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Mean Square Stability  Conditions for Discrete 
- 

Stochastic  Bilinear  Systems 
C. S. KUBRUSLY AND 0. L. V. COSTA 

Abstract-Necessary  and  sufficient  conditions for mean  square  stabil- 
ity are proved  for  the  following  class  of  nonlinear  dynamical  systems: 
finite-dimensional bilinear models,  evolving in discrete-time, and driven 
by random  sequences.  The  stochastic  environment under consideration  is 
characterized only  bl  independence,  wide  sense  stationarity,  and  second- 
order properties.  Thus, we do not  assume  random  sequences to be 
Gaussian,  zero-mean,  or  ergodic.  The  probability  distributions  involved 
are allowed lo be arbitrary and  unknown. Limiting stale  moments are 
given in terms of the model parameters and  disturbances  moments. 

I. INTRODUCTION 

S EVERAL aspects regarding structural  properties  of bilinear 
systems have  been  investigated  in the  current  literature during 

the past decade. Fundamental questions on such a class  of 
nonlinear dynamical systems, as well as practical and theoretical 
motivations for considering them, have been  properly addressed 
in the surveys I1]-[3] concerning the  continuous-time case. On the 
other hand.  many  real systems are naturally described by discrete- 
time bilinear models (e.g..  see [4] and the references  therein). 

The stability problem for continuous-time bilinear systems 
operating in a stochastic environment has been considered by 
many authors and reviewed in [3]. However, the same problem 
for discrete-time systems has not received so much  attention. 
Stability conditions  for  discrete-time  stochastic nonlinear systems, 
including some  particular  cases  of  bilinear models, were pre- 
sented  in [SI. A brief account on the few papers dealing  with  the 
stability problem for  discrete-time  bilinear systems operating in  a 
stochastic environment was given in [6], where sufficient  condi- 
tions  for mean square stability were  established. 

In  this paper we obtain necessary and sufficient conditions for 
mean square stability of  finitedimensional  discrete bilinear 
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systems driven by random sequences. The paper is organized as 
follows. In  Section I1 we pose the notation and basic  results  that 
will be used throughout the  text.  The model under consideration is 
described in Section 111, where the stability problem is formu- 
lated.  In  Section IV we consider some auxiliaq propositions for 
supporting the proofs of  the  main  results.  which will appear in 
Section V.  There we  present  five  stability lemmas that combined 
will  supply  necessary  and  sufficient conditions for mean square 
stability. as stated  in Theorem 1. Our approach. which applies to a 
general class  of  discrete-time  bilinear systems, was  motivated by 
the earlier works for particular  classes of continuous-time systems 
considered in [7] and [8]. 

11. NOTATION AND CONCEPTUAL PRELIMINARIES 

Let ;I and G denote the real and complex fields, respectively, 
and C" the  n-dimensional complex Euclidean space. Let n Z ( C n ,  
em)  denote the normed linear space of all in by n complex 
matrices. For simplicity we set +X(.@1) = 3 n ( ~ " ,  c n ) ,  {I) will 
stand for the  usual inner product  in G", and 11 1) will denote either 
the standard (Euclidean) norm  in G" or the uniform  induced  norm 
in 'X(S"). We shall use the  superscripts -, ', and * for complex 
conjugate,  transpose,  and conjugate transpose (i.:.. adjoint), 
respectively. Throughout this paperf: nZ( G " )  + Gn- will denote 
a  "stacking operator," which is defined as follows: for a  given H 
= [ h ,  h,,] E L31Z(Cn), withh ,  E G"foreachk = 1, . . - ,  n, 

f ( W = ( h , ,  ..., h"). 

Obviously. f is a  topological isomorphism. With the Kronecker 
product L E K E L3?Z( Gn2) defined as usual for any L ,  K E 
31Z(G"), the following can be shown [9]. 

Rentark I :  For any L ,  K ,  H E X($"), 

( L  8x1 K ) * = L *  K*, 

f ( L K H )  = (H' 8 L)f(K). 
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of  all nonnegative  matrices in X@"). If L E 3n(C")-, then 
there exists a  unique L"' E 317.(Gn)+ such that (LIiz)' = L.  
Notice that 1) L l i 2 1 1  = )I L )I l i 2  for  every L E 317. (C") + . Since any 
element in X(P)  has a  Cartesian  decomposition  (cf. [lo, p. 
376]),  and  every self-adjoint element in X (G") can  be  decom- 
posed  in positive  and  negative  parts (cf. [lo,  p, 464]), the 
following is  readily verified. 

Remark 2: For any L E 3n(Cn) there exist L, ,  L2, L3, L4 E 
317. (e") A ,  such that 

7 

L.=(Ll-L2)+d-l  (L ; -LJ .  
Let a(L) c $3 denote  the  spectrum (Le., the set of all eigenvalues) 
of L E 3n (fY), and r,(L) = max { 1x1 :X E a(L)} the  spectral 
radius of L E 317.(Gn). The result below  will be needed  in the 
sequel. 

Proposition I :  For any L E X($"'), the  following  assertions 
are  equivalent: 

(a) r#.) < 1 .  

(b) IIL'f(y)II-o as i-w; v Y E m(Gn)' 
Proof: It is well known  (e.g.,  see [l 11) that (a) holds if and 

only if 

(c) ~ l ~ ; y l l + o  as i--; v y E ten2, 

which  is equivalent to 

(d) ~ ~ L ' f ( Y ) ~ ~ - + O  as i+-; V Y E  nt (Gn) ,  

since  range (f) = , G n L .  Hence, in particular, (a) implies 6). Now 
by Remark 2, any Y E 317.($") can be decomposed  as Y = (Y ,  
- Y,) + J 7 ( Y 3  - Ye), with E X ( G n ) + , j  = 1, 2,  3, 4. 
Therefore, 

4 

IlL.if(Y)ll s x  IILif(Yj,ll 
I =  I 

since f is linear.  Thus, (b) implies  (d), which  is equivalent to 

A  Cauchy  sequence {z( i ) ;  i 2 0} in a  normed linear space 
(a). 0 

[e.g., in ,C" or  X(C")] is Cauchy  summable iff [6] 
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The  next proposition states a  deterministic stability result for 
Cauchy  summable  sequences  through  finite-dimensional linear 
systems, that  will suffice  our  needs in Section V. It is a  particular 
case of Lemma (L-1) in [6],  which has been established  for  a class 
of separable  nonlinear  discrete  systems  evolving in a Banach 
space. 

Proposition 2: Let ( u ( i ) ;  i 2 0} be any Cauchy  summable 
sequence in G", and  consider  a Wvalued sequence {y( i ) ;  i 2 0 }  
as  follows: 

y ( i+ l )=Ly( i )+u( i )  

where L E 317.(G"). If r,(L) < 1, then {y( i) ;  i 2 0) is a  Cauchy 
summable  sequence,  and 

lim y (i) = ( I -  L )  - I  lim u ( i )  
i-cr 1-CC 

for any initial condition y(0) E sGn. 

recall the  following (cf. [12, p. 961). 
Finally, let tr(L)  denote the trace of L E nt(@") as usual,  and 

Remark 3: tr: X@") ---* (G is a linear functional; that is 

(a) tr((yK+PL)=m tr(K)+P tr(L) 

for any K ,  L E Fm(G") and a, /3 E e, with the  following 

additional  properties: 

(b) tr(KL) = tr(LK), 

(c) OsL#O * O<tr(L) E :?. 

HI. PROBLEM  FORMULATION 

Model Description: Consider  a  discrete-time  dynamical  sys- 
tem modeled by the  following  n-dimensional  difference  equation: 

x( i+ I ) =  A,+  2 Wk(i )& x ( i ) + ~ u ( i ) ;  x(o)=x, (1) 1 "  P =  I 1 
w h e r e A k E 3 n ( ~ " ) f o r e a c h k = o , l ; . . , p , a n d B € 3 n ( i ~ " ,  
G"). Here {x( i ) ;  i 2 0} denotes  the  B"-valued  random state 
sequence,  and { u(i); i 2 0} and { w(i) = (w,(i), - - e ,  wp(i)); i 2 
0 }  are random  disturbances in Gm and GP, respectively, which 
may eventually  be  equal to each  other or even mutually 
independent. 

Assumption I :  x, is a  second-order  random  vector  independent 
of { ( ~ ( i ) ,  u(i));  i 2 0}, which is an  independent  second-order 
wide sense  stationary  random  sequence in iGm+p. 

Problem Statement: Let E denote  expectation as usual,  and  set 

q ( O = E ( x ( i ) ) ,  

Q Y ( i ) = E ( x ( i + v ) x ( i ) * ) ,  

Q( i )  = Qo(i) 

in G", %(E$"), and 3n(Gn)+, respectively,  for  each i, v 2 0. In 
Section  V we shall investigate  necessary  and sufficient conditions 
on  the  model ( [ A ,  + X$=l  W k ( i ) A k ] ,  B) described in ( I ) ,  to 
ensure that { q(i); i 2 0} and { QY(i); i 2 0} converge  for any 
admissible initial condition x, and input disturbance { u(i);  i 2 
0} ,  and their limits do not depend  on x,. So we define  the 
following. 

Definition I :  The  model (1) is mean  square  stable (MSS) if, for 
any initial condition x, and  input  disturbance (u( i ) ;  i 2 0 )  
satisfying  Assumption 1, there exists q E $2" and Q E 317.(%")+ 
independent of x,, such that 

(a) Ilq(O-q11-0 as i-03, 

(b) . I IQ(i)-Qll+o as i--. 

Definition 2: The  second-order state sequence { x ( i ) ;  i 2 0} is 
asymptotically  wide  sense  stationary (AWSS) if there exists q E 
, G n  and QY E 3n(G"), for  each v 2 0, such that 

I l m - 4 l l t o  as i+-, 
IIQD(i)-QYll+o i+-. 

The  model (1) is AWSS if {x( i ) ;  i 2 0} is  AWSS for any x, and ' 

{ u( i ) ;  i 5 0} as in Assumption 1, and  the limits q and QY do not 
depend  on x,. 

Remark 4: Notice @t the  existence of q(i) and Qp(i),  for  each 
i 2 0, is ensured by Assumption 1 .  Hence, { x ( i ) ;  i 2 0} is 
actually  a  second-order  random  sequence.  Moreover, if the 
sequence { Q(i )  = Q,(i) E Fm(G")+; i 2 0 )  converges, then the 
limit Q = Q, E X($$")+, since 317.(Gn)+ is closed in 3n(Gn). 

IV.  AUXILIARY RESULTS 

First, let us pose  some  further  notation,  concerning  the model 
(l), that will be  required in the  sequel.  Regarding  the  disturbances 
{ w(i);  i 2 0} and { u(i); i 2 0}, set 

P k = E ( W k ( i ) )  
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?'kl=E{Wk(i)LJl(i))  -E{Uk(i)}E{w,(i)) 

in f for  each k ,  I = 1 ,  . . - , p ,  such that Y k /  = G, and 

r = E { u ( i ) )  

- 
rk=E(mk(i)U(i)) 

R =E(u(i)u(i)*) 

in '@Y'', Gm, and nt(4Y>+, respectively,  for  every i 2 0. 
Moreover, set 

F = E  A,+ &Jk(i)Ak = A , +  pkAk t k r l  1 k r l  

P 
A =I' 8 F+ yk1AI 8 Ak 

k, l=  1 

in 9'X(Gn) and n t ( W 2 ) ,  respectively. Now define linear operators 
T, P:X@") --* X@")  as follows: 

P 
T(L)= YkIAkLA 

k,l= I 

P 

p ( L )  = ylkA,*LAI 
k.1 = I 

for all L E Sn(G"). Finally, let P, V:G" -+ X(&"' be 
transformations  given  by 

P ( Y )  = A,yr*+ c AkJ'ri B* [ k r l  1 
V(y)=P(y)+P(y)*+BRB* 

for all y E G". The  following  propositions  comprise  the  basic 
auxiliary results for establishing  the stability lemmas of Section V. 

Proposition 3: Consider  Assumption 1.  For  every i 2 0, 

(a) q(i+ l ) = F q ( i ) + B r ,  

(b) Q(i+  1)=FQ(i)F*+  T[Q(i)l+ J'[q(i)l, 

(c) QJi) = P Q ( i )  + FjBrq(i)*; v Y 2 1. 
I -  I 

j = O  

Proposition 4: For any L E X(@"), 

(a) f [FLF * + T(L)I = A f ( L ) ,  

(b) f [F*LF+ T#(L)] =A*f(L) .  

Proposition 5: For any K ,  L E nt(@"), 

(a) T(L)* = T(L*), P(L)*  = Td(L*). 

(b) L E Sn(2") + = T(L), T'(L) E nt(iI2") +. 

(c) tr[ P(L)KJ = tr[LT(K)I, e[ T(L)Kl= u[LT#(K)I. 

Comments: For a  proof of Proposition  3  under  Assumption 1 
see 161, where  the  independence  argument within  Assumption 1 is 
discussed in detail. Proposition 4 is  readily verified by the 
definitions of A ,  T, p, and  Remark 1. Proposition  5(a) is trivial 

from  the  definition of T and p .  That 7 is nt(G")+-invariant, 
thus resulting  Proposition 5(b),  has been  shown in [6] .  Proposition 
5(c) is straightforward by Remark  3(a), (b). 

Proposition 6: 
r,(A) < .I =) r,(F) < 1. 

Proof: Consider the following  sequence in m(p): 
f [ N +  1)1=AfrX(o1; f[X(O)l E e l 2 .  

It is readily  verified by induction that 
i- I 

X ( i ) = p X ( O ) p + C  ~i-j-l~[~(j)l~*j-i-l 
I - 0  

for  every i 2 1. Hence, 

( ~ ( i ) y ;  y) = (F'X(O)F * iy; y) + { P - j -  1 T[X(~) ]F* ' - ' -  ly; y) 
i- I 

j = O  

for  every i 2 1 and ally E G". Moreover, by Proposition 5(b) it 
follows by induction that X ( i )  E %(an)+, and so T [ X ( i ) ]  f 
X($?")+, forevery i 2 0 wheneverX(0) E nt(G")+. Then,  for 
X(0)  = z, 

i - l  

IIX(i)"'yI12=IIF*'rl12+C IIT[X(j)]"2F*i-'-Lyl(2 
j = O  

for  every i 2 1 and all y E W. Now, by Proposition  4(a), we 
have 

f [ X ( i +  I)] = A f [ X ( i ) l ;  frX(0)l E en2. 
Therefore,  as it  is well known (e.g., see [l  l]), r,,(A) < 1 if and 
only if 

~ l f [ ~ ( i ) l ~ ~  = I I A  I ~ [ X ( O ) ]  11 -+o as + 03; v ~ [ X ( O ) ]  E (ZY', 

which implies that 

( (X(i)((  = l~f-l(f[X(i)])ll+O as i+m; Y X(0)  E nt(a"), 

since f is a  topological  isomorphism.  Hence, 

11X(i)1'2y(J 5 IlX(i)ll 1~211yll + O  as i+m; 

v X(0)  E L X ( . P ) ,  v y E E". 

In particular, the  above  convergence  holds  true  for X(0)  = Z, and 

llF*$ll+O as i+w; v y  E E", 

which  is equivalent to r,(F*) < 1,  thus  the  desired result follows 
since r,(F) = r,(F*). 

so 

Remark 5: The  converse of Proposition 6 fails. That  is, 

i , (F)  < 1 + r,(A) < 1. 

For  instance,  set P k  = 0, ypp = 1  for  every k = 1, . . . , p ,  and y k l  
= 0 whenever k # I .  Moreover, set A ,  = 112 and A,, = I for 
every k = 1, * * ., p. Hence, F = A ,  = 112, and A = E:=, Ak 
@ Ak = (1/4 + p)Z, suchthatr,(F) = 1/2andr,,(A) = (1/4 + 
p )  j -1. On  the  other  hand,  notice that r.(F) < 1 if and only 
if r,(F €3 F )  < 1, since (e.g., see [9]) for any K ,  L E m ( P )  
r,(K @ L )  = r,,(K)r,,(L). 

V. NECE~SARY AND SUFFICIENT  CONDITIONS FOR MSS 

In this section we prove the  main result of the  paper, which is 
stated in Theorem 1 below.  The  proof of Theorem 1 is readily 
obtained by combining  Lemmas 1-5, which will be established in 
the sequel. 
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Theorem I :  Consider  a  discrete-time  dynamical  system  as 
described in ( l ) ,  under  Assumption 1. Let F E nt(c"), A E 
3 n ( e n 2 ) ,  and T : % ( P )  -+ nt(Gn)  be defined  as in Section IV. 
The  following  assertions are equivalent. 

(a) rAA) < 1 .  
(b) For any S > 0 E %(G"), there exists a unique G > 0 E 

n t (Gn)  such that 

G = FGF * + T(G) + S, 

which  is  given by G = f - I [ ( Z  - A)-lf(S)]. 
(c)  The model (1) is AWSS in the  sense of Definition 2 .  
(d) The model (1) is MSS in the  sense of Definition 1. 
(e)  The model (1) is  MSS  in the  sense of Definition le) only. 
Moreover, if the above  holds  then  the limits in Definitions 1 

and 2 are 

Q,,=F"Q+ FJBrq*; v vzl, 
Y- I 

j = O  

in e", n t ( C n ) + ,  and .X(Gn), respectively. 

nt(Gn)  such that 
Lemma I :  If r,(A) < 1, then (a) there exists a  unique G E 

G=FGF*+ T(G)+S 

for  every S E 312(1P). Moreover, (6) G = f-'[(Z - A)-'f(S)], 
and 

S=S* e G =  G*, 

SzO =) GsO,  

S>O = G>O. 

Proof: Since r&l) < 1, there exists (Z - A)-[ = A i  

(a): For any S E X(.&"', there exists G E 3 n ( c n )  such that 
E n t ( : G n 2 )  (cf. [13, p. 2781). 

f ( G )  = (1 -A)  - Y(S) 
in .pn2 , since  range (j') = :en2. Hence, 

f ( S ) = ( I - A ) f ( G ) = f [ G - F G F * - T ( G ) ] ,  

by Proposition  4(a), sincefis linear. But this implies  the  existence 
result; that is 

S= G - FGF* - T(G) 

since f is one-to-one. Now suppose  there exists K E n t ( G n )  such 
that S = K - FKF* - T ( K ) .  Then,  for L = G - K E 
LX(p), 

L = FLF* + T(L). 

Thus, by Proposition 4(a), 

f ( L )  = A m ) .  

Therefore, either f ( L )  = 0, which implies that L = 0 since f is 
linear, or 1 E .(A). Hence, K = G since r,(A) < 1, which 
confirms  the  uniqueness result. 

(b): By the  above  uniqueness result and Proposition 5(a), it 
follows that G is self-adjoint if and only if S is self-adjoint. Now 
consider  the  following  sequence in nt(C"): 

X ( i +  1) = FX(i)F* + T[X(i)]; X(0)  = S. 

According to Proposition  4(a) we have 

S[X(i+ 111 = A f I X ( i ) l ;  f[x(o)l =fG) 
in Gn2. Hence, f [ X ( i ) ]  = A ' f ( S )  for  every i 2 0. Therefore, 

G=f-'[(I-A)-'f(S)]=f-' 

since f is a  topological  isomorphism. By Proposition 5(b) it 
follows by induction that X( i )  E Sn(Gn)+ for  every i 2 0 
whenever X(0)  E nt (Gn)+ ,  thus  being {.X:=o X(i ) ;  j 2 0 )  a 
monotonically  increasing  sequence in X($?"'+. That  is, 

i j +  I 
OsS=X(O)sc X(i)sE X ( i ) s G  

i = O  i = O  

for each j 2 0, which concludes  the  proof of part (b). 0 
Lemma 2: If there exists G > 0 E a(@) such that 

G=FGF*+ T(G)+S 

for some S > 0 E %(E?"), then r,(A) < 1. 
Proof: Consider  the  following  discrete linear free  system in 

i p  n2 
3 .  

y( i+ l)=A*y(i); y(0) E f (nt(c")+) .  (2) 

From  Proposition  4(a) we have 

f -'[u(i+ l ) ]  =F*f   - ' [y ( i ) ]F+ T'(f-'[~(i)]); 

f- l[y(O)l E ntccn)+. 
By Proposition  5(b) it follows by induction that f-I[y(i)] E 
3n(Bn)+ for  every i 2 0. Hence, y( i )  E f ( X ( G n ) + )  for  every i 
2 0. Now set +:f(3n(Gn)+) C 3"' --+ R, such that 

@(y)=trCf-l(y)G)=tr(G"2f-I(y)G1'2) 

with G = FGF* + T(G) + S > 0 E 9 ? Z ( C n )  for  some S > 0 
E %([CY'). It is readily  verified that 

i) + is continuous, and 

ii) ~ ( Y ) + w  as IIYII+oJ, 
that is, 4 is radially unbounded,  since tr(f-'( -)G):Cn2 --+ $2 is a 
composition  of bounded linear (and so continuous)  transforma- 
tions, which is real-valued  and radially unbounded onf(nt(Gn)+)  
whenever G > 0. Moreover 4 is homogeneous and positive, such 
that 

iii) 4(0) =0, and 

iv) +(y)>O; vy+O E f(nt(E")+) 
since 0 # f-'(y) E X ( G n ) +  for a l ly  # 0 E f ( n t (Gn)+ ) ,  and 
G > 0, by Remark 3(c). Furthermore, by Remark  3(a), (b) and 
Proposition  S(c), we have 

tr(f-I[y(i+  I)]G)-trCf-I[y(i)]G) 

=tr(F*f-'[y(i)vG+ Tq(f-'[y(i)])G-f-I[y(i)]G) 
=tr[ f - ' [y ( i ) ] (FGF*+ T(G)-G)] 

= - t r ( f - ' [ y ( i ) ] s ) =  -tr(S"*f-I[y(i)lS1'2) 



for  every i 2 0. However,  according to Remark 3(c), 
tr(S'/2f- '[y(i)]S1/2) 1 0 for  every i 2 0, and 
tr(S1'2f-'[y(i)]S1/2) = 0 if and only if f- l[y(i)]-= 0, since 

> 0 and f-l[y(i)l , z 0 for  every i 2 0. Thus, 
tr(S1'2f-1[y(i)]Si'2) > 0 whenever y(l) # 0, since f is  an 
isomorphism.  Hence, 

Therefore, by i)-v), 4 is a  Lyapunov  function for the  system in 
(2), and so (2) is  an asymptotically stable system (e.g., see [14, p. 
4861); that is, 

or equivalently, 

Then  the  desired result follows by Proposition 1, since r,(A) = 
r,(A*). C 

Lemma 3: If r,(A) < 1, then the model (1) is MSS in the  sense 
of Definition 1, with 

q = ( I -  F )  - 'Br, 

in C" and 'X@")-, respectively. 
Pro0 f 

(a): If r&l) < 1 then, by Proposition 6, r,(F) < 1. Hence, it 
follows the result in Definition l(a)  for the  sequence {q(i) E .en; 
i 2 0 )  in Proposition 3(a), which is Cauchy  summable with  limit 
q = ( I  - F)-IBr E g",  according to Proposition 2. Thus,  for 
P ,  V:@ - nt(G") defined in Section IV, it also  follows that 
{ V [ q ( i ) ]  E nt (P) ;  i 2 0} is a  Cauchy  summable  sequence, 
since P is bounded  and linear. Therefore, { f ( V [ q ( i ) ] )  E .fn2; i 
2 0} is also  Cauchy  summable  since f is  bounded  and linear. 

(b): Now consider  the  sequence {Q( i )  E Sn(G")+; i L 0}, 
such that 

by Propositions 3(b) and 4(a). Since rJA) < 1 and {f(V[q(i)l) 
E ten2; i 2 01 is Cauchy  summable, it follows by Proposition 2 
thai {f(Q(i)) E (C"'; i 0} converges  to ( I  - A)-lf(V[q]) E 
en , wheref(  V[q]) = lim,-,,, f( V[q(i)]) by continuity off and 
V.  Therefore, {Q(i) E n t ( r ( c n ) + ;  i 2 0) converges to f-][(I.- 
A)-'f(V[q])] E %(.en)+, sincef-I is continuous and %(,en)+ 
is closed in nt(G"). Hence,  the result in Definition  I@). C! 

Lemma 4: If the model (1) is MSS in the  sense of Definition 
l(b), then r,(A) < 1. 

Proof: From  Propositions 3(b) and  4(a) we have 

for every i 2 0, such that by induction, 

for  every i 2 1. Now, if the model (1) is MSS in  the sense of 
Definition  l(b), then (since f is continuous) 

for any Q(0) E m(G")+, and f(Q) E F"' does not depend  on 
Q(0). In particular, by setting Q(0) = 0, we have 
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Therefore, 

Atf(Q(0))-0 as i-m 

for any Q(0) E nt(C")+. Thus, ?-,(A) < 1, by Proposition 1 . 0  
Lemma 5: The model (1) is MSS in the  sense of Definition  1 if 

and  only if it is  AWSS in the  sense of Definition 2. 
Proof: Asymptotic wide sense stationarity trivially implies 

mean square stability (cf.  Remark 4). By Proposition 3(c) we  get 

for  every v 2 1, with QY E nt(C") defined as in the  theorem 
statement.  Hence,  the  converse is also true. 0 

Remark 6: If we set At = 0 for  every k = 1, * . , p ,  the 
model (1) is naturally  reduced to a linear one: 

x ( i +  l )=A,x( i )+Bu( i ) ;  x(O)=x,. (3) 

For this particular  case,  the  independence  assumption may be 
relaxed to uncorrelatedness,  according to  the independence 
argument in [6],  as  follows. 

Assumption 2: x, is a second-order  random vector uncorrela- 
ted  with { u(i); i 2 0}, which  is  an uncorrelated  second-order 
wide sense  stationary  random  sequence in am. 

Moreover. in this case, we have F = A,, T = 0, and A = A, 
'8 A, ,  such that r,(A) < 1 if and only if r,(A,) < 1 (cf.  Remark 
5). Therefore,  Theorem 1 also gives  necessary  and sufficient 
conditions for mean square stability of discrete-time linear 
systems  as in (3) with the  following simplifications. 

i) Assumption  1  replaced by the  weaker  Assumption 2.  
ii) A E nt(&) replaced by A ,  E n t ( C n )  in part  (a) of 

iii) F = A ,  and T = 0 in part (b) of Theorem 1. 
As one  could  expect,  the  equivalence between parts (a) and (b) 

of Theorem 1 is then  reduced, in this particular  case, to well- 
known stability conditions  for  time-invariant  discrete linear 
systems (e.g., see  [14, p. 4871). 

Remark 7: By Lemmas 1, 3, and 4 it follows that Q E 
%(en)+ is the  only  solution of 

Theorem  1. 

Q = FQF * + T(Q) + V(q)  

as has been  commented on before in [6]. Also notice  that if G > 0 
in Lemma 1(b), it does not necessarily  follow that S 2 0, even for 
the  linear  case  where T = 0. Or equivalently, V(q)  E nt(P)  
may  not  lie  in nt(C")-, although a l l  other  terms in the  above 
equation lie  in nt(Gn)-. To illustrate this, set n = m = 2, p = 
1, p ,  = 0, yI l  = 1, B = I ,  r = (1, 0), and 

F'AO'j 1 0 1  [ 1 O]. R=; [ 0 1]  
1 7 0  

such that R - rr* = 116. Now consider  two  cases. 
i) A I  = 0 (i.e.,  the linear case), such that T = 0 and r,(A) = 

r,(A,)' = 1/4. 
ii) A I  = 1/2,  such that T(Q) = Q/4 and r,(A) = 1/2. In this 

case  assume that ( w ( i ) ;  i 2 0} and {u ( i ) ;  i 2 01 are 
uncorrelated,  such that rl = 0. 

In  both cases we have P(q)  = A,qr* = A,(I - A,)-Irf l .  
Hence, 

Notice that, for  cases i) and ii) we have,  respectively, 

ii) Q=- 
6 
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VI. CONCLUSION 

In this paper we  have established  necessary  and sufficient 
conditions  for mean square stability for  a wide class of bilinear 
systems.  These  were  supposed to evolve in discrete-time and to 
operate in a  second-order  stochastic  environment,  under wide 
sense stationarity and independence  assumptions  only. 

The main result was formulated in Theorem 1. There it  was 
given two necessary and sufficient conditions  for mean square 
stability, which were stated in parts (a) and (b). In parts (c).  (d), 
and (e) it was  shown that  mean square stability is equivalent to 
asymptotic wide sense stationarity, which is equivalent to correla- 
tion convergence  for any  initial condition.  Formulas  for  comput- 
ing  the limits of state mean  and correlations  sequences  were aIso 
presented.  The  above-mentioned result was proved in Lemmas 1- 
5, by using  the auxiliary  propositions of Sections I1 and IV. 

As we have  commented in Section I, there are only a few 
papers on the  stochastic stability for  discrete-time  bilinear 
systems.  The  general class of models  described in Section I11 was 
ais0  considered in [6],  where sufficient conditions  for mean 
square stability were  investigated. We notice that  those conditions 
may eventually be easier verified, in some  practical  cases: than 
the criteria in Theorem 1. This may  happen because the conditions 
in  [6] do not require  the  computation of the  spectral  fadius of a 
linear combination of Kronecker  products in n t ( W ) ,  nor  the 
analysis of Lyapunov-type  operator  equations. On the  other hand 
the sufficient conditions in [6] are not necessary  ones, and in this 
sense  Theorem 1 delivers  a  complete theoretical answer to the 
problem  under  consideration. by supplying  necessary and suffic- 
ient conditions. Also  notice  that the  hypothesis of Lemma 2 can  be 
independently  applied  as  a sufficient condition  for mean square 
stability, by choosing  a  suitable S > 0. 

Finally, it  is worth  remarking that discrete-time  stochastic 
stability is a  fundamental  property  for  developing  recursive 
system identification techniques.  Therefore, by establishing the 
weakest stability conditions  as  proposed in Theorem 1, we  have 
also  enlarged  the class of identifiable bilinear  structures that 
depend on  mean square stability conditions (e.g., see [15], [16]). 
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