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Abstract. This paper presents a survey for the optimal sensors and/or
controllers location problem in dynamical distributed parameter systems
modelled by partial differential equations. The more recent contributions in
this field are grouped according to the main goal for which the location
problem is developed, namely: system identification, state estimation, and
optimal control. In order to pose the sensors and controllers location
problem, the semigroup approach for modelling distributed linear systems is
briefly reviewed together with its equivalent (infinite-dimensional) and
approximate (finite-dimensional) Fourier expansion representations. After
presenting a concise general review of the several methods considered in the
current literature, it is also proposed a classification of methods. The main
classifying factor concerns the use of N-modal approximation schemes, and the
different stages of the optimization procedure in which they are required.
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1. INTRODUCTION

The sensors and controllers location is an
important problem towards identification,
state estimation, and control in distributed
systems. In this paper the several methods
proposed for solving such a problem are
reviewed and classified according to their
main characteristics. To begin with it is
advisable to pose some abbreviations which
will be of frequent usage throughout the
text:

ODE: Ordinary Differential Equation(s).
PDE: Partial Differential Equation(s).
LPS: Lumped Parameter System(s).

DPS: Distributed Parameter System(s).
OCL: Optimal Controllers Location.

OSL: Optimal Sensors Location.

DPS, as discussed in this paper, will stand
for a dynamical system governed by PDE
opposed to LPS which is described by ODE), as
a class of dynamical systems modelled in
infinite-dimensional state space (eg. see
Helton [39], Ray [65], Curtain and Pritchard
[32], and Pritchard [62]). Therefore, it
seems reasonable to say that the starting

point for analysing DPS is the PDE literature.

Presently the available literature in PDE is
certainly huge. To mention just a few books,
ranging from introductory to advanced texts,
published over the past two decades, see for
example Courant and Hilbert [26], Garabedian
[36], Friedman [35], Mikhlin [55], Treves

[73], Showalter [70]), and Gustafson [38].

Three of the main problems in system theory
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(and in particular in DPS)are system
identification, state estimation,and optimal
control (cf. Ray and Lainiotis, Ed. [66]). In
this paper, OCL and OSL will be regarded as
intermediate problems for considering the
above-mentioned ''"final' problems. Although
little literature has been written in DPS
identification compared with what has been
done in state estimation and optimal control,
some survey papers have already appeared in
this field. For instance, see Goodson and
Polis [37,61], Kubrusly [46], Ruberti, Ed.
[68], Burger and Chavent [19], and Chavent
[24]. On the other hand the current
literature on state estimation is much richer.
For some complete books and surveys on the
state estimation problem in DPS, regarding
both theory and applications, see for example
Bensoussan [14], Phillipson [60], Curtain

and Pritchard [32], Sawaragi, Soeda and Omatu
[69], Curtain [28], Ray [64], Tzafestas [75],
and Bencala and Seinfeld [13]. The optimal
control problem in DPS has also been reported
in several books and surveys. For instance,
see Wang [76], Lions [51-53], Butkoviski
[20], Balakrishnam [12], Curtain and
Pritchard [32], Robinson [67], Curtain [29],
and Bensoussan [16].

The present paper is organized as follows.
In section 2 the semigroup approach for
modelling DPS is briefly reviewed. After
describing a linear model for DPS in a
separable Hilbert space, and its equivalent
(infinite-dimensional) representation in
terms of Fourier expansion, it is also
presented the so-called N-modal (finite-
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dimensional) approximation. The OCL and OSL
problems are motivated by the model
dependence on the spatial location of
controllers and sensors. Section 3 comprises
a brief general review of the more recent
OCL and OSL literature, emphasizing the
"final" problem (i.e. system identification,
state estimation, or optimal control) for
which they were developed. A classification
of methods is presented in section 4, where
the methods reviewed in section 3 are
compared according to their main structural
characteristics. The paper ends with some
comments and concluding remarks in section 5.

2. MODELLING PRELIMINARIES

The purpose of this section is to present a
brief summary on the following topics: (1)
linear models for DPS, (2) equivalent model
description, (3) N-modal approximation, and
(4) model dependence on the spatial location
of controllers and sensors. The motivation
for this will become clear in section 3 when
the several 0SL and OCL methods will be
reviewed. As it will be emphasized in section
L, the major factor for classifying the 0OSL
and OCL methods will rely on whenoptimization
techniques are applied, either before or
after considering any model approximation;
and the so-called N-modal is the most used
approximation technique in the 0SL and OCL
literature.

Notation

The notation used in this section is
summarized as follows:

R" : n-dimentional EucAidean space.

an : Boundary of Q<= R .

<,>H - ;nner product in a Hilbert space

||||H : Norm in a Hilbert space H.

D(L) : Domain of a transformation L.

L* : Adjoint of a transformation L.

w : Time derivative of w(w = 3w/3t).

E : The expectation operator, as

K 2 usual.

M[R",R"] : Linear space of all real matrices
L by k (M[RX] = M[RK,RK]).

BLt[X,Y] : Normed linear space of all

bounded linear transformations of
X into Y, X and Y being normed
linear spaces (BRt[X]=Bit[X,X]).

The real spaces f;, L,(0,T), L2(2), L,(0,T;H),
c(0,T), €(2), €c2(0), and C(0,T;H) will have
their standard meanings (e.g., see [31]).

A linear model for DPS in L,(0)

Technical details are omitted throughout this
section and the reader is here, once and for
all, referred to the available literature. As
far as Hilbert space methods are concerned
see, for instance, Naylor and Sell [58] or
Weidmann [77], among others. Classical
references for the semigroup theory are Hille
and Phillips [40] and Yosida [78]. For an
introduction to semigroups towards control
theory see, for example, Balakrishnam [12] or

Curtain and Pritchard [31,32].

Let U (the input or control space), H (the
state space), and V (the observation or out-
put space) be Hilbert spaces, and consider a
linear dynamical system modelled by an
autonomous inhomogeneous abstract differential
equation as follows

y=Ay+Bu , y(0) =y EH, (1)

where u € L,(0,T;U), B € BLt[U,H], and the
(closed linear, but possibly unbounded)
operator A: D(A)+H is the infinitesimal
generator ot a strongly continuous semigroup
{T¢ € BLt[H];t>0}, where the domain D(A) is
dense in H. The mild solution of (1) is given
by

t
y(t) = Ty + {DTt—SB u(s)ds , (2)

with y € C(0,T;H). Furthermore, let v,

z € L,(0,T;V) and C € Bgt[H,V], and suppose
the state y is observed according to the
following measurement eguation

z=Cy+v . (3)

Now set H=L, (), Q2 being a simply connected
open set in R", and consider a linear time-
invariant DPS governed by a parabolic PDE as
in (1). For example suppose a special case
where the system operator A is a second-order
elliptic self-adjoint one of the form

Y
A=} a, 07, (&)
v
with
n 5
v=(u1.....vn)8 o Vq & 1={0,1,2} ,

Va=1.2,:4,n 5

[vl= 1" v_ is such that 0 < |v| <2,
g=1 A -

: H3(Q)-L,(R) ,

H2(Q)={w € L, (Q) DYw € L,(0); |v|=1,2},
D(A)={w € H?*(Q)} Lw=0 on 30} ,

where L denotes a linear operator defined on
30 (standing for the boundary conditions).
Moreover, assume that there exists an infinite
divergent real sequence {Ai;i=l,2,...} of
eigenvalues of A, which is bounded above and
non-increasingly ordered; that is

A¢i = }i;hf y

Avs < Ay o ke £ s
i+1 o

IK I +® as i +w

,2,...} is an orthonormal
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basis for L,(2) of eigenvectors of A, such
that the solution in (2) has an unique
Fourier series expansion

y(©) = I"a' (e, (5)

i=|
yielding, for y(t) € D(A),

Ay() = ["ra'(ve, (6)
i=1

where a' € C(0,T) is given by

ai(t) = <y(t].¢i> A
L, (R)

and the semigroup {T.€ BRt[L,(2)];t>0}
generated by A is

- hlt i

Tyls) = [ e a(s)e

i=1 ‘

Now set U = Rp, and assume that the input

transformation B € Blt[Rp,Lz(ﬂ)] is such
that

- g
Bu(t) = jEI BJ j(t) L3

with B; € L,(9) and u; € L;(0,T) for each
j=1,Z,...,p. By the Fourier series expansion
of Bj one gets

Bu(t) = T <u(t),b> ¢ (7)
{aul rRP !

where
u= (uyeenu) € Ly (05 TsREY.

l""<e +$.> )

b. = (<B,,0.>
: VL@ P, @

Finally set V = Rm, and let the output
transformation C € BLt[L,(Q), R™] be given by

C Y(t)=(<‘;‘(t).'\’1> "-.’<Y(t)’Ym> ]’

L, (@) L, ()
(8)

where vy, € L,(R) for each k=1,Z,...,m, such
that

Z {t-] = CY(L}JY > +v {t] »
k Lk

with Z=(21""’Zm)' v=(v1,....vm]9 LZ(D,T;Rni

An equivalent model in &,

The equations (5)-(7) supply an equivalent
representation in L, for the system model
(1), (&) in L,(Q), as follows:

a=Aa+Bu , alo)esr, , (9)

where B € BRt[RP,2,] is such that

Bu(t)=(<Bu(t),6,> ,<Bu(t) ,¢,> yers)

L, (®) L, (@)

=[<u{t),b1>Rp,<u(t],b2>Rp,---} s

and A:D(A)~%, is a closed densely defined
| inear operator

Ra(t)=(<Ay(t),4,> <Ay () ,0,> —

=02t (1) 2,82 (1) ,.00)

D(A) == (wy 5ty 50006 2p0 Ty, [P

generating a strongly continuous semigroup
{Tt € Bat(2,];t>0}

T a(s)=(<T y(s),d,> ,<T y(s),d,> il
: ¢ ) I YL, @)

ALt At
=(e ' al(s),e ’ a?(s),...)

The mild solution of (9) is then given by

t
a(t) = T,a(0) + [U T

g B uls)ds

with a=(a’,a?,...)€ C(0,T;2,). By theFourier
expansion of v, in (8) one gets the following
equivalent representation in 2, for the
measurement equation (3) in L,(2).

z=Ca+v , (10)
my . .
where C € Bit[ﬁz,R ] is given by

C a(t)=(<a(t),c,> ..,ca(t),cm>R ),

2, 2

with

¢ =(<v, 19, V<Y r9,> sese) s

L, () L, ()
for each k=1,2,...,m.

An approximate model in RN

The so-called N-modal approximation consists
in truncating the Fourier series expansions
involved in their first N terms, yielding a
Galerkin-1ike approximation for the state y

in (5) »
N i{ )
yN(t) = ’E a (e,

i=1

yy € C(0,T;Hy), where Hy is the N-dimensional

linear subspace of L,(2) spanned by

{¢7; i=1,2,...,N}. This supplies an
approximate representation in RN for the
equivalent system model (9) in &,, given by

P N
3y = Ay 2y * By U » aN(D) erR , (1)
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where
s < N
AN = dlag(al,...,\N) € MIR'] ,
_ * P N
BN = [bl,...,bN] E M[R",R"] ,

whose solution is

N (* N
aN(t) “ T aN(U) - i Tile BNU(s]ds ;
with ay= (a‘,...,aN) € C(D,T;IRN), and
At At At

Tz=e N =diag(e ! piien i€ N JE MURN]; t-0.

The observation 2N=(ZT,...22}E L, (0,T;R™) is
given by the following approximate version
of (10)

ZN = CN aN + v N (12)
with
N N, % N _m
CN = [cl,...,cm] € MR ,R] ,
CE = [(Yk’d)l) )---;<th¢N> }
L, (@) L,(Q)

for each k=1,...,m.

Controllers and sensors spatial location

dependence

Suppose the input transftormation B in (7)
depends on a vector x€ = (xf,-..xg) € R as
follows. Let the input (or control)
coefficients depend on x® in the following
way.

B. =B , xXeoncer”

c g ;
where x  describes the controllers spatial
location, such that

= P 2
[B ult)](x) = jgl g (x) uj(t)

A
J
For instance, let

0 <e < inf inf “ x?-x” o
1<j<p x€30 R
such that the chosed ball c:[xj] of radius =
centered at xj is contained in . for each
j=l,...,p, and let u_>0 be the usual

. 3
measure of c[xj]. Now set

-1
- u
bx€(x) = J £
: \

. . =
- if x E ;,E[XJ.] 5

0 , otherwise .

Hence

<Bj,¢i> = U | ¢-(X)dx .
Lo () o [x5]
R |

Therefore the approximate (N-modal)
representation for the input transformation
in (I1) is given by

¥ { =
j S (x)dx ... | 4. (x)dx
Jo g o 1"
3 o [x,] aalxp]
BN=LC : :
& o (x)dx ... J & (x)dx
N N
o [x5] o [x7]
L. 4

_ c PN
BN = BN(x ) € MIR",R"]

In a similar fashion, suppose the output
transformation C in (8) depends on a vector

5 S xm) € R™ as follows. Let the

output coefficients depend on x5 in the
following way.

where x° describes the sensors spatial
location, such that

z, (t) = <y(t),y > + v, (t)
k xi L, (R) k

For instance, set

=¥ ; s
Y J(x) = l e » HxEolx],
*k { 0 , otherwise ,

o Sy . c . c
where LE[Kk] is defined as Gg[xj]’ with x

replaced by x®. Therefore the approximate
(N-modal) representation for the outuput
transformation in (12) is given by

(
. ¢ (x)dx ... & (x)dx

:
Ja_[x3] Jo_[x;]

il(x)dx S

B N .m
CN = CN(x ) E M[R:;R] .

Before closing this section it is worth
remarking on pointwise controllers and
sensors. Consider a formal approach by
letting 0. In such a case the input (or
control) and output coefficients 2 p and
]
can be thought of as Dirac measures, that |

] < milaans
ox?(x) = &(x j} ;
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Y s(x) = é(x-xi) ,

Xy

thus supplying approximate representations
for the input and output transformations of
the following form.

H¢1(xf) 545 ¢1(x;]_
By (x°) = : Lo
ot e o) |
[0,(3) ov 0 (xD) ]
cN(st = : :
0 (x7) ool 8y (x°)

However, the above formal approach leads to
unbounded transformations, and L,(Q) is not
an appropriate state space anymore.

An illustrative example of an OCL and OSL

problem

For simplicity consider a stochastic version
of the approximated model in (11), (12).

da (t)=A ay (t)dt+B, (x°) [u(t)desdw(t)] ,

dzN(t)=CN(xs)aN(t)dt+dv(t}

Here {w(t); t>0} and {v(t); t>0} are
independent Wiener processes in RP and R™
with incremental covariance matrices

R, € M[RP] and Ry € M[RM], standing for
input disturbance and observation noise,
respectively. {u(t); 0<t<T} is an RP-valued
second-order stochastic control, that is

I'T
E{ 2 }=g{ (t)|[* dt} <=,
SR L T

which depends only on the past observations
{zy(1); 0<t<t}; and ay(0) is a zero mean
Gaussian random variable in RM with
covariance matrix Po € MIRN], which is
independent of w(t) and v(t). A simplified
version for the linear quadratic Gaussian
(LQG) problem is to find a stochastic control
u, as above, which minimizes the cost

J(u) = e{]b, (T)]|2  F+EL : b+
N RN lh“lle(o.T;R")
+ E{|hl|2 1 s
L,(0,T;RP)

where the first two criteria characterize
the accuracy in which the state can bedriven
to zero at the final time and along the
whole trajectory, respectively, and the third
one stands for the control energy. For
simplicity it has been assumed identity

weighting matrices for each criterion.
According to the separation principle, the

solution uy = uN(xc,xs) is given by

uy(t) = -BE(x)q(t)a (1)

where the symmetric feedback control matrix
(t) in MIRN] is the unique solution of the
backwards Riccati equation

Qy (1) = g (t)By (x“) By (x“) g, (t)-

G (DAARQ(D)-1y s gy(T=1y

and 3y(t) denotes the Kalman-Bucy filtered
estimate of the state aN{t),

day (£)=[A-P\ () Cy(x7)R-C, (x) -
-B) (x7)BX(x“)Qy ()13, (t)dt+

+PN(t)C;(x5)R;1dzN(t) . §y(0)=0,

where the error covariance *
P ()=E{ [ay () -3, (t)1[a, (t)-3, ()17} in

H[RN] is the unique solution of the Riccati
equation

B (t) = AP (£)+P (£)AL+BE (x“)R By (x°)-
-P\ (£)CH (x*)R7TC, (x*)Py (£) , P\ (0)=P_ .

The optimal cost is then given by

F
Jlu, (x%,x%) 1= trace P, (T)+| trace P (t)dt+
N N 0 N

T
+J trace QN(t)PN(L)C;(xs)R;lCN(xs)PN(t)dt.
0

An example of an OCL and OSL problem (for a
fixed number of sensors and controllers) is
to sellect (x%,xS) € QP x Q™<= RMP x RNM
which minimizes the cost J[uy(x®,x®)] of the
above-described optimal (closed-loop) control
strategy.

3. A GENERAL REVIEW

In this section we present a brief review of
the more recent OSL and/or OCL methods
considered in the current literature. The
bibliography mentioned here comprises over
L0 widely available papers published in the
last decade. The several contributions in
the field are primary grouped according to
the main goal for which the 0SL and OCL
problems are developed (instead of using a
chronological order), namely: System
Identification, State Estimation and Optimal
Control. Since the main goal behind an OSL
problem may be any of the above-mentioned,
the following further abbreviations
concerning the methods dealing with OSL will
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be adopted:

SLI: 0SL for System lIdentification.
SLE: OSL for State Estimation.
SCL: OSL and OCL for Optimal Control.

SLI: (Optimal Sensors Location for System

Identification)

A few papers have appeared on the SLI problem
for DPS, and they represent rather different
approaches. Therefore it seems that an

individual analysis is the most suitable way
for reviewing them. For a previous discussion
on this topic, based mainly on observability
arguments, see Goodson and Polis [37].

Le Pourhiet and Le Letty [49] proposed two
algorithms, somewhat similar to each other,
as an SLI| procedure for deterministic DPS.
The basic idea was to maximize, at each
iteration, the identification error sensivity
(according to pre-established identifiability
definitions) with respect to the location of
a new sensor., The first algorithm concerns
the improvement in the sensitivity criterion
by adding a new sensor to the set of all
sensors already located in previous
iteractions; and the second one also takes
into account the location of the new sensor
at the preceding iteraction. Both algorithms
stop when the placement of a new sensor no
more adds any substantial improvement as far
as the identification error sensitivity is
concerned. It is worth emphasizing that in
the above described approach it was not
assumed an "'a priori' fixed number of
available sensors.

Sokol 1ik[73] considered both the number and
location of sensors, as well as the
measurement times, for identifying DPS. The
distribuited model was approximated by a
lumped one by using finite-differences. In
this way both the time and space domains
were discretized with constant sampling rates.
The optimal space-time net (i.e., the
optimization of time and spatial location

for the measurements) was given by minimizing
the parameter estimate covariance, which was
performed by stochastic approximation schemes
presented in [71,72].

Qureshi, Ng and Goodwin [63] presented a
method to design optimal experiments for
identifying DPS through noisy observations.
Besides the SLI, it was also considered the
determination of boundary perturbations for
identifying not necessary linear systems.
The optimization criterion to be maximized
was the determinant of the Fisher's
information matrix associated to the
parameters to be identified, which depends
on both the boundary perturbations and
spatial location of the observation points.
The design method was developed for
hyperbolic and parabolic PDESY

(1) The SLI problem was also recently
considered by Carotenuto and Raiconi[SO],
and Rafajtowicz [81].

SLE: (Optimal Sensors Location for State

Estimation)

Several papers dealing with the SLE problem
have already appeared (cf. Tzafestas [75]),
and they present some common characteristics
For instance, every method discussed here
considers white Gaussian observation noise
when dealing with the (stochastic) filtering
problem. Aidarous, Gevers and Installe [2,4]
are the only to consider discrete-time
observation process. Cannon and Klein [22]
and Caravani, Di Pillo and Grippo [23]
consider a dynamical equation without input
disturbance, while the other always assume
Gaussian input disturbances. The main
characteristic of the majority of the SLE
methods analysed here is the reduction of

an infinite-dimensional system to a finite-
dimensional one, by truncating the(infinite)
Fourier expansion of either the state or the
estimates in its first N terms (N-modal
approximation), according to the increasing
order of the partial differential operator
eigenvalues. In this way the filtering
procedure is applied either in a finite-
dimensional state space or in a infinite-
dimensional one, respectively. Concerning
the latter case, when the state estimate
error covariance appears explicitly in the
performance index, such an approximation is
applied on the covariance operator rather
than on the estimate itself. In the light of
the above introductory discussion, the
SLE bibliography reviewed here can be
gathered in two major groups.

GROUP | :

Yu and Seinfeld [79], Caravani, Di Pillo and
Grippo [23], Omatu, Koide and Soeda [59],
and Sawaragi, Soeda and Omatu [63] treated
the SLE problem in a somewhat similar
fashion. The idea behind the approach used
was to represent the state variable y(x,t)
as a infinite series of eigenfunctions of
the partial differential operator modelling
the DPS. This yields an equivalent model
described by an ODE in the sequence a(t),
comprising the coefficients of that
expansion. Such an infinite sequence is
approximated by an N-dimensional vector
ay(t), obtained by truncating it in its
first N terms. This supplies the state N-
modal approximation y (x,t) (cf. section 2).
The state estimation groblem is then
approached by determining the finite-
dimensional estimate 3y(t) for the N-modal
approximation estimate yN(x,t). The SLE x5
is finally determined through yn(x,t) by
optimi?ing some appropriate criterion (cf.
Fig. 1

In [23] it was investigated the location of
a single sensor for estimating the initial
state in the one-dimensional heat equation.
It was assumed homogeneous boundary
conditions in the state, such that the DPS
was excited only by the unknown initial
condition. The noisy sensor placement was
performed by minimizing the maximum mean
square error for the initial state.
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The SLE was accomplished in [79,59,69] by
minimizing the trace of the estimate error
covariance matrix at the final time. A
recursive algorithm was proposed in [79],
which determines the optimal location of one
sensor in terms of the previously located
Sensors.

In [59,69] it was presented existence
theorems concerning the solution of the SLE
problem in infinite dimension. Theorems
establishing necessary and sufficient
conditions for the SLE, before considering
any state-space approximation, were also
presented.

GROUP 11:

The methods discussed above (Group |) used
(either implicitly or explicitly an N-modal
approximation for the state y(x,t), and so
they applied finite-dimensional filtering
algorithms to ay(t). On the other hand,
Bensoussan [15], Aidarous, Gevers and
Installe [2,4], Amouroux, Babary and
Malandrakis [10], Kumar and Seinfeld [47],
Curtain and Ichikawa [30] and Nakamori,
Miyamoto, lkeda and Sawaragi [57] used a
different approach. The idea behind this was
to apply infinite-dimensional filtering to
the state y(x,t), and then to represent the
state estimate y(x,t) as a infinite series
with the coeficients sequence 3(t); which
is truncated in its first N terms yielding
the vector 3N(t) of the estimate N-modal
approximation yN(x,t)

In such methods this approximation procedure
was actually applied only on the covariance
operator, rather than in the state estimate
itself. The great majority of the above-
mentioned papers faced the SLE problem by
minimizing a cost function given in terms of
the trace of the N-modal approximation for
the estimate error covariance operator; thus
supplying the SLE xS (cf. Fig. 1).

A theoretical treatment for the SLE problem
was proposed in [15] by using functional
analysis techniques based on the Lions'[51]
approach to control theory for DPS. The
existence of solutions for the SLE problem,
as well as necessary conditions for
optimality, were established. This was
achieved by formulating the SLE problem as
an optimal control one on the Riccati
equation describing the evolution of the
estimate error covariance operator.

In [2] it was initially considered the
location of a single sensor, and the
procedure was then extended to cover the
case of several sensors. They assumed
discrete-time observations. The SLE problem
was approached by minimizing the spatial
integral of the N-modal approximation for
the estimate error covariance. In [4] they
proved the existence of solutions for the
SLE problem, and also the location algorithm
convergence, for the method presented in [2].

It was used in [10] a weighting function for

the terms in the trace of the error
covariance N-riodal approximation. This was
done in order to increase the accuracy for
the first coefficients of the state N-modal
approximation.

In [47] the computational problem concerning
the minimization of the integral of the
trace of the estimate error covariance
matrix was overcome. They replaced that
matrix by an upper bound of it, given in
terms of the covariance matrix associated to
the free system. It was also analysed the
SLE problem sensitivity with relation to
boundary condition, observation noise
covariance, and initial error covariance
variations.

The filtering problem was approached in [30]
by using abstract evolution equations in
Hilbert space. As in [15] the SLE problem
was rigorously treated as an optimal control
one, where the control variable characterizes
the sensor location. Opposite to [15], they
used the mild evolution operators approach
for considering existence theorems for SLE,
as well as necessary conditions for
optimality.

in [57], as in [15, 30], the SLE problem was
approached as a deterministic optimal control
one, whose basic cost function was given by
the trace of the estimate error covariance
operator and by a further term standing for
the control cost. Semigroup theory was used
as in [30]. It was established an existence
theorem and sufficient conditions for
optimality, by using a sensitivity criterion
given by the trace of the information
operator; which can be thought of as an
extension of the Fisher's information matrix
to infinite-dimensional spaces. The
computational effort in connection to the
above criterion was claimed to be smaller
compared with that required for the trace of
the filter covariance. For implementation,
it was suggested an N-modal approximation
for that information operator.

(Foer &) i CH
B i truncl.snon 0/_’ )
filter : Ty &)
? ‘ group II : ]
IP—-*— filtering - - <. - 1|. ..... filtering - - - -
b E
Tosel i group 1 l
o Y.run:lat.u:m A
ty==a) ! frg=ay)

infinite-dirensional space o -1 - o finite-dimensional space

Fig. 1: N-modal approximations for SLE.
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GROUP 111:

Cannon and Klein [21,22], Klein [44], Ewing
and Higgins [34], Chen and Seinfeld [25],
Kumar and Seinfeld [48], Morari and 0'Dowd
[56], also investigated the SLE by
considering the estimation problem in a
infinite-dimensional space. However, in each
one of the above papers it was presented a
somewhat specific characteristic, which
suggests a separate review rather than an
inclusion in the previous groups.

The heat equation in one-dimensional spatial
domain and without forcing term was
considered in [21,22]. Although the DPS was
supposed to operate in a deterministic
environment, it was allowed uncertanties in
the initial and boundary conditions, as

well as in the observation process. The
location of a single transducer, which was
assumed to average the measurements over a
small neighborhood in the spatial domain,was
investigated. The theory behind the method
applied analytical arguments for
establishing an (upper bound) estimate for
the state, which was used for supplying
estimates for the error between the state
itself and numerical approximations of it.
The SLE was then accomplished by minimizing
these error estimates. The same approach was
also considered in [44].

In [25] the optimality criterion was given
by the space-time integral of the trace of
the estimate error covariance. The spatial
domain was ''a priori' discretized in order
to avoid a possible sensors clustering in a
small region. The SLE problem was then
approached as an optimal control one in
which: (1) the state dynamics is given by
the matrix PDE describing the estimate error
covariance evolution, and (2) the control
variables are characterized by a Boolean
vector indicating either the presence or
absence of sensors over the discrete spatial
domain. Although it was not considered a
finite-dimensional approximation for the
state-space, the algorithm developed for
sensors location requires at each iteration
the resolution of two matrix PDE (the
covariance evolution and its adjoint), whose
solution method was not discussed in [25].
This method has been applied in [48] for
state estimation in tubular chemical
reactors, where they have used orthogonal
collocation techniques for reducing the
infinite-dimensional system to a finite-
dimensional one.

The SLE problem was investigated in [56] by
assuming that the DPS is driven by
nonstationary input disturbances. Their
approach was based on the G-K (Goodson-Klein)
observability criterion, whose conditions
may not be satisfied for a limited number of
sensors. In this way it was proposed an SLE
method by minimizing the information loss
associated to the nonobservable subspace.
This optimality criterion is given by the
spatial integral of the trace of the
estimate error covariance operator. Such an

error is mainly caused by the lack of
observability due to the presence of
nonstationary input disturbances. Although
the theory was not developed in a finite-
dimensional space, they used state
approximations for examples implementation,
including experimental results.

OCL: (Optimal Controllers Location)

The OCL problem has been investigated mainly
by the French School. Lions [52], Amouroux
[5],Amouroux and Babary [6-9], Aidarous [1],
Aidarous, Gevers, and Installé [3], and
Burger [17,18] considered the optimal
location of control points (actuators) for
DPS. Generally these methods presented
several common characteristics, applied to
somewhat similar mathematical models. For
instance, those which considered feedback
control assumed that the observation points
(i.e., the sensors location) were 'a priori"
determined, as opposite to the SCL methods
discussed latter in this section.

Like the SLE methods in Group |, the idea
behind the OCL approach used in [1,3,5-9]
lies on truncating the coefficients sequence
a(t) of the eigenfunction series expansion
for the state y(x,t). After that, the
optimal control strategy is determined for
the system N-modal approximation. In this
way the optimal control problem, for the
state N-modal approximation Yy(x,t), is
approached in a finite-dimensional state
space in terms of the truncated vector
an(t). The same approximation technique was
also used in [17,18], where the OCL problem
was faced from a rather different point of
view.

The results presented in [5,6] are related
to the concepts of controllability and
reachability, rather than to the optimal
control problem. The main goal was to
maximize, over all possible control points,
the volume of a hyperellipsoid in the state
space comprising the reachable states for
bounded pointwise controls. The OCL was
formulated according to the necessary and
sufficient conditions for reachability of
the truncated system.

The optimality criterion in [8,9] was given
by the overall control energy and by the
state accuracy at the final time. They also
reviewed other two OCL procedures besides
the state truncation one: an iterative
method using gradient-like algorithms, and a
parametrization method using N-modal
approximation for the distributed control.
The pointwise controllers considered in [8]
were extended to the case of zones of action
in [9], where both approaches were compared.
In [7] they considered several performance
criteria for the optimal pointwise control
problem. For instance, the minimization of
the truncated optimal control and the final
state error norms, were discussed among
others.

Opposite to [5-9], the approach in [3]
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considered discrete-time observations and
stochastic (Gaussian) input disturbances. As
far as the optimality criterion is concerned,
[3] minimized a mixed cost function
comprising the overall control energy and
state accuracy along the whole trajectory.
An interesting analysis on the duality
between the SLE and OCL problems, according
to [2] and [3], was also presented in [3].

In [18] the OCL was discussed form both
points of view: zones of action and point-
wise controllers. After using a state N-
modal approximation, it was then assumed
that the system is static (rather than
dynamical), thus referring the OCL problem
to an ODE model approximated by an algebraic
equation. A geometrical approach was
considered, by using orthogonal projection
arguments, for minimizing the distance
between the desired ''state' (for the static
system) and the reachability linear subspace.

Theoretical aspects regarding the OCL for
pointwise controls was slightly investigated
in chapter 4 of [52] for deterministic DPS.
There a rigorous abstract approach for
establishing the existence of optimal
position for Dirac measures was considered.

SCL: (Optimal Sensors and Controllers

Location)

The SCL problem refers to the optimal
location of both sensors and controllers,
generally for closed-loop optimal control
problems in DPS. In case of feedback control,
such a combined procedure involving 0SL and
OCL problems may eventually concern state
estimation as well (and hence SLE as a
special case of 0SL).

Such a problem has been investigated by
Amouroux, Di Pillo and Grippo [11], E1 Jai
[33], Ichicawa and Ryan [41,42], Courdesses
[27], and Malandrakis [54]. Instead of the
author by author review procedure used so
far, it seems more appropriate to review the
above SCL literature according to the main
characteristics used to face the problem.
This is motivated by the several common
points shared by the subsets of the above-
mentioned set of papers.

Concerning the environment in which the DPS
is supposed to envolve, [54,4142] considered
(Gaussian) disturbances corrupting the
control action, although all the papers up
to [27] assumed observation (Gaussian) noise
corrupting the measurements. A completely
deterministic formulation was considered in
[27]. In every of the above-mentioned papers
it was assumed continuous time operation;
and [33] was the only one to consider open-
loop control and a variable number of
sensors and controllers. Pointwise controls
were assumed in [54,27].

For the SCL methods applied to stochastic
DPS in [11,54,41,42] the optimal control
strategy was given according to the

separation principle, after performing the
state estimation. The stochastic regulator
problem for evolution equations was
considered in [41,42] by using a semigroup
approach. In [11] the filtering procedure
was applied in finite-dimensional spaces by
considering a state N-modal approximation.
On the other hand, [54,41,42] applied
infinite-dimensional filtering and used N-
modal approximation for operators associated
to the LQG (Linear-Quadratic-Gaussian)
optimal control problem (i.e., they used N-
modal approximation for the feedback and
estimate error covariance operators}. In a
similar fashion, the deterministic approach
considered in [27] involved N-modal
approximation in connection to the linear-
quadratic (deterministic) optimal control
problem. In the open-loop approach presented
in [33] the pointwise 0SL was implemented
for estimating the initial state, and the
OCL for reaching a desired final state using
minimum energy controls.

The optimality criterion involved in the
method presented in [11] was given by the
minimization of the state estimate error at
the final time and the overall control
energy. Several possible criteria and
practical considerations for the SCL problem,
including the sensors and controllers number
optimization, were discussed in [33]. In
[54,41,42,27] the cost functional to be
minimized comprised three terms: final state
accuracy, state accuracy along the whole
trajectory, and the overall control energy.
The existence of an optimal location was
established in [41,42], where it was also
presented a comparative analysis involving
either separate or simultaneous location of
sensors and controllers.

The OSL problem for deterministic closed-
loop control was also considered by Koivo
and Kruch [45]. Such an approach, which was
one of the first to appear, was quite
different from those described above, since
the control was supposed to act only on a
fixed boundary point. Therefore this
characterized an OSL problem for closed-loop
control, rather than an SCL problem. Some
theoretical aspects regarding the existence
of solutions for a particular OSL problem in
feedback control for deterministic DPS were
presented by Lions [52]. As in [45], the OSL
problem for closed-loop control of
temperature distribution was also considered
by Kaizer [43]. Further applications
involving the SCL problem for DPS were
investigated by Lee, Koppel and Lim [50] as
well,

L. A CLASSIFICATION OF METHODS

As it has been commented on before (eg. see
[46,61,67]), sooner or later one will be
faced with approximation techniques (either
for modelling or numerical and physical
implementation) when dealing with any problem
in DPS. For the OCL and OSL problems, it can
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be observed from the previous section that
the N-modal approximation (also called
truncation of eigenfunctions - or Fourier, or
harmonic - expansion, as an approximation
scheme resulting from the separation of
variables technique) is certainly the most
used for sensors and controllers location in
DPS.

The purpose of this section is twofold.
First of all some relevant characteristics
of those methods for OCL and OSL in
(dynamical) DPS which use, in one way or
another, N-modal approximation schemes are
summarized. Such methods are then classified
according to the stage of the optimization
procedure in which N-modal approximations
are used.

Methods characteristics

Table 1 displays some models and methods
characteristics for that part of the
literature reviewed in the preceding section
which uses N-modal approximation. The
following notation has been adopted in table
1, where the first four items concern the
external action in the DPS,

1. INPUT: The input (or forcing term) in the
dynamic equation can be described either
by stochastic disturbance (w) and/or
stochastic control (u), or by
deterministic control (ug). Null input is
denoted by (0).

2. OBSERVATION NOISE: The presence or absence
of noise corrupting the measurements will
be denoted by either (v) or (0),
respectively.

Kubrusly and H. Malebranche

3. BOUNDARY CONDITIONS (BC): They can be
either homogeneous (H), or inhomogeneous;
whose external action in the boundary can
be described either by stochastic (S) or
by deterministic (D) processes.

L, INITIAL CONDITIONS (IC): Both known and
unknown IC will be denoted by (D) or (S),
whenever they are given by deterministic
or stochastic processes, respectively.
When an unknown IC is to be estimated, it
will be denoted by (E). Null IC are
represented by (D).

5. NUMBER OF LOCATED POINTS AT SIMULATED
EXAMPLES (#): For SCL methods, the first
number displayed concerns the OCL problem
while the second one concerns the 0SL
problem.

6. APPROACH (APPR): This point out whether
the filtering procedure (when applied) is
developed either in finite (FRN) or

infinite dimensional spaces; the latter

case presenting two possibilities, {FLz)

or (F2 ), according to filtering in L, ()
2

or in 1, respectively. The symbol (C)

will stand for control(or controllability)
problems, which are approached in RN.

7. MAIN GOAL: The final problem for which
the optimal location problem is developed
was characterized by the already posed
notation SLE, OCL, and SCL.

Methods classification

The block diagram in figure 2 presents a

REFERENCE xmm-ngg e | 1c # | nee| A 1
(791 U, SEDFELD (1973) w v H o 2 Felt |'
[23] CARAVANI, DI PILLO, GRIPFO (1975) 0 v H E 1 EN | se |
[59] OMATU,KDIDE,SOEDA (1978) bW v H | s 2 FyN igroup I} |
[69] SAWARAGL, SOEDA,GMATU (1978) [ wl v |w s |2 |Fw |
| !
—————————————————————— T~ 1= ~"71-"7-"71"~ ‘_T“']
[15] BENSOUSSAN (1972) | w v |oH | s o | R, I[ :
12 ] AIDAROUS,GEVERS, INSTALLE (1975) W v H s 2 F !
b
[10] AMOURDUX, BABARY, MALANDRAKIS (1978) | w v Hooos 2 Fr, -
| 101 curTam, 10mXWA (1978) | ow | v fsmio 2R 'gmmm!
| [47] KUMAR, SEINFELD (1978) : w v H E 2 o _
(57] MAKAMORI, MIYAMOTO, IKEDA, SAWRRAGI (1980) i w v DH : 0 1 L I
1 i ‘ - 1
[6] AMOUROUX, BABARY (1973) [ ug | @ W 1 c | H
[7] AMOUROUX, BABARY (1975) | v 0 H | D 1 | e
[3] AIDAROUS, GEVERS, INSTALLE (1976) Tu e w v H 1§ 1 | C o
] | ]
8] AMOURCUX, BABARY (1978) vy 0 H | D 1 | e |
3]  AMDURCUX, BABARY (1979) | uy i H o 1o c
| H i
i 1 . |
[11] AMOUROUX, DI PILLO, GRIFPO (1976) u v | w | 0D 1/4 ir“,,,/c ! |
[33] EL JAI, (1977 u v ’ H | E W4 B/ |
[27] COURDESSES (1978) | uy ] " | D 1 . c iy |
[42] ICHIKMWR, RYAN (1979) lasw| v H | D 1/1 =E'L,..FC I !
154] MALANDRAKIS (1979) cw | v ! b | S . 2/1 iFL.,"rC | i

Table 1: Summary of model and method characteristics.
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Fig. 2: A classification of OCL and OSL methods.

classification of methods in the light of N-

modal approximation schemes. The main
classifying factor concerns the different
stages of the optimization procedure in
which such approximations (or truncations)
are required. In addition to the notation
already posed in this paper, the following

has also been adopted in the diagram of fig.

25

L,++2,: Standing for the equivalent
(infinite-dimensional) system
representation, either in L,(Q) or
L,, according to the eigenvector
series expansion.

12-*RN: Standing for the N-modal

approximation; that is, the
truncation of eigenvector series
expansion in its first N terms.

Numbers between square brackets concern th
references mentioned in table 1, and they
point out the path which classifies the
underlying method as follows:

SCL methods
dimensional
SLE methods
dimensional
: SCL methods
filtering.
SLE methods
filtering.
SCL methods approached in a
deterministic environment,
: OCL methods approached in a
deterministic environment.

Path I, : using infinite-
filtering.
using infinite-
filtering.

Path I, :

Path TII,

Path I, :

4

Path T, :

Path T

5. COMMENTS AND CONCLUDING REMARKS
Several remarks and some conclusions can b

drawn from what has been discussed in the
preceding sections. A brief selection of

e

using finite-dimensional

using finite-dimensional

e

basic topics which deserve to be emphasized

Wi

I.

. As already remarked here, N-modal

11 be presented in this final section.

Although this seems to be the first
attempt to survey the several OCL and OSL
methods for DPS, practical motivations
for considering the problem were not
addressed here. However such motivations
can be found in the surveys [46,61,64,67]
and books [20,66,68,76] mentioned in
section |, in connection to identificatio
filtering, and control problems in DPS.

Little literature has been written about
OCL and OSL, compared with what has been
published in either identification,
filtering or control of DPS.

In particular, more research is needed
regarding the OSL problem for system
identification (i.e., the SLI problem).

. Gaussian distribution has always been

assumed, for both input disturbance and/
or observation noise, when the DPS is
supposed to operate in a stochastic
environment.

The great majority of the methods
reviewed here apply to linear models.
More effort towards OCL and OSL methods
for non-linear DPS should be attempted.

is the
most used approximation technique in OCL
and OSL. Opposit to other areas in the
DPS field (e.g., in DPS identification)
finite-differences is not a very popular
scheme, even among the methods which
approximate the PDE to an ODE (or
difference equation) thus reducing the
DPS (modelled in an infinite-dimensional
state space) to an LSP (modelled in a
finite dimensional state space).
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[ 2]

[ 4]

C. S. Kubrusly and H.

. On the other hand, as in the whole DPS

field, the question of the when to use
approximation techniques does not seem
to have a final answer yet. According to
section 4, approximations have been
applied either before or after
optimization schemes. When the filtering
problem was involved, it has been
performed either in Lz(Q)' %, or RN: but
the control problem was generally
developed in RN, In any case the OCL and
0SL strategies were normally developed
after applying approximation techniques.

Up to a few papers (e.g., see [33,49]),
the optimal placement of an "a priori"
fixed number of sensors and/or
controllers has been considered. The
problem of optimizing the number of
sensors and/or controllers should receive
more attention.

More research is also needed towards OCL
for boundary controls.

The simulated results presented in the
literature have generally been developed
for DPS with one-dimensional spatial
domain. Illustrative examples and
experimental results considering two or
three dimensional spatial domains would
be welcome.

. Perhaps it is already time to have some

comparison of effectiveness of the
different OCL and OSL methods. The
classification introduced in section &
can be viewed as a first step for a
qualitative comparison. It can also be
used as a starting-point for further
works towards a quantitative comparison,
since some different approaches for
solving the OCL and OSL problem have
been grouped according to their main
structural characteristic.
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