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Abstract. This paper presents a survey for the optimal sensors and/or 
controllers location problem in dynamical distributed parameter systems 
modelled by partial differential equations_ The more recent contributions in 
this field are grouped according to the main goal for which the location 
problem is developed, namely: system identification, state estimation, and 
optimal control. In order to pose the sensors and controllers location 
problem, the semigroup approach for modelling distributed 1 inear systems is 
briefly reviewed together with its equivalent (infinite-dimensional) and 
approximate (finite-dimensional) Fourier expansion representations. After 
presenting a concise general review of the several methods considered in the 
current literature, it is also proposed a classification of methods. The main 
classifying factor concerns the use of N-modal approximation schemes, and the 
different stages of the optimization procedure in which they are required. 

Keywords. Controllers location; distributed parameter systems; identification; 
optimal control; optimization; sensors location; state estimation_ 

1. I NTRODUCT I ON 

The sensors and controllers location is an 
important problem towards identification, 
state estimation, and control in distributed 
systems. In this paper the several methods 
proposed for solving such a problem are 
reviewed and classified according to their 
main ch0racteristics. To begin with it is 
advisable to pose some abbreviations which 
will be of frequent usage throughout the 
text: 

ODE: Ordinary Differential Equation(s). 
PDE: Partial Differential Equation(s). 
LPS: Lumped Parameter System(s)_ 
DPS: Distributed Parameter System(s). 
OCL: Optimal Controllers Location_ 
OSL : Optimal Sensors Location_ 

DPS, as discussed in this paper, will stand 
for a dynamical system governed by PDE 
ppposed to LPS which is described by ODE), as 
a class of dynamical systems modelled in 
infinite-dimensional state space (eg_ see 
Helton [39], Ray [65], Curtain and Pritchard 
[32], and Pritchard [62]) _ Therefore, it 
seems reasonable to say that the starting 
point for analysing DPS is the PDE literatur~ 

Presently the available literature in PDE is 
certainly huge. To mention just a few books, 
ranging from introductory to advanced texts, 
publ ished over the past two decades,see for 
example Courant and Hilbert [26], Garabedian 
[36], Friedman [35], Mikhl in [55], Treves 
[l3], Showal ter [lO], and Gustafson [38]. 

Three of the main problems in system theory 
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(and in particular in DPS)are system 
identification, state estimation,and optimal 
control (cf_ Ray and Lainiotis, Ed_ [66]). In 
this paper, OCL and OSL will be regarded as 
intermediate problems for considering the 
above- men tioned "final" problems_ Although 
1 i tt le 1 i terature has been wr i tten inOPS 
identification compared with what has been 
done in state estimation and optimal control, 
some survey paper s have already appeared in 
this field_ For instance, see Goodson and 
Polis [37,61], Kubrusly [46], Ruberti, Ed_ 
[68], Burger and Chavent [19], and Chavent 
[24]_ On the other hand the current 
1 iterature on state estimation is much richer_ 
For some complete books and surveys on the 
state estimation problem in DPS, regarding 
both theory and appl ications, see for example 
Bensoussan [14], Phillipson [60], Curtain 
and Pritchard [32], Sawaragi, Soeda and Omatu 
[69], Curtain [28], Ray [64], Tzafestas [75], 
and Bencala and Seinfeld [13]. The optimal 
control problem in DPS has also been reported 
in several books and surveys_ For instance, 
see Wang [76], Lions [51-53], Butkoviski 
[20], Balakrishnam [12], Curtain and 
Pritchard [32], Robinson [67], Curtain [29], 
and Bensoussan [16]. 

The present paper is organized as follows. 
In section 2 the semigroup approach for 
modelling DPS is briefly reviewed. After 
describing a 1 inear model for DPS in a 
separable Hilbert space, and its equivalent 
(infinite-dimensional) representation in 
terms of Fourier expansion, it is also 
presented the so-ca 11 ed N-moda 1 (f i n i te-
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dimensional) approximation. The OCl and OSl 
problems are motivated by the model 
dependence on the spatial location of 
controllers and sensors. Section 3 comprises 
a brief general review of the more recent 
OCl and OSl I iterature, emphasizing the 
"final" problem (i.e. system identification, 
state estimation, or optimal control) for 
which they were developed. A classification 
of methods is presented in section 4, where 
the methods reviewed in section 3 are 
compared according to their main structural 
characteristics. The paper ends with some 
comments and concluding remarks in section ~ 

2. MOOElllNG PRELIMINARIES 

The purpose of this section is to present a 
brief summary on the following topics: (I) 
I inear models for DPS, (2) equivalent model 
description, (3) N- modal approximation, and 
(4) model dependence on the spatial location 
of controllers and sensors. The motivation 
for this will become clear in section 3 when 
the several OSl and OCl methods will be 
reviewed. As it will be emphasized in section 
4, the major factor for classifying the OSl 
and OCl methods will rely on whenoptimization 
techniques are appl ied, either before or 
after considering any model approximation; 
and the so- ca I led N-moda lis the mos t used 
approximation technique in the OSl and OCl 
literature. 

Notat ion 

The notation used in this section is 
summarized as follows : 
Rn 
an 

11 11 H 

o (l) 
l* 
w 
E 

M[IRk ,IR£ ) 

B£t [X, Y) 

n-dimentional EucAidean space. 
Boundary of n e R . 
Inner product in a Hilbert space 
H. 
Norm in a Hilbert space H. 

Domain of a transformation l. 
Adjoint of a transformation l. 
Time derivative ofw(w = aw/at). 
The expectation operator, as 
usua I. 
linear space of al I real matrices 
l by k (M[Rk) = M[Rk,R k)). 
Normed I inear space of all 
bounded I inear transformations of 
X into y, X and Y being normed 
I inear spaces (B £t[X)=B £t[X,X)). 

The real spaces £2 , l 2 (O,T), l 2 (n ), l2(O,T;H), 
C(O,T), C( S"l ) , C2 (r ),and C(O,T;H) will have 
thei r standard meanings (e.g., see [31)). 

A linea r mode I for OPS in l2 (12 ) 

Technical details are omitted throughout this 
section and the reader is here, once and for 
all, referred to the avai lable I iterature. As 
far as Hilbert space methods are concerned 
see, for instance, Naylor and Sell [58) or 
Weidmann [77), among others. Classical 
references for the semigroup theory are Hille 
and Phillips [40) and Yosida (78). For an 
introduction to semigroups towards control 
theory see, for example, Balakrishnam [12) or 

Curtain and Pritchard [31,32). 

let U (the input or control space), H (the 
state space), and V (the observation or out­
put space) be Hilbert spaces, and consider a 
linear dynamical system modelled by an 
autonomous inhomogeneous abstract differential 
equation as follows 

y(O) = y G H , 
o 

(I) 

where u G l2 (O,T;U), B G B£t[U,H), and the 
(closed linear, but possibly unbounded) 
operator A: D(A)+H is the infinitesimal 
generator ot a strongly continuous semigroup 
{Tt G B £ t[H);t~O}, where the domain D(A) is 
dense in H. The mild solution of (I) is given 
by 

y(t) = T y + JtT B u(s)ds 
too t-s 

(2) 

with y G C(O,T;H). Furthermore, let v, 
z G l2(O,T;V) and C G B£t[H,V), and suppose 
the state y is observed according to the 
following measurement equation 

z = C y + v (3) 

Now set H=l2( n), n being a simply connected 
open set in Rn, and consider a linear time­
invariant DPS governed by a parabol ic PDE as 
in (I). For example suppose a special case 
where the system operator A is a second-order 
elliptic self-adjoint one of the form 

A \' Vv L a v 
v 

wi th 

It'q=1 ,2, •.. ,n , 

Iv l= In v is such that 0 < Iv l < 2 , 
q=1 q 

a G c 2 (n ) 
v 

x 
n 

(4) 

H2(n )={w G l 2 (\2 ): vvw G l 2 (r: ); Iv l=I,2 } , 

D(A)={w G H2 (r. ): Lw=O on ar.} , 

where L denotes a I inear operator defined on 
an (standing for the boundary conditions). 
Moreover, assume that there exists an infinite 
divergent real sequence {A i; i=I,2, ... } of 
eigenvalues of A, which is bounded above and 
non-increasingly ordered; that is 

< 00 

I A. I + 00 as + 00 
I 

where {<Pi G D(A); i=I,2, ... } is an orthonormal 
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basis for L2(~ ) of eigenvectors of A, such 
that the solution in (2) has an unique 
Fourier series expansion 

y (t) r 
i 

a (t) <p . 
i= I 

I 
(5) 

yielding, for y (t) S D(A) , 

A y (t) r i = '\ .a (t) <p. 
i=1 I I 

, (6) 

where 
i 

€ C (0, T) is given by a 

i 
a (t) <y (t) ,<p. > 

I L 2 (0. ) 

and the semigroup { TtS B ~ t[L 2 ( 0. )];t~0 } 
generated by A is 

'\ .t 
Loo e I 

i=1 

i 
a (s) <p. 

I 

Now set U = RP, and assume that the input 
transformation B € B£t[IRP,L 2 ( ~ )] is such 
that 

Bu (t) LP 8.u.(t) 
j = I J J 

~ith~ 8j S L 2 ( ~ ) and Uj S L2 (0,T) for each 
J=I ,L, ••• ,p. By the Fourier series expansion 
of 8. one gets 

J 

B u(t) 

where 

u = (ul""'u) € L2 (0,T;IRP) , p 

(7) 

« 81 ,<P ·> , .•• ,<8 ,<P .> ) 
I L2 W) p I L 2 ( ~ ) 

b. 
I 

Finally set V = IRm, and let the output 
transformation C S B ~ t[L 2 (~ ), IRm] be given by 

C y(t)=«y(t), y
1

> , ... , <y(t),y> ), 
L 2 (~ ) m L2 (Q) 

(8) 

where Yk S L2 (0. ) for each k=1 ,2, ... ,m, such 
tha t 

An equivalent model in ~2 

The equations (5)-(7) supply an equivalent 
representation in ~2 for the system model 
(I), (4) in L 2 (~ )' as follows : 

a (0) € £2 

where B S B £t [IRP' ~2 ] is such that 

Bu(t}=«Bu(t), <P 1 > , <Bu(t), <P 2> , ••• ) 
L2 (0. ) L2 ( ~ ) 

and A:D(A)"'~2 is a closed densely defined 
I inear operator 

Aa(t)=«Ay(t) , <p 1 > , <Ay(t) ,<P 2 > , ... ) 
L 2 (~ ) L 2 (~ ) 

=( '\ la1 (t)' '\2 a2 (t), •.. ) , 

D(A)={ w=(W1 ,W2 , ... )S ~2 : rl ,\ .w ·1
2

<oo} 
i=1 I I 

generating a strongly continuous semigroup 
{ Tt € B ~ t[ ~ 2 ];t~0 } 

The mild solution of (9) is then given by 

a(t) = T a(O) + ft T B u(s)ds , 
t 0 t-s 

with a=(a 1 ,a 2 , ... )S C(0,T; ~2 )' By the Fourier 
expansion of Yk in (8) one gets thefollowing 
equivalent representation in ~2 for the 
measurement equation (3) in L 2 (~ )' 

(10) 

where C € B ~ t ( ~2 ,IR
m

] is given by 

C a(t)=«a(t), c 1 >0 , ..• , <a(t),c >0 ) 
"'2 m "'2 

wi th 

for each k=I,2, ... , m. 

An approximate model in IRN 

The so-cal led N-modal approximation consists 
in truncating the Fourier series expansions 
involved in their first N terms, yielding a 
Galerkin-I ike approximation for the state y 
in (5), 

YN S C(O,T;HN), where HN is theN-dimensional 

linear subspace of L2 (0. ) spanned by 
{<P i; i=I,2, •.. ,N } . This supplies an 
approximate representation in RN for the 
equivalent system model (9) in £2 ' given by 

N 
aN(O) S IR (11 ) 
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where 

whose solution is 

(t 

T~ aN(O) + J
O 

T~_s BNu(s)ds 

with aN= (a1 ..... a
N

) 6 C(O.T;IR
N
). and 

N AN t ,\ 1 t ,\ N t N . 
Tt=e =diag(e ..... e )6 M[IR l; vD. 

The observation ZN=(Z~ .... z~)6 L2 (0.T;IR
m

) is 
given by the following approximate version 
of (1 D) 

( 12) 

wi th 

for each k=l •...• m. 

Controllers and sensors spatial location 

dependence 

Suppose the input transformation B in (7) 
depends on a vector xC = (x~ •... x~) 6 RnP as 

fol lows. Let the input (or control) 
coefficients depend on xC in the following 
way. 

B. 
J 

13 c 
x. 

J 

where XC describes the controllers spatial 
location. such that 

[B u (t) ] (x) 

For instance. let 

o < E < inf 
1.::.J:'p 

inf 11 x~-xll 
X6 d~ J !Rn 

such that the chosed ball c [x:] of radius _ 
E J 

centered at x: is conta i ned in ;: for each 
J 

j=l •...• P. and let \l_> 0 be the usual 
c Co 

measure of a [x.]. Now set 
J 

13 c(x) 
x. 

J 

Hence 

f 
! 0 
l 

if x b a [x~] • 
E J 

otherwise. 

-1 
\lE 

( 
j ~ i (x)dx 

a [x:] 
E J 

Therefore the approximate (N-modal) 
representation for the input transformation 
in (1 1) is given by 

f c C; l(x)dx 
a [x ] 

E P 

f c ~N(x)dx 
o [x ] 

E P 

In a similar fashion. suppose the output 
transformation C in (8) depends on a vector 

s ( ss) nm x = x ..... xm 6 R as fol lows. Let the 
output coefficients depend on xS in the 
following way. 

where X
S 

describes the sensors spatial 
location. such that 

zk(t) = <y(t). y s> + vk(t) . 
xk L2 ( ~ ) 

For instance. set 

~ 
l 0 otherwise 

where a [x
k
s ] is defined as 0 [x:]. wi th xC 

E E J 
replaced by xS. Therefore the approximate 
(N- modal) representation for the outuput 
transformation in (12) is given by 

Before closing this section it is worth 
remarking on pointwise controllers and 
sensors. Consider a formal approach by 
letting [ ->0. In such a case the input (or 
control) and output coefficients S c and y 

Xj x 
can be thought of as Dirac measures. that i 

i3 c (x) 
x· 

l 
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y s (x) = 6 (x-x~) 
x

k 

thus supplying approximate representations 
for the input and output transformations of 
the following form. 

BN(x
C

) 
[ .. (~:) ;. (~~) 1 

<jJ N(x l ) <jJ N(x~) 

s 
<jJ 1 (xl) <jJ N(x~) 

CN(x
S

) 

s 
<jJ l(Xm) <jJ N(x~) 

However, the above formal approach leads to 
unbounded transformations, and l2(n ) is not 
an appropriate state space anymore. 

An illustrative example of an OCl and OSl 

problem 

For simpl icity consider a stochastic version 
of the approximated model in (11), (12). 

daN(t)=AN aN(t)dt+BN(xc)[u(t)dt+dw(t)) , 

dzN(t)=cN(xs)aN(t)dt+dv(t) . 

Here {w(t); t >O} and {v(t); t >O} are 
independent Wiener processes in IRP and IRm 

with incremental covariance matrices 
Rw E M[~P) and Rv E M[Rm) , standing for 
input disturbance and observation noise, 
respectively. {u(t); O<t <T} is an IRP-valued 
second-order stochastic control, that is 

which depends only on the past observations 
{zN( T); o':'T~d ; and aN(O) is a zero mean 
Gaussian random variable in ~n with 
covariance matrix Po E MORN) , which is 
independent of w(t) and v(t). A simplified 
version for the 1 inear quadratic Gaussian 
(lQG) problem is to find a stochasticcontrol 
u, as above, which minimizes the cost 

where the first two criteria characterize 
the accuracy in which the state can bedriven 
to zero at the final time and along the 
whole trajectory, re spectively, and the third 
one stands for the control energy. For 
simpl icity it has been assumed identity 

weighting matrices for each criterion. 
According to the separation principle, the 
solution uN = uN{xC,x S ) is given by 

where the symmetric feedback control matrix 
~(t) in M[RN) is the unique solution of the 
backwards Riccati equation 

~(t) = QN(t)BN(xc)B~(xc)QN(t)­

-QN(t)AN-A~QN(t)-IN ' QN(T)=I N ' 

and aN(t) denotes the Kalman-Bucy filtered 
estimate of the state aN(t), 

daN{t)=[AN-PN(t)C~(xs)R~lCN(xs)-

-BN{xc)B~{xc)QN(t))aN(t)dt+ 

+PN{t)C~{xs)R:ldzN(t) , 

where the error covariance * 
PN(t}=E{ [aN(t)-aN(t)) [aN(t)-aN(t))} in 

M[IRN) is the unique solution of the Riccati 
equation 

PN(t) = ANPN{t)+PN(t)A~+B~(xc)RwBN(xc)­

-PN(t)C~{xs)R~lCN(xs)PN(t) , PN(O)=Po 

The optimal cost is then given by 

J[uN(xc,x
s

))= trace PN(T)+J: trace PN(t)dt+ 

+J: trace QN(t)PN(t)C~(xs)R:1CN(xs)PN(t)dt . 

An example of an OCl and OSl problem (for a 
fixed number of sensors and controllers) is 
to sellect (XC,x S ) E np x nmc:: IRnp x Rnm 
which minimizes the cost J[uN(xC,x S )) of the 
above-described optimal (closed-loop) control 
strategy. 

3. A GENERAL REVIEW 

In this section we present a brief review of 
the more recent OSl and/or OCl methods 
considered in the current I iterature. The 
bibliography mentioned here comprises over 
40 widely available papers publ ished in the 
last decade. The several contributions in 
the field are primary grouped according to 
the main goal for which the OSl and OCl 
problems are developed (instead of using a 
chronological order), namely: System 
Identification, State Estimation and Optimal 
Control. Since the main goal behind an OSl 
problem may be any of the above-mentioned, 
the following further abbreviations 
concerning the methods deal ing with OSl wil I 
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be adopted: 

SLI: OSL for System Identification. 
SLE: OSL for State Estimation. 
SCL: OSL and OCL for Optimal Control. 

SLI: (Optimal Sensors Location for System 

Identification) 

A few papers have appeared on the SL I problem 
for DPS, and they represent rather different 
approaches. Therefore it seems that an 
individual analysis is the most suitable way 
for reviewing them. For a previous discussion 
on this topic, based mainly on observabil ity 
arguments, see Goodson and Pol is [37]. 

Le Pourhiet and Le Letty [49] proposed two 
algorithms, somewhat similar to each other, 
as an SLI procedure for deterministic DPS. 
The basic idea was to maximize, at each 
iteration, the identification error sensivity 
(according to pre-establ ished identifiabil ity 
definitions) with respect to the location of 
a new sensor. The first algorithm concerns 
the improvement in the sensitivity criterion 
by adding a new sensor to the set of all 
sensors already located in previous 
iteractions; and the second one also takes 
into account the location of the new sensor 
at the preceding iteraction. Both algorithms 
stop when the placement of a new sensor no 
more adds any substantial improvement as far 
as the identification error sensitivity is 
concerned. It is worth emphasizing that in 
the above described approach it was not 
assumed an "a priori" fixed number of 
available sensors. 

Sokollik[73] considered both the number and 
location of sensors, as well as the 
measurement times, for identifying DPS. The 
distribuited model was approximated by a 
I umped one by us i ng fin i te-d i fferences. In 
this way both the time and space domains 
were discretized with constant sampl ing rates. 
The optimal space-time net (i.e., the 
optimization of time and spatial location 
for the measurements) was given by minimizing 
the parameter estimate covariance, which was 
performed by stochastic approximation schemes 
presented in [71,72]. 

Qureshi, Ng and Goodwin [63] presented a 
method to design optimal experiments for 
identifying DPS through noisy observations. 
Besides the SLI, it was also considered the 
determination of boundary perturbations for 
identifying not necessary linear systems. 
The optimization criterion to be maximized 
was the determinant of the Fisher's 
information matrix associated to the 
parameters to be identified, which depends 
on both the boundary perturbations and 
spatial location of the observation points. 
The design method was developed for 
hype rbo I i c and pa rabo I i c PDE.Cl' 

(I) The SLI problem was also 
considered by Carotenuto and 
ilnd Rafaj:j'owicz [81]. 

recently 
Rai coni [80] , 

SLE: (Opt imal Sensors Locat ion for State 

Est imat ion) 

Several papers dealing with the SLE problem 
have already appeared (cf. Tzafestas [75]), 
and they present some common characteristics. 
For instance, every method discussed here 
considers white Gaussian observation noise 
when deal ing with the (stochastic) fi Itering 
problem. Aidarous, Gevers and Instal le [2,4] 
are the only to consider discrete-time 
observation process. Cannon and Klein [22] 
and Caravani, Di Pillo and Grippo [23] 
consider a dynamical equation without input 
disturbance, while the other always assume 
Gaussian input disturbances. The main 
characteristic of the majority of the SLE 
methods analysed here is the reduction of 
an infinite-dimensional system to a finite­
dimensional one, by truncating the(infinite) 
Fourier expansion of either the state or the 
estimates in its first N terms (N-modal 
approximation), according to the increasing 
order of the partial differential operator 
eigenvalues. In this way the filtering 
procedure is appl ied either in a finite­
dimensional state space or in a infinite­
dimensional one, respectively. Concerning 
the latter case, when the state estimate 
error covariance appears expl icitly in the 
performance index, such an approximation is 
appl ied on the covariance operator rather 
than on the estimate itself. In the light of 
the above introductory discussion, the 
SLE bibl iography reviewed here can be 
gathered in two major groups. 

GROUP I: 

Vu and Seinfeld [79], Caravani, Di Pillo and 
Grippo [23], Omatu, Koide and Soeda [59], 
and Sawaragi, Soeda and Omatu [69] treated 
the SLE problem in a somewhat similar 
fashion. The idea behind the approach used 
was to represent the state variable y(x,t) 
as a infinite series of eigenfunctions of 
the partial differential operator model ling 
the DPS. This yields an equivalent model 
described by an ODE in the sequence a(t), 
comprising the coefficients of that 
expansion. Such an infinite sequence is 
approximated by an N-dimensional vector 
aN(t), obtained by truncating it in its 
first N terms. This supplies the state N­
modal approximation y (x,t) (cf. section 2). 
The state estimation Yroblem is then 
approached by determining the finite­
dimensional estimate .3N(t) for the N-modal 
approximation estimate YN(X,t). The SLE xs 
is finally determined through YN(X,t) by 
optimizing some appropriate criterion (cf. 
Fig. I). 

In [23] it was investigated the location of 
a single sensor for estimating the initial 
state in the one-dimensional heat equation. 
It was assumed homogeneous boundary 
conditions in the state, such that the DPS 
was excited only by the unknown initial 
condition. The noisy sensor placement was 
performed by minimizing the maximum mean 
square error for the initial state. 
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The SLE was accomplished in [79,59,69] by 
minimizing the trace of the estimate error 
covariance matrix at the final time. A 
recursive algorithm was proposed in [79], 
which determines the optimal location of one 
sensor in terms of the previously located 
sensors. 

In [59,69] it was presented existence 
~eorems concerning the solution of the SLE 
problem in infinite dimension. Theorems 
establ ishing necessary and sufficient 
conditions for the SLE, before considering 
an y state-space approximation, were also 
presented. 

GROUP I I: 

The methods discussed above (Group I) used 
(either impl icitly or expl icitly an N-modal 
approximation for the state y(x,t), and so 
the y appl ied finite-dimensional filter i ng 
algorithms to aN(t). On the other hand, 
Bensoussan [15], Aidarous, Gevers and 
Instal le [2,4], Amouroux , Babary and 
Malandrakis [10], Kumar and Seinfeld [47], 
Curtain and Ichikawa [30] and Nakamori, 
Miyamoto, Ikeda and Sawaragi [57] used a 
different approach. The idea behind this was 
to apply infinite-dimensional filtering to 
the state y(x,t), and then to represent the 
state estimate y(x,t) as a infinite series 
with the coeficients sequence a(t); which 
is truncated in its first N terms yielding 
the vector aN(t) of the estimate N-modal 
approximation YN(X,t). 

In such methods this approximation procedure 
was actually appl ied only on the covariance 
operator, rather than in the state estimate 
itself. The great majority of the above­
mentione d papers faced the SLE problem by 
minimizing a cost function given in terms of 
the trace of the N- modal approximation for 
the estimate error covariance operator; thus 
supplying the SLE xS (cf. Fig. 1). 

A theoretical treatment for the SLE problem 
was proposed in [15] by using functional 
anal ysis techniques based on the Lions'[51] 
approach to control theory for DPS. The 
ex istence of solutions for the SLE problem, 
as wel I as necessary conditions for 
optimal it y , were establ ished. Th i s was 
achieved by formulating the SLE problem as 
an optimal control one on the Riccati 
equation describing the evolution of the 
estimate error covariance operator. 

In [2] it was initially considered the 
location of a single sensor, and the 
procedure was then extended to cover the 
case of several sensors. They assumed 
discrete-time observations. The SLE problem 
was approached by minimizing the spatial 
integral of the N- modal approximation for 
the estimate error covariance. In [4] they 
proved the existence of solutions for the 
SLE problem, and also the location algorithm 
converge nce, for the method presented in [2]. 

It wa s used in [10] a weighting function for 

the terms in the trace of the error 
covariance N-~odal approximation. This was 
done in order to increase the accuracy for 
the first coefficients of the state N-modal 
approximation. 

In [47] the computational problem concerning 
the minimization of the integral of the 
trace of the estimate error covariance 
matrix was overcome. They replaced that 
matrix by an upper bound of it, given in 
terms of the covariance matrix associated to 
the free system. It was also analysed the 
SLE problem sensitivity with relation to 
boundary condition, observation noise 
covariance, and initial error covariance 
variations. 

The filtering problem was approached in [30] 
by using abstract evolution equations in 
Hilbert space. As in [15] the SLE problem 
was rigorously treated as an optimal control 
one, where the control variable ch~acterizes 
the sensor location. Opposite to [15] , they 
used the mild evolution operators approach 
for considering existence theorems for SLE, 
as well as necessary conditions for 
optimality. 

In [57], as in [15, 30], the SLE problem was 
approached as a deterministic optimal control 
one, whose basic cost function was given by 
the trace of the estimate error covariance 
operator and by a further term standing for 
the control cost. Semi group theory was used 
as in [30]. It was established an existence 
theorem and sufficient conditions for 
optimal ity, by using a sensitivity criterion 
given by the trace of the information 
operator; which can be thought of as an 
extension of the Fisher's information matrix 
to infinite-dimensional spaces. The 
computational effort in connection to the 
above criterion was claimed to be smaller 
compa red with that requ i red fo r the t race of 
the filter covariance. For implementation, 
it was suggested an N-modal approximation 
for that information operator. 
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Fig. I : N-modal approximations for SLE. 
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GROUP Ill: 

Cannon and Klein [21,22], Klein [44], Ewing 
and Higgins [34), Chen and Seinfeld [25), 
Kumar and Seinfeld [48), Morari and O'Oowd 
[56), also investigated the SlE by . 
considering the estimation problem In a 
infinite-dimensional space. However, in each 
one of the above papers it was presented a 
somewhat specific characteristic, which 
suggests a separate review rather than an 
inclusion in the previous groups. 

The heat equation in one-dimensional spatial 
domain and without forcing term was 
considered in [21,22). Although the OPS was 
supposed to operate in a deterministic 
environment, it was allowed uncertanties in 
the initial and boundary conditions, as 
well as in the observation process. The 
location of a single transducer, which was 
assumed to average the measurements over a 
small neighborhood in t he spatia l domain,was 
investigated. The theory behind the method 
appl ied analytical arguments for 
establ ishing an (upper bound) estimate for 
the state, which was used for supplying 
estimates for the error between the state 
itself and numerical approximations of it. 
The SlE was then accompl ished by minimizing 
these error estimates. The same approach was 
also considered in [44). 

In [25) the optimal ity criterion was given 
by the space-time integral of the trace.of 
the estimate error covariance. The spatia l 
domain was "a priori" discretized in order 
to avoid a possible sensors c lu stering in a 
small region. The SlE problem was then 
approached as an optimal control one in 
which: (1) the state dynamics is given by 
the matrix POE describing the estimate error 
covariance evolution, and (2) the control 
variables are characterized by a Boolean 
vecto r indicating either the presence or 
absence of sensors over the discrete spatial 
domain. Although it was not considered a 
finite-dimensional approximation for the 
state - space, the algorithm developed for 
sensors location requires at each iteration 
the resolution of two matrix POE (the 
covariance evolution and its adjoint), whose 
solution method was not discussed in [25). 
This method has been appl ied in [48) for 
state estimation in tubular chemical 
reactors, where they have used orthogonal 
collocation techniques for reducing the 
infinite-dimensional system to a finite­
dimensional one. 

The SlE problem was investigated in [56) by 
assumi ng that the OPS is driven by 
nonstationary input disturbances. Their 
approach was based on the G-K (Goodson-Klein) 
observabil ity criterion, whose conditions 
may not be satisfied for a 1 imited number of 
sensors . In this way it was proposed an SlE 
method by minimizing the information loss 
associated to the nonobservable subspace. 
This optimal ity criterion is given by the 
spatial integral of the trace of the 
estimate error covariance operator. Such an 

error is mainly caused by the lack of 
observabil ity due to the presence of 
nonstationary input disturbances. Although 
the theory was not developed in a finite­
dimensional space, they used state 
approximations for examples implementation, 
including experimental results. 

OCl: (Optimal Controllers locat ion) 

The Oel problem has been investigated mainly 
by the French School. lions [52), Amouroux 
[5),Amouroux and Babary [6-9), Ai darous [1), 
Aidarous, Gevers, and Installe (3), and 
Burger [17,18) considered the optimal 
location of control points (actuators) for 
OPS. Generally these methods presented 
several common characteristics, appl ied to 
somewhat similar mathematical models. For 
instance, those which considered feedback 
control assumed that the observation points 
(i.e., the sensors location) were "a priori" 
determined, as opposite to the SCl methods 
discussed latter in this section. 

like the SlE methods in Group I, the idea 
behind t he OCl approach used in [1,3,5-9) 
1 ies on truncating the coefficients sequence 
a(t) of the eigenfunction series expansion 
for the state y(x,t). After that, the 
optimal control strategy is determined for 
the system N-modal approximation. In this 
way the optimal control problem, for the 
state N-modal approximation YN(X,t), is 
approached in a finite-dimensional state 
space in terms of the truncated vector 
aN(t). The same approximation technique was 
also used in [17,18), where the OCl problem 
was faced from a rather different point of 
view. 

The results presented in [5,6) are related 
to the concepts of control labil ity and 
reachab i 1 ity, rather than to the optimal 
control problem. The main goal was to 
maximize, over all possible control points, 
the vo lume of a hyperell ipsoid in the state 
space comprising the reachable states for 
bounded pointwise controls. The OCl was 
formulated according to the necessary and 
sufficient conditions for reachability of 
the truncated system. 

The optimal ity criterion in [8,9) was given 
by the overall control energy and by the 
state accuracy at the final time . They also 
reviewed other two OCl procedures besides 
the state truncation one: an iterative 
method using gradient-l ike algorithms, and a 
parametrization method using N-modal 
approximation for the distributed control. 
The pointwise controllers considered in [8) 
were extended to the case of zones of action 
in [9), where both approaches were compared. 
In [71 they considered several performance 
criteria for the optimal pointwise control 
problem. For instance, the minimization . of 
the truncated optimal control and the final 
state error norms, were discussed among 
others. 

Opposite to [5-9), the approach in (3) 
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considered discrete-time observations and 
stochastic (Gaussian) input disturbances. As 
far as the optimal ity criterion is concerned, 
[3] minimized a mixed cost function 
comprising the overall control energy and 
state accuracy along the whole trajectory. 
An interesting analysis on the duality 
between the SLE and OCL problems, according 
to [2] and [3], was also presented in [3]. 

In [18] the OCL was discussed form both 
points of view: zones of action and point­
wise controllers. After using a state N­
modal approximation, it was then assumed 
that the system is static (rather than 
dynamical), thus referring the OCL problem 
to an ODE model approximated by an algebraic 
equation. A geometrical approach was 
considered, by using orthogonal projection 
arguments, for minimizing the distance 
between the desired "state" (for the static 
system) and the reachability linear subspace. 

Theoretical aspects regarding the OCL for 
pointwise controls was si ightly investigated 
in chapter 4 of [52] for deterministic DPS. 
There a rigorous abstract approach for 
establ ishing the existence of optimal 
position for Dirac measures was considered. 

SCL: (Optimal Sensors and Controllers 

Location) 

The SCL problem refers to the optimal 
location of both sensors and controllers, 
generally for closed-loop optimal control 
problems in DPS. In case of feedback control, 
such a combined procedure involving OSL and 
OCL problems may eventually concern state 
estimation as well (and hence SLE as a 
special case of OSL). 

Such a problem has been investigated by 
Amouroux, Di Pi 1 10 and Grippo [11], El Jai 
[33], Ichicawa and Ryan [41,42], Courdesses 
[27], and Malandrakis [54]. Instead of the 
author by author review procedure used so 
far, it seems more appropriate to review the 
above SCL literature according to the main 
characteristics used to face the problem. 
This is motivated by the several common 
points shared by the subsets of the above­
mentioned set of papers. 

Concerning the environment in which the DPS 
is supposed to envolve, [54,41,42] considered 
(Gaussian) disturbances corrupting the 
control action, although all the papers up 
to [27] assumed observation (Gaussian) noise 
corrupting the measurements. A completely 
deterministic formulation was considered in 
[27]. In every of the above-mentioned papers 
it was assumed continuous time operation; 
and [33] was the only one to consider open­
loop control and a variable number of 
sensors and controllers. Pointwise controls 
were assumed in [54,27]. 

For the SCL methods appl ied to stochastic 
DPS in [11,54,41,42] the optimal control 
strategy was given according to the 

separation principle, after performing the 
state estimation. The stochastic regulator 
problem for evolution equations was 
considered in [41,42] by using a semigroup 
approach. In [11] the filtering procedure 
was appl ied in finite-dimensional spaces by 
considering a state N-modal approximation. 
On the other hand, [54,41,42] applied 
infinite-dimensional filtering and used N­
modal approximation for operators associated 
to the LQG (Linear-Quadratic-Gaussian) 
optimal control problem (i .e., they used N­
modal approximation for the feedback and 
estimate error covariance operators). In a 
similar fashion, the deterministic approach 
considered in [27] involved N-modal 
approximation in connection to the linear­
quadratic (deterministic) optimal control 
problem. In the open-loop approach presented 
in [33] the pointwise OSL was implemented 
for estimating the initial state, and the 
OCL for reaching a desired final state using 
minimum energy controls. 

The optimal ity criterion involved in the 
method presented in [11] was given by the 
minimization of the state estimate error at 
the final time and the overall control 
energy. Several possible criteria and 
practical considerations for the SCL problem, 
including the sensors and controllers number 
optimization, were discussed in [33]. In 
[54,41,42,27] the cost functional to be 
minimized comprised three terms: final state 
accuracy, state accuracy along the whole 
trajectory, and the overall control energy. 
The existence of an optimal location was 
establ ished in [41,42], where it was also 
presented a comparative analysis involving 
either separate or simultaneous location of 
sensors and controllers. 

The OSL problem for deterministic closed­
loop control was also considered by Koivo 
and Kruch [45]. Such an approach, which was 
one of the first to appear, was quite 
different from those described above, since 
the control was supposed to act only on a 
fixed boundary point. Therefore this 
characterized an OSL problem for closed-loop 
control, rather than an SCL problem. Some 
theoretical aspects regarding the existence 
of solutions for a particular OSL problem in 
feedback control for deterministic DPS were 
presented by Lions [52]. As in [45], the OSL 
problem for closed-loop control of 
temperature distribution was also considered 
by Kaizer [43]. Further appl ications 
involving the SCL problem for DPS were 
investigated by Lee, Koppel and Lim [50] as 
well. 

4. A CLASSIFICATION OF METHODS 

As it has been commented on before (eg. see 
[46,61 ,67]), sooner or later one will be 
faced with approximation techniques (either 
for model 1 ing or numerical and physical 
implementation) when dealing with any ~oblem 
in DPS. For the OCL and OSL prob 1 ems, it can 
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be observed from the previous section that 
the N-modal approximation (also called 
truncation of eigenfunctions - or Fourier, o r 
harmonic - expansion, as an approximation 
scheme resulting from the separation of 
variables technique) is certainly the most 
used for sensors and controllers location in 
DPS. 

The purpose of this section is twofold. 
First of all some relevant characteristics 
of those methods for OCL and OSL in 
(dynamical) DPS which use, in one way or 
another, N-modal approximation schemes are 
summarized. Such methods are then classified 
according to the stage of the optimization 
procedure in which N-modal approximations 
are used. 

Methods characteristics 

Table I displays some models and methods 
characteristics for that part of the 
I iterature reviewed in the preceding section 
which uses N-modal approximation. The 
following notation has been adopted in table 
I, where the first four items concern the 
external action in the DPS. 

1. INPUT: The input (or forcing term) in the 
dynamic equation can be described either 
by stochastic disturbance (w) and/or 
stochastic control (u), or by 
deterministic control (Ud) . Null input is 
denoted by (0). 

2. OBSERVATION NOISE: The presence or absence 
of noise corrupting the measurements will 
be denoted by ei ther (v) or (0), 
respectively. 

REfERENCE 

1791 vu , SEINFBD 119731 

1231 CAAAVANI, DI Plw), GRIPPO 119751 

1591 O'AnJ,I<DID£,SOEDA 119781 

1691 S/IIo/1\RAGI, SOUlA ,CI'1Aru 119781 

1151 w.'9C'JSSAN 11972 1 

I 2 I AIDNUJS, GEIIERS , INSTALIL 119751 

110 I I>KXJII(JJX, BAllARY, I-Wl\NDRAKl 5 ( 19 7 8 1 

I 1301 OJRTAIN , IQUJW<l\ 119781 

I I' 71 Kll'AA, SUNfUIJ 119781 

1571 N>\IWORl, MIYA'OIQ, lKIDA, SJ\WAAAGI (19801 

161 1\IoOJIUJX, BAllARY 11973 1 

17 1 ""lXJlUJX, BAllARY ( 19 7 5 ) 

131 1UDAlO.IS, GEIIERS, INSI1IU1: (1976) 

181 N-CIJ!UJ)(, BAllARY (1978) 

191 1\IoOJIUJX, BAllARY (1979) 

1111 AKXJ!O.JX, 01 PILID, GRIPPO (1976) 

1331 E:I. JA.l, (1977) 

1271 =RDESSES 119781 

1.21 lOITKAWlI , R'iA.~ (1979) 

15' 1 I'.III»lDRi\J<lS (1979) 

3. BOUNDARY CONDITIONS (BC): They can be 
either homogeneous (H), or inhomogeneous ; 
whose external action in the boundary can 
be described either by stochastic (S) or 
by deterministic (D) processes. 

4. INITIAL CONDITIONS (IC): Both known and 
unknown IC wi II be denoted by (D) o r (S), 
whenever they are given by determin istic 
or stochastic processes, res pecti vely . 
When an unknown IC is to be e stimated, it 
will be denoted by (E). Null IC are 
represented by (0). 

5. NUMBER OF LOCATED POINTS AT SIMULATED 
EXAMPLES (#): For SCL methods, the fi rst 
number displayed concerns the OCL problem 
while the second one concerns the OSL 
problem. 

6. APPROACH (APPR): This point out whether 
the fi Itering procedure (when appl ied) is 
developed either in finite (FIRN) or 

infinite dimensional spaces; the latter 
case presenting two possibilities, (FL ) 

2 

or (F£ ), according to filtering in L2 (1i ) 
2 

or in £2 , respectivel y. The symbol (C) 
will stand for control(orcontrollability) 
problems, which are approached in RN . 

7. MAIN GOAL : The final problem fo r which 
the optimal location problem is deve loped 
was characterized by the already posed 
notation SLE, OCL, and SCL. 

Methods classification 

The block diagram in figur e 2 presents a 
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Table I: Summary of model and method characteristics, 
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Fig. 2: A classification of OCl and OSl methods. 

classification of methods in the light of N­
modal approximation schemes. The main 
classifying factor concerns the different 
stages of the optimization procedure in 
which such approximations (or truncations) 
are required. In addition to the notation 
already posed in this paper, the following 
has also been adopted in the diagram of fig. 
2. 

Standing for the equivalent 
(infinite-dimensional) system 
representation, either in l2(n ) or 
~ 2' according to the eigenvector 
series expansion. 

~2 ""lRN: Standing for the N-modal 
approximation; that is, the 
truncation of eigenvector series 
expansion in its first N terms. 

Numbers between square brackets concern the 
references mentioned in table 1, and they 
point out the path which classifies the 
underlying method as follows: 

Path [; 1: SCl methods using infinite-
dimensional fi 1 tering. 

Path 11 2 : SlE methods using infinite-
dimensional fi 1 teri ng. 

Path 11 3 : SCl methods using finite-dimensional 
filtering. 

Path 11 4: SlE methods using finite-dimensional 
filtering. 

Path r: 5 : SCl methods approached in a 
deterministic envi ronment. 

Path [; 6: OCl methods approached in a 
deterministic environment. 

5. COMMENTS AND CONCLUDING REMARKS 

Several rema rks and some conclusions can be 
drawn from what has been discussed in the 
preceding sections . A brief selection of 

basic topics which deserve to be emphasized 
will be presented in this final section. 

1. Although this seems to be the first 
attempt to survey the several OCl and OSL 
methods for DPS, practical motivations 
for considering the problem were not 
addressed here. However such motivations 
can be found in the surveys [46,61,64,67) 
and books [20,66,68,76) mentioned in 
section 1, in connection to identificatiol 
filtering, and control problems in DPS. 

2. little 1 iterature has been written about 
OCl and OSl, compared with what has been 
publ ished in either identification, 
filtering or control of DPS. 

3. In particular, more research is needed 
regarding the OSl problem for system 
identification (i .e., the Sll problem). 

4. Gaussian distribution has always been 
assumed, for both input disturbance and/ 
or observation noise, when the DPS is 
supposed to operate in a stochastic 
environment. 

5. The great majority of the methods 
reviewed here apply to 1 inear models. 
More effort towards OCl and OSl methods 
for non-l inear DPS should be attempted. 

6. As a 1 ready rema rked he re, N-moda 1 is the 
most used approximation technique in OCl 
and OSLo Opposit to other areas in the 
DPS field (e.g., in DPS identification) 
finite-differences is not a very popular 
scheme, even among the methods which 
approximate the PDE to an ODE (or 
difference equation) thus reducing the 
DPS (modelled in an infinite-dimensional 
state space) to an lSP (model led in a 
finite dimensional state space). 
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7. On the other hand, as in the whole DPS 
field, the question of the when to use 
approximation techniques does not seem 
to have a final answer yet. According to 
section 4, approximations have been 
applied either before or after 
optimization schemes. When the filtering 
problem was involved, it has been 
performed either in L2( ~)' £2 or RN; but 
the control problem was generally 
developed in RN. In any case the OCL and 
OSL strategies were normally developed 
after applying approximation techniques. 

8. Up to a few papers (e.g., see [33,49]), 
the optimal placement of an "a priori" 
fixed number of sensors and/or 
controllers has been considered. The 
problem of optimizing the number of 
sensors and/or controllers should receive 
more attention. 

9. More research is also needed towards OCL 
for boundary controls. 

10. The simulated results presented in the 
literature have generally been developed 
for DPS with one-dimensional spatial 
domain. Illustrative examples and 
experimental results considering two or 
three dimensional spatial domains would 
be welcome. 

11. Perhaps it is already time to have some 
comparison of effectiveness of the 
different OCL and OSL methods. The 
classification introduced in section 4 
can be viewed as a first step for a 
qual itative comparison. It can also be 
used as a starting-point for further 
works towards a quantitative comparison, 
since some different approaches for 
solving the OCL and OSL problem have 
been grouped according to their main 
structural characteristic. 
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