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1. INTRODUCTION 

K. .. 
CA -~dent~f~able structures were recently in-
troduced by Kubrusly (1978-b) in order to meet 
the following question: what kind of linear 
structures for multi variable dynamical systems 
operating in a stochastic environment (i.e, 
driven by random disturbances and observed 
through noisy measurements) are amenable to 
the use of the explicit parameter lemma? The 
explicit parameter lemma acts as an interme­
diate stage for the system identification 
problem, where the final parameter determina­
tion can be recursively achieved by stochastic 
approximation algorithms of the type discussed 
in Kubrusly (1978-a). Such a recursive identi­
fication procedure naturally requires the in­
version of estimates for the state correlation 
matrix at each iteration, thus compromizing 
its on-line applicability. 

In order to provide on-line recursive algo­
rithms for CAK-identifiable structures, we 
propose several new algorithms which can be 
thought of as different on-line versions of 
the above-mentioned identification scheme. 
These on-line algorithms are grouped into 
five disjoint classes according to their 
structural characteristcs. 

The plan and content of the paper are as 
follows. The multivariable model under consi­
deration is described in section 2.1 as well 
as the assumptions concerning the stochastic 
environment. Some basic results regarding 
identifiable structures and the explicit pa­
rameter lemma (according to Kubrusly(1978-b)) 
are briefly summarized in sections 2.2 and 
2.3 since such concepts represent the key idea 
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behind the approach used. In section 3 the 
recursive on-line parameter identification 
schemes (obtained by using stochastic appro­
ximation algorithms) are developed as appro­
ximate versions of the original "off-line" 
scheme which converges with probability one. 
Illustrative examples including a comparison 
with a previous single-variable approach pro­
posed by Saridis and Stein (1968) are present­
ed in section 4. The performance of the al­
gorithms is analysed in section 5. 

2. MODEL DESCRIPTION AND AUXILIARY RESULTS 

2.1. Model description: Let )It(lRm,Rn) denote 
the linear space of all matrices n by m, and 
consider a discrete-time dynamical system 
whose evolution is governed by the following 
time-invariant linear difference equation. 

x(i+l) = A xCi) + B w(i); x(o) = xo ' (1) 

where {xCi); i=O,1,2, ••. } is an Rn-valued 
state sequence such that x is a second-order 
random vector, {w(i);i=o,1~2, ... } is taken to 
be an IRP-valued se cond-order random sequence 
wi th p~, and A £ 11J.,rRn ,lR

n
), B £ JeCIRP ,mn) are 

the system and input matrices, respectively. 
Let {z(i); i=O,1,2, ••. } be an IRm-valued 
observation sequence, with m~n, described by 
the following measurement equation 

z(i) = C xCi) + v(i) ( 2) 

where the noise observation {v(i);i=O,1,2 ... , } 
is taken to be an ~m-valued second-order random 
sequence, and C £ )t(JRn ,lRm) is the observation 
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matrix. Furthermore. let {w(i)} and {v(i)} be 
wide-sense stationary random sequences satis­
fying the following assumptions 

(A-l): E{w(i) v*(j)}=Q 'v' i.j = 0.1.2 •••• 

(A-2): E{w(i) w*(j)}=R o(i-j) 
w 

E{v(i) v*(j)}=R (!i-j!) 
v 

(A-3) : 

where E and the superscript * denote expecta­
tion and transpose as usual~ o(i-j) is the 
"Kronecker de 1 ta". R £ .It(CR .CRP) is symmetric 
positive-definite. a~d R (k) is a symmetric 
positive-semidefinite ma¥rix in A(CRm,CRm) 
which is supposed to be known for each 
k=O.1.2 •••• 

2.2. A definition of identifiable structures: 
Consider the standard notation (A.B.C) for the 
above described state-space representation 
and define 

8 
k 

k n m 
CA £ ~CR .CR) ; k=O.1.2 •••• (3) 

[_ * _ * * 1* n qm. _ 80 81 ••• 8q_1J E .NA(IR,IR ). q-l. 2 •••• (4) 

8k_l B E )!(IRP .lRm); k=1.2.... (5) 

where n is the observability matrix when q=n. 
and {yk

q ;k=1.2, •.• } are Markov parameters, 
regard~ng an arbitrary representation (A,B.C). 
Now assume that: 

(i) the pair (A,B) is controllable. 
(ii) the pair (A,C) is observable, 
(iii) the system matrix A is asymptotically 

stable, and 
(iv) there exists an integer ~n/m such that 

the matrix n has at least one comple­
q 

tely determined left inverse P • 
q 

Let q be the least integer satisfying (iv) 
o 

and K~qo-l a positive integer defined for 
q >1. According to Kubrusly(197B-b) we have: 

o 

(a) (A,B.C) has a CAK-identifiable 
structure if (v-a) q >1 and the Markov pa­

o 
rameters Yk are known for each k=1,2, •.• ,K. 

(b) (A.B.C) has a CAoo-identifiable 
structure if (v-b) either qo>l and Yk=O 

for each k=1.2, .•.• qo-l, or qo=l. 

(c) (A.B.C) has an iterative CAk-iden­
tifiable structure if (v-c)qo>l and both B 

and 8k_l • k=1.2 •... ,qo-l, are known matrices. 

2.3. The explicit parameter lemma: Regarding 
the system described in (1). (2). let ~n/m 
be any integer such that n in (4) is left 

q 
inversible 1

• Now consider the following ran-

dom vectors in IR
qm 

for each i=O.1.2 •.•. 

10bservability is a sufficient condition for 
the existence of a such q (cf. Kubrusly 
(197B-b) ) 

w' (0 

v' (0 (v(i), v(i+l) ••.•• v(i+q-l» 

z'(i) = (z(i), z(i+l) ••.• ,z(i+q-l» 

where v(i) z(i) (as in (2», and 

if k=Q ·u~ Y. w(i+k-j) 
J 

if k=1.2 ••.. 

are random vectors inlRm, with Y. as in (5) 
J 

Associated with such an integer q. let 
P E ;t(IRqm .CRn) be a left inverse of nand 

q q 
define for each i.k=O.1.2 •.•• 

y(i)=P z' (i), 
q 

Nk=E{Z(i+k)y*(i)} 

T =(E{w (i)w'*(i)}+E{v(i+k)v'*(i)})P* 
k k q 

M=E{y(i)y*(i)}=~~ N~ ••. N:_l]P: ' 

R=P (E{w' (i)w'*(O }+E{v' (i)v'*(i)})P*= 
q q 

,.[T~ T; ••. T:_l]P: 

(6) 

(7) 

(B) 

(9) 

(10) 

where Nk.TkE: ;4b:Rn.tRm) and M.R £ }ZORn.CRn).The 

following two results establish procedur~for 
expressing the unknown parameter 8k=CAk in 

terms of quantities which are completely 
known up to second-order moments of the obser­
vation sequence {z(i)} • For proof the reader 
is referred to Kubrusly (197B-b). 

Lemma (L-l): Consider the system modelled in 
(1), (2) and suppose it operates in a wide­
sense stationary stochastic environment sa­
tisfying assumptions (A-l)-(A-3). 

(a) if (A.B,C) describes an observable con­
trollable and asymptotically stable system, 
which is assumed to have reached the steady 
state. then 8k in (3) can be written as 
follows: 

k 0,1,2 •..• ( 11) 

where 

(12) 

Q = M - R (13) 

with N
k

, Tk • M, and R as defined above for any 

integer ~n/m such that n is left inversi-
ble. q 

(b) Moreover. let q=qo and K~qo-l be integers 

as defined in section 2.2. If either (A,B,C) 

has a CAK-identifiable structure and the cor­
relation matrix R is supposed to be known, 
or (A,B.C) has w a CAoo-identifiable 
structure; then Tk in (B) is completely 
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determined (i.e, it does not depend on any 
unknown parameter) for each k=O,l, •.• ,K, or 
for all k, respectively; what implies that R 
in (10) is also a known quantity. 

Lemma (L.2): Consider the model described in 
section 2.1 with known disturbance correlation 
matrix R • Suppose (A,B,C) has an iterative 
CAk-idenfifiable structure, and let the quan­
tities in (6)-(10) be associated with the 
integer qo defined in section 2.2. 

(a) The parameter 8k in (11) is fully deter-
mined up to M for each k=O,l, ••• ,qo-l. 

(b) Let Ko be any integer such that K~qo. If 

M and {Nk ; k = q , q +l, .•. ,K } are availa-
000 

ble, then the sequence {8k ;k=q ,q +l, .•• ,K } 
o 0 0 

can be recursively identified according to 
the following algorithm. 

Yk 8k- l B 

ljJk [Rv(k) YkRwYt ... YkRwY~~lJ 

Lk Lk- l ~ + ljJk 

Tk Lk 
p* 

qo 

Sk Nk Tk 

8 = S Q-l 
k k 

with known initial conditions given by 

Here ljJk and L.k are in }t(lRqom ,!Rm), and 

. [0 ' J ' I .M ORq om ,!Rqom) ~ : m(q -1) £ '-____ 2_ 

0 

(where I£ stands for the identity matrix in 

A(fl£ ,R£) ) . 

3. IDENTIFICATION ALGORITHMS 

Our aim is to develop recursive identifica­
tion algorithms for multivariable linear 
systems, as modelled in section 2.1, with 
identifiable structures as defined in section 
2.2. It can be shown (e.g. see Mayne (1972» 
that for some canonical forms (A,B,C), with 
known structure but unknown coefficients, the 
matrix A can be completely specified in terms 
of the product CAk. In other words, the iden­
tification of the unknown system matrix A can 
be directly obtained once 8k =CAk in (11) is 

identified for some finite set of integers k. 
Under assumptions of lemmas (L-l) or (L-2) 
this is finally achieved when Q=M-R and Sk in 

(12), (13) are determined. Such unknown quan­
tities can be recursively estimated through 
the following stochastic approximation al­
gorithms 

Q(i+l)=(1-]..I(i»Q(i)+]..I(i) [y(i)y*(i)-R] (14) 

M(i+l)=(l-]..I(i»M(i)+]..I(i)y(i)y*(i) (15) 

Sk (i + 1) =(1-). (i)} Sk (i) +A (i) [z (i+k) y*(i} -T
k
] 

(16) 

which converge in quadratic mean and with pro­
bability one to Qk' M, and Sk respectively, 

provided that the standard stochastic appro­
ximation conditions (including those concern­
ing the pre-selected real sequences 
{]..I(i)£(0,1);i=o,1,2, .•• } and {).(i)£(O.l) 
i=O,1,2 •... }) are fulfilled (e.g see 
Kubrusly (l978-a». 

Remark (R-l): It is important to notice that 
the above recursive algorithms can be carried 
out only if the matrices Rand Tk are "a 
priori" known. According to lemmas (L-l) and 
(L-2). Rand Tk are fully determined when the 
structure (A,B,C) under consideration is 

either CA
K 

,CA
oo 

,or iterative CAk identi­
fiable. • 

Remark (R-2): It can be shown (cf. Kubrusly 
(1978-b» that Q=E{x(i) x*(i)} in (13), which 
is positive-definite since (A,B) is a con­
trollable pair and R (the input disturbance 
correlation matrix) ~s positive-definite.Hence 
M=Q+R in (13) is positive-definite as well, 
since R in (10) is positive-semidefinite. It 
is also a simple matter to show that M(i) in 
(15) is symmetric positive-definite for each 
i=O,l •..•• once the initial condition M(O) is 
symmetric positive-definite. On the other 
hand, as far as the algorithms (14). (15) are 
concerned, it is also advisable that Q(i) and 
[M(i)-R] become symmetric positive-definite 
at an early stage i o • One can have io=O by 

choosing appropriate symmetric positive-defi­
nite initial conditions Q(O) and M(O) in 
accordance with the known matrix R. • 

The following proposition provides two algo­

rithms for identifying 8k= CAk , and they can 

be easily proved from (14)-(16) by using the 
same idea presented in Kubrusly and Curtain 
(1977). These algorithms will be referred to 
as "off-line" since they require a matrix 
inversion at each iteration. 

ProEosition (P-l): Define 

8k (i) Sk (i) [M(i) rl - R (17) 

8~ (i) Sk(i) Q-l(i) (18) 

where Qk(i), M(i). and Sk(i) are as in (14)­

(16), and the initial conditions Qk(O) and 
M(O) are properly choosen in order to ensure 

o -1(0) r, (0) ;1-1 f the eX1stence of Q 1 and LM 1 -RJ or 
each i~io' according to the above remark.Then 
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both 8k (i) and 8k(i) converge with probabi­
lityone (w.p.l) to 8k as i+oo • 

Proposition (P-2): The sequence {8k (i); 
i=O,1,2, ..• } in (17), which converge w.p.l to 
8k , can be written in the following form: 

8k (i+l) = 

i=~~~~0k(i) r-V(i)(1-RM-l(i»Y(i)Y*(i)M-l(i+l~ 

+ >..(i) [Z(i+k)y*(i)-T~M-l(i+l)+£(i,i+l)' (19) 

where 

M-l(i+l) = _1 __ rM-l(i) _ 

l-V(i) L 
V(i)M-l(i)y(i)y*(i)M-l(i) 

I-VU) +V( i)y*( i) M-I (i) y( i} 
]. (20) 

{lJ(i) ; i=O,1,2, •.. } and {>..(i); i=O,1,2, ... } 
are real sequences associated with {M(i)} and 
{Sk(i)} in (15), (16) respectively, and 

£(i,i+l) is given by 

£(i,i+l)=8 (i+l)RM-l(i+l)- l-)..(i) 8 (i)RM-l(i) 
k l-lJ(i) k 

= £1 (i,i+1) + £2(i,i+l) , (21) 

with 

Proof: By the matrix inversion lemma (or 
method of modification,cf.Householder(1964» 
we have (20) from (15), which converge w.p.l 
to M-I as i+oo. Thus since 

y*(i)M-l(i+l) = y*(i)M-l(i) 
l-~(i)+~(i)y*(i)M-l(i)y(i) 

we get by (16) and (20) that 

Sk(i+l)M-l(i+l) = 

1->..(i) S (·)M- l (.)[ (.) (.) *(.) -1(. )] = --- k 1 1 I -V 1 Y 1 Y 1 M 1 + 1 
l-lJ(i) 

+ >..(i) [Z(i+k)y*(i)-Tk]M-l(i+l), 

But according to (17) we have 

Sk(i)M-l(i) = 8
k

(i) [I - R M-l(i)]. Then 

0k (i+l) [1-R M-l(i+l) ] 

1->"(~)8k(i) [1-RM-l(i)] [1-lJ(i)Y(i)Y*(i)M-l(i+l~ 
l-V(1) J 

and the desired result follows by a simple 
algebraic manipulation. o 

The algorithm for 8k as written in (19) avoids 
the matrix inversion at each iteration required 
in (17). On the other hand the expression in 
(19) is not a recursive one, since £(i,i+l) 
depends on 8k (i+l). However, motivated by 
the particular form in which £(i,i+l) 
= £l(i,i+l) + £2(i,i+l) in (21) depends on the 

convergent (w.p.l) random sequences {8k (i)} 

and {M-l(i)}, we propose several modified ver­
sionsfor the algorithm in (19). These new re­
cursive identification algorithms, which we 
refer to as on-line (as opposite to those in 
(17), (18», are obtained from (19) by using 
the following approximations for £ (i, i + 1) . 

Algorithm (AL-l) : £ (i, i + 1) " 0 

Algorithm (AL-2) : £(i,i+l) " £(i,i) , 

Algorithm (AL-3): £l(i,i+l) " 0 

Algorithm (AL-4) : £l(i,i+l) " £l(i,i). 

Algorithm (AL-5): £1 (i,i+l) " 

£1 (i, i + 1) I 
8k ( i + 1) =8k ( i) 

Algorithm (AL-6): £(i,i+l) '" £(i-l ,i). 

Algorithm (AL-7): £(i,i+l) 

£(i,i+l) 
Ok (i + 1) =8k (i) 

8k (i)=8k (i-l) 

Algorithm (AL-8) : £l(i,i+l) '" £l(i-l,i) 

Algorithm (AL-9) : £1 (i,i+l) '" 

£1 (i,i+l) 
8

k
(i+l)=8k (i) 

Ok (i) =8k (i -1) 

Our goal here has been to provide suitable 
approximations for £(i,i+l) that do not depend 
on 8k (i+l). The above on-line recursive al-

gorithms can be grouped into five classes 
according to the following rule: "if >..(i) =lJ(i) 
for all i, then each class supplies an unique 
approximate version of (19)". So we have a 
classification for the on-line identification 
algorithms as follows: 

Class Algori thms Remraks 

I (AL-l) , (AL-2) Approximations of 
the type £( i , i + 1) "0 

(AL-3),(AL-4) , (AL-5) Approximatons of 
II the type £1 (i,i+l)" 

1II-a (AL-6) Approximations of 
the type £(i, i+l) " 

Q 

1II-b (AL-7) , (AL-8) 
£(i-l,i) introduci ng 
a new delay charac 

II1-c (AL-9) terized by the te 
8k (i-l). 

rm 
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Remark (R-3): By using the matrix inversion 
lemma we got a recursive algorithm for M-I in 
(20) from the algorithm for M in (15). The 
same technique can not be directly applied in 
order to provide a recursive algorithm for 

Q-l (or [M-Rrl ) from (14) (or (15)) that does 
not require any matrix inversion; and this is 
due to the presence of the matrix R in (14) 
(an exception is made for the rather trivial 

case of R=rr*, rdRn). In this sense, the 
algori thm in (18) (or (17) can not be con­
verted into "on-line" without using approxi-
mations as above. • 

Remark (R-4): By wide-sense stationarity and 
time invariability assumptions, the same 
quanties in (6)-(10) could have been defined 
by using any fixed integer time-shift ~.Hence 
y(i) and z(i+k) appearing in the algorithms 
(14)-(16), (19),(20) can be replaced by 
y(i+~) and z(i+k+~), respectively. • 

4. ILLUSTRATATIVE EXAMPLES 

Consider the linear model described in section 
2.1. Our first example investigates a particu­
lar single-variable version for the algorithms 
proposed in the preceding section. This is 
done in order to provide a comparison of 
effectiveness of different approaches, since 
the literature in system identification by 
stochastic approximation (e.g. see Saridis 
(1974)) is mainly concerned with single-vari­
able (i.e, m=p=l) system. Next we consider two 
exemples for identifying multivariable systems 
with m=p=2. In both cases we have used well­
known (asymptotically stable) canonical forms 
of the type discussed in Mayne (1972); and 
the following general assumptions for system 
simulation and identification were made: (1) 
the disturbances {w(i)} and {v(i)}were taken 
to be independent and normally distributed 
with zero mean such that R (Ii-jl) = 

V 
= 0

2 I o(i-j) and R = 0
2 I in (A-2), (A-3) 

v m w w p 

with 0
2 = 1 and 0

2 = 0.25; (2) ~(0=(i+0.5)-1, 
w v 

V(i)=(i+l)-l; and (3) the square matrix-val­
ued initial conditions were taken to be iden­
tity matrices, and null initial conditions 
were used otherwise. 

Example (E-l) - Single-variable system: Let 

* n C =c=(l,O, ... ,O) £ R ; B=b=(O, ... ,O,b )~E:R~ 
n 

With q =n and P =1 it is immediate to ve-
o n n 

rify that (A,B,C) has a CA~-identifiable 
s truc ture (i f b is" a priori 11 known, then 

n 
(A,B,C) has also a CAn and an iterative 

CAk-~dent~f~able ) N h . ~ ~ ~ structure. ote t at, ~n 

such a case and under the above assumptions, 

we have T =0 and R=a2 I in (8), (10) with n v n 
q=qo-u. The identification of the matrix A 

(i.e, the identification of 8 =c* An=a*) is 
n 

then achieved by one of the algorithms in 
(17), (18), (AL-l)-(AL-9) with k=n. We shall 
also carry out, for comparison purposes, a 
previous on-line algorithm proposed by Saridi 
and Stein (1968) for identifying 8 =a*. UndeI 

n 
the preceding assumptions and recalling remaI 
(R-4) it can be written in following form: 

0(i+n+1)=0(0 [I-(y(i)y*(O-R)M' (i+n+l)] + 

+ z(i+n)y*(i)M'(i+n+l) (22) 

where 

M' (i)y(Oy*(i)M' (i) M' (i+n+l) = M' (i) - ""-"':"::;:'-<"~:.J.-~~':"-:~ 
1 + y*(i)M'(i)y(i) 

It is worth noting that the above algorithm 
behaves like those in class 11. Actually, 
under the preceding assumptions, the algo­
rithm (AL-3) can be written, after some al­
gebric manipulation, as 

= 1->-(0 8 (i) 
l-V(i) n 

[I-(Y(i)Y*(i)-R)V(i)M-l(i+l)] 

(23 

With >-(i) = V(i), for all i, the algorithms ir 
(22), (23) have essentially the same struc­
ture. Indeed the simulated results of (22) 
and those algorithms in class 11 are basical 
the same. Figures 1 to 3 show the evolutior 

Of. the, s~uare ~rror ~(i)=1 la(i~-al I~ where 
a(~)=8 (~), a(~)=8 (~), and a(~)~(~) accor. 
ing tonthe algoritRms "off-line" in (18) 
on-line in (AL-l)-(AL-9), and on-line in ' 
(22), respectively. The following numerical 
values were used for system simulation: n=4 
a=(-0.656, 0.784, -0.18, 1), D

4
=1. 

Example (E-2) - Multivariable CAOO-identifia­
ble structure: 

Under controllability assumption it is a 
simple matter to show that (A,B,C) has a 

CAOO-identifiable structure with qo = 2 and 

P2 = r1 2(if {b.; i=1,2,3,4} are "a priori" 
~ 2 

known, then (A,B,C) has also a CA and an 
iterative CAk-identifiable structure). Sir 
ce A is completely determined by 
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o :.] 
its "off-line" and on-line identification can 
be carried out through algorithms 8;(i) in (17), 

(18) and 8 2(i) in (AL-l}-(AL-9), respectively, 

where T2 = 0 and R = O'~ 14 in (8), (10) with 

q=q =2. Figure 4 shows the evolution of the 
squ~re error a(i) = Ila(i) - al 12 where a(i} 
in ~6 is obtained from 8;(i) in (18) and 

8 2(i) in (AL-8) as a=(a
l

, •.. ,a
6

} E(R6 is na­

turally obtained from 8
2

, The following nume­

rical values were used: a=(-O.l, 0.1:\0.3,0.4, 
-0.2, 0.5), b

l
=b 4=1, and b

2
=b

3
=O. 

Example (E-3) - Multivariable iterative 
CAK identifiable structure: 

, 
0 1 , 0 0 0 

I 
b

l b 2 ,C=[~ a l a2: 
A ---1------- , B 

0 o '0 1 0 0 0 
I 

0 o '0 0 1 0 0 
• a3 a4 :a5 a6 a 7 b

3 
b

4 

0 o 0 

010 

where {bi; i=l, 2,3, 4} are known coefficients 
satisfying the controllability assumption. It 
is easily verified that, with q =3 and 

~J 

* 0 2 
P3 = Q3Ia

l
=a

2
=o' (A,B,C) has a CA and an ite-

rative CAk-identifiable structure, but not a 

CA
3 

or CAOO-identifiable structure. In other 
words, it can be shown that Yl=O and Y

2 
is 

entirely known in terms of B, what implies 
that T in (8) and R in (10) are also known 
quanti~ies. Actually, in this particular exam-

pl~ R=a~ IS and T2 is a sparse matrix whose 
1 . 2 hI" on y non-zero entry ~s O'v at t e ast pos~t~on. 

On the other hand Y
3 

depends on a
l
,a

2
, and so 

does T3 in (8). Since 

o o 

o o 

the complete identification of the system 
matrix A can be achieved by the following 
procedure: 

1st STEP: Identify 8 2 by using one of the 

algorithms 8 2(i) in (17),(18) , 

(AL-l) - (AL-9), since T2 and R 
are known quantities. 

2nd STEP: Determine Y
3

=82B and so T
3

,according 

to the recursive scheme of lemma 
(L-2) or by definition (8), and then 
identity 83 through one of the al­
gorithms 8

3
(i) in (17),(18),(AL-l)­

(AL-9). 

Using the following numerical values for sys­
tem simulation, a=(a

1
, ... a

7
) = (0.3, 0.1 , 

7 
O. 7, O. 6, O. 2, -0. 4, O. 5) E ~, b 1 = b 4 = 1, 

b2 = b3 = 0, the evolution of the square error 

a(i)=lla(i)-al 12 is shown in figure 4. Here 
a(i)=(a

l
,a2,a

3
(i) , .•• ,a

7
(i» in(R7 was 

obtained as follows: (aI' a 2) = (0,296 

0.096) E (R2 is the result of 1st step through 
8 2(i) in (AL-8) up to the 10 OOOth iteration 

where II <a l ,a2) - (aI' a 2)1 12 = 4.1xlO-
5

, and 

{aj (i) ; j=3, ... ,7} is the second row of 8 3(i) 

in (AL-8) at the 2nd step. 

5. CONCLUDING REMARKS 

Nine recursive on-line identification schemes 
were proposed for CAK-identifiable structures 
operating in a stochastic environment. The 
problem was approached by using stochastic 
approximation algorithms, which yielded 
straightforward on-line identification pro­
cedures applicable to multivariable systems. 

The identifiable structures defined in 
section 2.2 enabled us to write down the 
unknown sys tem parameters in an explici t form, 

-1 
8k=Q Sk' as in lemma (L-l) and (L-2). In 

this way the system identification problem 
could be reduced to one of determining 
second-order moments of the observation pro­
cess only (i.e, the matrices Nk and M in (7), 
(9». By using some parametric estimation 
technique to finally solve the identification 
problem, estimates of the state correlation 
matrix Q(i) or M(i)-R in (14), (15) must be 
inverted at each iteration as in proposition 
(P-l). In order to avoid such a repetitive 
matrix inversion (and so to derive on-line 
identification schemes) the algorithms (AL-l) 
to (AL-9) were obtained by approximating in 
a recursive way the non-recursive version 
presented in proposition (P-2). 

The major advantage of such algorithms over 
that proposed by Saridis and Stein (1968) is 
the applicability for multivariable systems. 
Another advantege of the algorithms proposed 
here concernS convergence speed: Although 
they have presented the same convergence rate 
and structural simplicity of the algorithm in 
(22) (cf. example (E-l», they are much more 
amenable to accelerated versions by choosing a 
pair of optimal sequences {A(i)} and {~(i)}, 
which can be reflected by less time-consuming 
computer programmes. 

Other features that have been presently 
accomplished are: (1) The identification 
method requires measurements only on the noisy 
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observation sequence {z(i)}. This in fact 
may be very important in real cases where 
the input process is inaccessible. (2)Both 
B and R (the input disturbance parameters) 

w 
do not need to known in case of 
CAOO-identifiable structures. Examples (E-l) 
and (E-2) considered just particular cases 
of such structures, which were also shown 
to be the natural representation ar1s1ng 
from standard discretization procedures for 
linear systems governed by partial diffe­
rential equations (cf. Kubrusly (l978-c»).(3) 
The input disturbance and the observation 
noise sequences, {w(i)} and {v(i)}, were 
not required to be independent; and no 
specific type of probability distribution 
was imposed. 

Finally it is worth remarking on three 
points concerning the illustrative exam­
ples: (1) It was shown experimentally in 
(E-l) and (E-2) that the on-line algorithms 
(AL-l)-(AL-9) presented the same convergen­
ce rate of the "off-line" one in (18) ,whose 
convergence is proved w.p.l.(2) Example 
(E-3) differed considerably from the pre-

vious ones since CA
oo 

(or even CA3) identi­
fiability was not accomplished there,thus 
becoming necessary to use the iterative 

CAk-identifiability property through lemma 
(L-2). (3) In example (E-3) the identifica­
tion procedure may not be appropriate for 
on-line applications, even using one of the 
algorithms (AL-l)-(AL-9), since it com­
prises ~ consecutive steps of recursive 
schemes. Investigations regarding the joint 
evolution of these two steps, where estima­
tes T

3
(i) are directly obtained from each 

O2(i), is a topic for further research.This 

can lead to on-line procedures where recur­
sive algorithms for O2(i) and 0

3
(i) are 

carried out simultaneously. 
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