance operator.

In Aidarous, Gevers and Installé (1975) the location of a single
sensor was initially considered, and the procedure was then
extended to cover the case of several sensors. They assumed
discrete-time observations. The SLE problem was approached by
minimizing the spatial integral of the N-modal approximation
for the estimate error covariance. In Aidarous, Gevers and
Installé (1978) the existence of solutions for the SLE problem was
proved, and also the location algorithm convergence, for the
method presented in the earlier reference (1975).

In Amouroux, Babary and Malandrakis (1978) a weighting
function for the terms in the trace of the error covariance N-
modal approximation was used. This was done in order to
increase the accuracy for the first coefficients of the state N-modal
approximation.

In Kumar and Seinfeld (1978a) the computational problem
concerning the minimization of the integral of the trace of the
estimate error covariance matrix was overcome. That matrix was
replaced by an upper bound of it, given in terms of the covariance
matrix associated to the free system. Also analysed were the
effects of the observation noise covariance, and initial and
boundary conditions covariances, on the SLE problem.

The filtering problem was approached in Curtain and
Ichikawa (1978) by using abstract evolution equations in Hilbert
space. As in Bensoussan (1972), the SLE problem was rigorously

treated as one of optimal control, where the control variable
characterizes the sensors location. Opposite to this approach, a
mild evolution operators approach was used for considering
existence theorems for SLE, as well as necessary conditions for
optimality.

In Nakamori et al. (1980), as in Bensoussan (1972) and Curtain
and Ichikawa (1978), the SLE problem was approached as one of
deterministic optimal control, whose basic cost function was
given by the trace of the estimate error covariance operator and
by a further term standing for the control cost. Semigroup theory
was used as in Curtain and Ichikawa (1978). An existence
theorem and sufficient conditions for optimality were established
by using a sensitivity criterion given by the trace of the
information operator ; which can be thought of as an extension of
the Fisher information matrix to infinite dimensional spaces. The
computational effort in connection with the above criterion was
claimed to be smaller compared with that required for the trace of
the filter covariance. For implementation an N-modal approxi-
mation was suggested for that information operator.

Group I11. Cannon and Klein (1970, 1971); Klein (1971); Ewing
and Higgins (1971); Chen and Seinfeld (1975): Kumar and
Seinfeld (1978b) and Morari and O’Dowd (1980), also
investigated the SLE by considering the estimation problem in an
infinite dimensional space. However in each one of the above
papers a somewhat specific characteristic was presented, which
suggests a separate review rather than aninclusion in the previous
groups.

The heat equation in one-dimensional spatial domain and
without a forcing term was considered in Cannon and Klein
(1970, 1971). Although the DPS was supposed to operate in a
deterministic environment, uncertainties were allowed in the
initial and boundary conditions, as well as in the observation
process. The location of a single transducer, which was assumed
to average the measurements over a small neighborhood in the
spatial domain, was investigated. The theory behind the method
applies analytical arguments for establishing an (upper bound)
estimate for the state, which was used to supply estimates for the
error between the state itself and numerical approximations of it.
The SLE was then accomplished by minimizing these error
estimates. The same approach was also considered in Klein
(1971).

In Chen and Seinfeld (1975) the optimality criterion was given
by the space-time integral of the trace of the estimate error
covariance. The spatial domain was a priori discretized in order
to avoid a possible sensors clustering in a small region. The SLE
problem was then approached as one of optimal control in
which: (1) the state dynamics was given by the matrix PDE
describing the estimate error covariance evolution, and (2) the
control variables were characterized by a Boolean vector
indicating either the presence or absence of sensors over the



Survey Paper 123

discete spatial domain. Although it was not considered a finite
dimensional approximation for the state space, the algorithm
developed for sensor location requires at each iteration the
resolution of two matrix PDE (the covariance evolution and its
adjoint), whose solution method was not discussed in this
reference. This method has been applied in Kumar and Seinfeld
(1978b) for state estimation in tubular chemical reactors, where
they have used orthogonal collocation techniques for reducing
the infinite dimensional system to a finite dimensional one.

The SLE problem was investigated by Morari and O’'Dowd
(1980)who assumed that the DPSisdriven by nonstationary input
disturbances. Their approach was based on the Goodson—Klein
observability criterion (cf. Goodson and Klein, 1970), whose
conditions may not be satisfied for a limited number of sensors. In
this way an SLE method was proposed to minimize the
information loss associated to the nonobservable subspace. This
optimality criterion is given by the spatial integral of the trace of
the estimate error covariance operator. Such an error is caused
mainly by the lack of observability due to the presence of
nonstationary input disturbances. Although the theory was not
developed in a finite dimensional space, they used state
approximations for example implementation, including experi-
mental results.

OCL (Optimal Controllers Location). The OCL problem has
been investigated mainly by the French school. Lions (1972);
Amouroux (1973); Amouroux and Babary (1973, 1975, 1978,
1979); Aidarous (1975); Aidarous, Gevers and Install¢ (1976)and
Burger (1975, 1976) considered the optimal location of control
points (actuators) for DPS. Generally these methods presented
several common characteristics, applied to somewhat similar
mathematical models. For instance, those which considered
feedback control assumed that the observation points (i.e. the
sensors location) were a priori determined, as opposed to the SCL
methods discussed later in this section.

Like the SLE methods in Group I, the idea behind the OCL
approach used in Aidarous (1975); Aidarous, Gevers and Installé
(1976); Amouroux (1973)and Amourouxand Babary (1973, 1975,
1978, 1979) lies in truncating the coefficients sequence a(t) of the
eigenfunction series expansion for the state y(t). After that, the
optimal control strategy is determined for the system N-modal
approximation. In this way the optimal control problem, for the
state N-modal approximation yy(t), is approached in a finite
dimensional state space in terms of the truncated vector ay(t). The
same approximation technique was also used in Burger (1975,
1976), where the OCL problem was faced from a rather different
point of view.

The results presented in Amouroux (1973) and Amouroux and
Babary (1973) are related to the concepts of controllability and
reachability, rather than to the optimal control problem. The
main goal was to maximize, over all possible control points, the
volume of a hyperellipsoid in the state space comprising the
reachable states for bounded pointwise controls. The OCL was
formulated according to the necessary and sufficient conditions
for reachability of the truncated system.

The optimality criterion in Amouroux and Babary (1978,
1979) was given by the overall control energy and by the state
accuracy at the final time. They also reviewed other two OCL
procedures besides the state truncation one: an iterative method
using gradient-like algorithms, and a parametrization method
using N-modal approximation for the distributed control. The
pointwise controllers considered in the first reference was
extended to the case of zones of action in the second, where both
approaches were compared. In (1975) they considered several
performance criteria for the optimal pointwise control problem.
For instance, the minimization of the truncated optimal control
and the final state error norms, were discussed among others.

Differently from Amouroux and Babary, the approach in
Aidarous, Gevers and Installé (1976) considered discrete-time
observations and stochastic (Gaussian) input disturbances. As
far as the optimality criterion is concerned, they minimized a
mixed cost function comprising the overall control energy and
state accuracy along the whole trajectory. An interesting analysis
on the duality between the SLE and OCL problems, according to
this paper and an earlier (1975) one, was also presented here.

In Burger (1976) the OCL was discussed from two points of
view: zones of action and pointwise controllers. After using a

state N-modal approximation, it was then assumed that the
system is static (rather than dynamical), thus referring the OCL
problem to an ODE model approximated by an algebraic
equation. A geometrical approach was considered, by using
orthogonal projection arguments, for minimizing the distance
between the desired ‘state’ (for the static system) and the
reachability linear subspace.

Theoretical aspects regarding the OCL for pointwise controls
was investigated to some extent in chapter 4 of Lions (1972) for
deterministic DPS. A rigorous abstract approach for establishing
the existence of optimal position for Dirac measures was
considered.

SCL (Optimal Sensors and Controllers Location). The SCL
problem refers to the optimal location of both sensors and
controllers, generally for closed-loop optimal control problems
in DPS. In case of feedback control, such a combined procedure
involving OSL and OCL problems may eventually concern state
estimation as well (and hence SLE as a special case of OSL).

Such a problem has been investigated by Amouroux, Di Pillo
and Grippo (1976); El Jai (1977); Ichikawa and Ryan (1977,
1979); Courdesses (1978); Malandrakis (1979) and Omatu and
Seinfeld (1983). Instead of the author by author review procedure
used so far, it seems more appropriate to review the above SCL
literature according to the main characteristics used to face the
problem. This is motivated by the several common points shared
by the subsets of the above mentioned set of papers.

Concerning the environment in which the DPS was supposed
to evolve, Ichikawa and Ryan (1977, 1979); Malandrakis (1979)
and Omatu and Seinfeld (1983) considered (Gaussian)
disturbances corrupting the control action, and all the papers up
to Courdesses (1978) assumed observation (Gaussian) noise
corrupting the measurements. A completely deterministic
formulation was considered in Courdesses (1978). In every of the
above mentioned papers continuous time operation was assumed,
and El Jai (1977) was the only one to consider open-loop control
and a variable number of sensors and controllers. Pointwise
controls were assumed in Courdesses (1978) and Malandrakis
(1979).

For the SCL methods applied to stochastic DPS in the above
references the optimal control strategy was given according to the
separation principle, after performing the state estimation. The
stochastic regulator problem for evolution equations was
considered in Ichikawa and Ryan (1977, 1979) and Omatu and
Seinfeld (1983) by using the semigroup approach. In Amouroux,
Di Pillo and Grippo (1976) the filtering procedure was applied ina
finite dimensional space by considering a state N-modal
approximation. On the other hand, Ichikawa and Ryan (1977,
1979) and Malandrakis (1979) applied infinite dimensional
filtering and used N-modal approximation for operators
associated to the LQG (Linear-Quadratic-Gaussian) optimal
control problem (i.e. they used N-modal approximation for the
feedback and estimate error covariance operators). In a similar
fashion, the deterministic approach considered in Courdesses
(1978) involved N-modal approximation in connection to the
linear-quadratic (deterministic) optimal control problem. In the
open-loop approach presented in El Jai (1977) the pointwise OSL
was implemented for estimating the initial state, and the OCL for
reaching a desired final state using minimum energy controls.

The optimality criterion for the method presented in
Amouroux, Di Pillo and Grippo (1976) was given by the
minimization of the state estimate error at the final time and the
overall control energy. Several possible criteria and practical
considerations for the SCL problem, including the sensors and
controllers number optimization, were discussed in El Jai (1977).
In the other papers the cost functional to be minimized
comprised three terms: final state accuracy, state accuracy along
the whole trajectory, and the overall control energy. The
existence of an optimal location was established in Ichikawa and
Ryan (1977, 1979), where a comparative analysis involving either
separate or simultaneous location of sensors and controllers was
also presented. A similar approach was presented in Omatu and
Seinfeld (1983), where necessary and sufficient conditions for the
optimal location were derived.

The OSL problem for deterministic closed-loop control was
also considered by Koivo and Kruh (1969). Such an approach,
which was one of the first to appear, was quite different from



those described above, since the control was supposed to act only
on a fixed boundary point. Therefore this characterized an OSL
problem for closed-loop control, rather than an SCL problem.
The OSL problem towards feedback control was also discussed
by Goodson and Klein (1970); Yu and Seinfeld (1971) and
Sakawa (1975) as an observability matter. Some theoretical
aspects regarding the existence of solutions for a particular OSL
problem in feedback control for deterministic DPS were
presented by Lions (1972). As in Koivo and Kruh (1969), the
OSL problem for closed-loop control of temperature distribution
was also considered by Kaizer (1971). Further applications
involving the SCL problem for DPS were investigated by Lee,
Koppel and Lim (1973) as well.

4. A classification of methods

Approximation methods are closely related to DPS analysis.
As it has been commented on before (e.g. see Athans, 1970;
Kubrusly, 1977; Polis and Goodson, 1976; Robinson, 1971),
sooner or later one will be faced with approximation techniques
(either for modelling or numerical and physical implementation)
when dealing with any problem in DPS. For OCL and OSL
problems it can be noticed from the previous section that N-
modal approximation (also called truncation of eigenfunctions—
or Fourier, or harmonic—expansion, as an approximation
scheme resulting from the separation of variables technique) is
certainly the most used for sensors and controllers location in
DPS.

The purpose of this section is twofold. First of all some relevant
characteristics of those methods for OCL and OSL in
(dynamical) DPS which use, in one way or another, N-modal
approximation schemes are summarized. Such methods are then
classified according to the stage of the optimization procedure in
which N-modal approximations are used.

Methods characteristics. Table | displays some models and
methods characteristics for that part of the literature reviewed in
the preceding section which uses N-modal approximation. The
following notation has been adopted in Table 1, where the first
four items concern the external action in the DPS.

o Input. The input (or forcing term) in the dynamic equation can
be described either by a stochastic disturbance (w) and/or
stochastic control (u), or by a deterministic control (uy). Null
input is denoted by (0).

® Observation noise. The presence or absence of noise
corrupting the measurements is denoted by either (v) or (0),
respectively.
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® Boundary conditions (BC). They can be either homogeneous
(H), or inhomogeneous; whose external action in the
boundary can be described either by a stochastic (S) or by a
deterministic (D) process.

@ Initial conditions (IC). Both known and unknown 1C are
denoted by (D) or (S), whenever they are given by
deterministic or stochastic processes, respectively. When an
unknown IC is to be estimated. it is denoted by (E). Null 1C are
represented by (0).

o Number of located points at simulated examples (#). For
SCL methods, the first number displayed concerns the OCL
problem while the second one concerns the OSL problem.

® Approach (Appr). This points out whether the filtering
procedure (when applied) is developed either in a finite (Fiv)
or in an infinite dimensional space; the latter case presenting
two possibilities, (F,) or (F},), according to filtering in L,(€Q)
or in I,, respectively. The symbol (C) stands for control (or
controllability) problems.

@ Problem. The optimal location problem under consideration
is characterized by the already given notation SLE, OCL, and
SCL.

Methods classification. The diagram in Fig 2 presents a
classification of methods in the light of N-modal approximation
schemes. The main classifying factor concerns the different stages
of the optimization procedure in which such approximations (or
truncations) are required. In addition to the notation already
posed in this paper, the following has also been adopted in the
diagram of Fig. 2.

L, <> !,: Standing for the equivalent (infinite dimensional)
system representation, either in £,(Q) or [,, according
to the eigenvector series expansion.

Standing for the N-modal approximation; that is, the
truncation of eigenvector series expansion in its first N
terms.

I, » RN

Numbers between brackets concern the references mentioned in
Table 1, and they point out the path which classifies the
underlying method as follows:

Path I1,:SCL methods using infinite dimensional filtering.
Path I1,: SLE methods using infinite dimensional filtering.
Path I1;: SCL methods using finite dimensional filtering,
Path I1,: SLE methods using finite dimensional filtering.

TABLE |. SUMMARY OF MODEL AND METHOD CHARACTERISTICS

Obs.
Reference Input noise BC IC # Appr. Problem
[1] Yu and Seinfeld (1973) w v H D 2 Faun
[2] Caravani, Di Pillo and Grippo (1975) 0 v H E 1 Foun SLE
[3] Omatu, Koide and Soeda (1978) w v H S 2 Fin {group 1)
[4] Sawaragi, Soeda and Omatu (1978) w v H S 2 Fin
[5] Bensoussan (1972) w v DH S 0 Fr,
[6] Aidarous, Gevers and Installé (1975) w v H S 2 Fr,
[7] Amouroux, Babary and Malandrakis (1978) w v H S 2 Fi, SLE
[87 Curtain and Ichikawa (1978) w v S.H D 2 Fy, (group II)
[9]1 Kumar and Seinfeld (1978) w v H S 2 Fi,
[10] Nakamori, Miyamoto, Tkeda and Sawaragi (1980} w v D.H 0 1 Fi,
[11] Amouroux and Babary (1973) Uy 0 H D 1 C
[12] Amouroux and Babary (1975) Ugy 0 H D 1 (
[13] Aidaraous, Gevers and Installe (1976) u+w v H S 1 C OCL
[14] Amouroux and Babary (1978) Uy 0 H D | C
[15] Amouroux and Babary (1979) uy 0 H D I C
[16] Amouroux, Di Pillo and Grippo (1976) u v H D 1/4 Fu~/C
[17] El Jai (1977) u v H E 3/4 Funi/C
[18] Courdesses (1978) Uy 0 H D 31 C SCL
[19] Ichikawa and Ryan (1979) u+w v H D 1/1 Fp,/C
[20] Malandrakis (1979) u+w v D S 2/ F.,/C
[21] Omatu and Seinfeld {1983) u+w v S.H S 2/2 F,./C
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Path I15: SCL methods approached in a deterministic environ-
ment.

Path Ils: OCL methods approached in a deterministic environ-
ment.

5. Comments and concluding remarks

Several remarks and some conclusions can be drawn from what
has been discussed in the preceding sections. A brief selection of
basic topics which deserve to be emphasized will be presented in
this final section.

(1) Although this seems to be the first attempt to survey the
several OCL and OSL methods for DPS, practical motivations
for considering the problem were not addressed here. However
such motivations can be found in the surveys by Kubrusly (1977);
Polis and Goodson (1976); Ray (1975) and Robinson (1971), and
books by Butkovskiy (1969); Ray and Lainiotis (1978); Ruberti
(1978) and Wang (1964) mentioned in Section 1, in connection
with identification, filtering, and control problems in DPS. See
also the recent survey by Johnson (1983).

(2) Little literature has been written about OCL and OSL,
compared with what has been published in either identification,
filtering or control of DPS.

(3) In particular, more research is needed regarding the OSL
problem for system identification (i.e. the SLI problem).

(4) Among the literature discussed here, Gaussian distribution
has always been assumed, for both input disturbance and/or
observation noise, when the DPS is supposed to operate in a
stochastic environment. It would be interesting to have OCL and
OSL strategies for arbitrary (and eventually unknown)
probability distributions.

(5) Experimental results show that the location of sensors
and/or controllers may be sensitive to the stochastic environment
(e.g. to the statistics of the input disturbance, observation noise,
and random initial and boundary conditions). For instance,
experiments presented in Kumar and Seinfeld (1978a) have shown
that the SLE depends on the covariance of the observation noise,
as well as on the covariances of initial and boundary conditions.
However a theoretical sensitivity analysis on the effects of the
stochastic environment upon the OCL and OSL is still lacking.

(6) The great majority of the methods reviewed here apply to
linear models. More effort towards OCL and OSL methods for
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nonlinear DPS should be attempted (for instance, by using the N-
modal approximation theory considered by Banks and Kunish,
1982).

(7) As already remarked here, N-modal is the most used
approximation technique in OCL and OSL. Unlike other areas
in the DPS field (e.g. in DPS identification) finite-differences is
not a very popular scheme, even among the methods which
approximate the PDE to an ODE (or difference equation) thus
reducing the DPS (modelled in an infinite dimensional state
space) to an LPS (modelled in a finite dimensional state space).

(8) On the other hand, as in the whole DPS field, the question
of when to use approximation techniques does not seem to have a
final answer yet. According to Section 4, approximations have
been applied either before or after optimization schemes. When
thefiltering problem was involved, it has been performed either in
L,(Q), I, or R¥; but the control problem was generally developed
in R™. In any case the OCL and OSL strategies were always
developed after applying approximation techniques.

(9) Only in a few papers (e.g. El Jai, 1977; Le Pourhiet and Le
Letty, 1976), the optimal placement of a variable number of
sensors and/or controllers has been considered. The problem of
optimizing (i.e. minimizing) the number of sensors and/or
controllers should receive more attention.

(10) More research is also needed towards OCL for boundary
controls, and OSL for boundary measurements.

(11) The SCL problem, in connection with the design of finite
dimensional compensators for DPS (e.g. Curtain, 1983a, b, 1984),
also deserves more investigation.

(12) The problem of determining the best kind of sensors
and/or controllers should also receive some attention. Funda-
mental questions in this area are: point or distributed devices? In
the latter case, if a finite number of sensors and/or controllers act
over neighborhoods on the spatial domain, which wouid be the
best ‘size’ of these neighborhoods, and which would be the best
type of distribution (e.g. uniform) for either the measurements
collected by the sensors or the action supplied by the controllers?

(13) Simulation is certainly an important point towards DPS
analysis (e.g. see Tzafestas, 1980). The simulated results presented
in the OCL and OSL literature have generally been developed for
DPS with one-dimensional spatial domain. llustrative examples
and experimental results considering two- or three-dimensional
spatial domains would be welcome.
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(14) Perhaps it is already time to have a comparison of
effectiveness of some different OCL and OSL methods. The
classification introduced in Section 4 can be viewed as a first step
for a qualitative comparison. It can also be used as a starting
point for further works towards a quantitative comparison, since
some different approaches for solving the OCL and OSL
problem have been grouped according to their main structural
characteristic.

(15) Finally 1t is worth remarking on the N-modal
approximation scheme again. Some models can survive
truncation (ie. the transformation I, — RY in Fig. 2). For
instance, equivalent models for parabolic or diffusion equations
which have spatially elliptical operators. However other
equivalent models in I, for DPS cannot survive truncation. For
instance, the finite propagation of wave travel is essentially
destroyed in an N-modal approximation for a hyperbolic or wave
equation. Therefore, before proceeding to approximate models, it
is advisable to verify (i} whether any approximation is actually
needed (one may decide to place sensors and controllers
somewhere in the spatial domain, not necessarily in an optimal
fashion, without approximating the DPS), and (ii) whether the
truncation (or discretization procedure) does not destroy
essential properties of the DPS. which may be inherent to infinite
dimensional models.
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