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ABSTRACT 

This  study presents the conditions of applicability of 
stochastic approximation algorithms that minimize a 
mean-square error criterion for identification  of a linear 
discrete-time stationary system without dynamical numer- 
ator. The  acceleration of the convergence is discussed.  Then 
a tentative is outlined to overcome the previous  requirement 
of states accessibility. 

I - INTRODUCTION 

The first part of the paper  concerns  the identification 
of a completely unknown functional form  of a rnemoryless 
system  where the input signals  have unknown continuous 
probability density functions [ 11. 

The  second part applies this technique to identify a 
stationary linear discrete-time system  and  shows that the 
convergence is still obtained [2], but that the accelerated 
convergence is not anymore a consequence of the first part. 
Finally, a suggestion is  given to overcome the requirement 
of having  measurable states to apply this technique. 

II - IDENTIFICATION OF A MEMORYLESSSYSTEM 

Given a stationary discrete-time and  memoryless 
system, Fig. 1, where: 
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Figure 1 - Mernoryless system 

1) The inputs are sequences of independent and identically 
distributed m-vectors xn = [x:  x! ... x k ] T  , with real 
random  components  xi, V i€ l  = [ 1,2, ... ] such that ixn 1 
< =. 

2) The  real-valued continuous bounded function f(x) is de- 
fined over the set of possible  sequences  xn. 

3) vn is  a zero-mean white noise  process with covariance 
E[vnvk] = $: (n)  &(n-k) < 00, independent of xn. 

Let define +(x) 4 c @T(x) as a linear  estimate of f(x) 
based on the components &(x) of @(x) = [@,(x) 
. . . @nh)]T which are  preselected functions, linearly inde- 
pendent,  real-valued, continuous and bounded over the set 

of  possible  sequences  xn, Y i = 1,2, ..., N < m. 

Saridis e t  al. (11 proved that a stochastic approxi- 
mation algorithm to estimate a real vector c which mini- 
mizes a cost function J(c) 4 E[ 11 f (x) - f(x) /I2 ] is: - 

1 -An Mn@(x") 

1-P" (l-Pn)/Pn + @T(x")Mn  @(xn) 
cn+l  = - C" + X 

An 1 -A, 

Pn  1-Pn 
[ -  2,-- @T(X")C" 1 (1)  

hn  and  Pn  are  sequences of real  numbers which satisfy  con- 
ditions  of the following type: 

Yn E(0,1),  VnEl ; 

m 

z y;<m 
n = l  

m 

n ( 1 - m )  = o  
n= 1 

The initial conditions of (1) and (2) are  such that I l c '  I1 
< m, M,II < m and det M- # 0 where  MI is an NxN 
symmetrical  matrice. 

The  sequence cn resulting of (1) is such that 

P [ lim cn = c ]  = 1 
n+m 

The  accelerated  convergence is obtained by  mini- 
mization of an upper bound of the mean-squareerror of cn, 

This  results in choosing  the sequences An and /.In having  the 
properties (3) presented below: 

where: 
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where: 

and r2 4 - E[ I #(x)  $T(x) - M-'12] (9 1 

The  equations  (4) - (9) are different  from Saridis' 
original  work where these relations are defined as upper 
bounds. 

TWO necessary conditions to obtain  the results con- 
cerning the accelerated  convergence  were that xn  and  vn be 
mutually independent. 

Ill - IDENTIFICATION OF A LINEAR SYSTEM 

Given  now a stationary, discretetime, linear system 
Fig. 2: 

" 

U 

Figure 2 - Linear system 

X"+' = AX" + bWn 

Zn = hTxn + vn 

where: 

(10) 

(11) 

xn = [x:  x!j ... x&IT , t fnEi  ; b = [b, b, ... bm]T 

is a known vector with I b  I<-; h is an mvector h = [ 1 0 ... 
... O]T; a= [al a, ... am I' is an unknown vector with bl< 00, 
Wn and vn are  zero-mean white noise  independent  processes 
with covariances 

The identification  problem consists in determining the 

From  (10) and (1 1) we obtain: 
vector  xn  using the observed Zn. 

where: 

The solution of (12) is analogous to the problem  of 
section I 1  with the fundamental advantage that f(x) is now a 
linear combination  of x. 

The  equation (12) can be represented by: 

zm+n = f(xn) + vm+n 

where: 

f(xn) = aT x" as shown in Fig.  3. 

Figure 3 -System under consideration in (121 

It is easy to  prove  [3], [4] that: 

1) xn  are identically  distributed 
2) I x n l < -  
3) is a zero-mean  random  variables  independent 

of xn with covariance E[vm+n U m + k ]  <m. 

Comments: 

The three above conditions are sufficient to  apply the 
algorithms of.section 11. It is-important to  emphasize that: 
the two conditions x"  and Ym+n mutually  independent4n, 
are not satisfied in this case. This  modification does not 
affect the convergence criterion but only  the accelerated 
convergence.  Saridis et ai. [2] used a stochastic approxi- 
mation  algorithm to estimate  recursively the vector a given 
by: 

1 -Xn 
an+' = - an + 

xnT an I 
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where: Filter  algorithm: 

kn+l = An+l 2" + kn+l(zn+, - hTAn+l  in)(19) 

where: 

An+l is the (n+l ) th  estimate of  A. 

The  approach suggested  above, fig.4 (next page), is 
applied to the  particular case of a system given by the 
following equations: 

A,, and pn satisfy the  conditions  (3). 

The initial  conditions of (13) and (14) are  such that la' I < 00, I Q, I < 00 and det Q-' # 0 where Q1 is an NxN 
symmetrical  matrice. 

The sequence  an resulting of  (13) is such that 

P [ liman = a ]  = 1 

As commented here, it is  not anymore  possible to 
accelerate the convergence of the  algorithm using the results 
of section II because: 

For two vectors  p  and  q we have: 

I p * q P  = l p P  + I q  12 f2pTq 

Q l p l 2  + 1912 + 2 b l  Iql 

Q2(1p12 + I q P )  

I f  p and q are two independent  random  vectors, with 
a t  least a zerc-mean one, then: 

E [ l p f q P ] =   E [ l p 1 2 ] + E [ l q 1 2 ]  (15) 

But if they are not: 

E[ lp*q12]=E[ lp12]+E[ lqP]*2E[pTq]  

< E [ I p 1 2 ] + E [ I q P ] + 2 E [ I p l  bql] 

< 2 ( E [ l p I 2 ] + E [ I q P ] )  

This explains why we cwld  use the equality  (15) in 
section II and the impossibility  of using: 

E I I p * q ~ ] Q E I I I p P ] + E I I q I Z ]  

in section I I I as done in [2]. 

IV -SIMULTANEOUS  IDENTIFICATION 
AND STATES ESTIMATION: 

A PARTICULAR CASE 

A great  disadvantage of the algorithm  (13),  (14) is the 
required  accessibility of the states. To bypass th is  d i f f i l t y  
it should be possible to try using a simultaneous iteration 
between the stochastic approximation  algorithm presented 
in (13), (14) and a Kalman filter whose equations for the 
stationary monovariable case are given  below [4]: 

Gain  equation: 

kn = Rn h/(hTRnh + $$) 

A posteriori variance algorithm: 

Vn = ( I  - knhT)Rn 

A priori variance algorithm: 

R ~ + I  = An+] VnAJ;+I + b IIL bT 

1 -0.656 0.784 -0.18 

zn= [ l  0 0 O]T xn+vn 

E [ w ~ ]  = E [ v ~ ]  = 0 

E[wg] = $; = 1 

E[+] = $: = 0.25 

where vn and wn have  Gaussian distributions. 

example with the following  initial conditions. 
A  program is  developped to simulate this numerical 

x1 = 21 = a1 = 0 

Q1 = R 1  =I 

The  sequences An and pn chosen  are: 

1 1 
A,,=- and pn =- 

n+0.5 n+ 1 

Using only the  observations Zn of the simulated sys- 
tem  we  obtained the results given in Table  1  and plotted in 
Figure 5. In th is  particular case the sequence of estimates an 
converges numerlcally to the a priori known real  vector a. 

* 
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Fiwre 5 - Quadratic error obtainad by simultanearr 
identification and estimation. 
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Figure 4 - Diagram of the simultaneous identification and state estimation 

Table 1: Performance of simultaneous identification and estimation 

Real  Value: aT = [ -0.656  0.784 -0.18 1 ]T 

n I a" -a 12 an = [a: a; a3" a; IT 

100  -0.532 

4.7 X 10-3 1.030 -0.236 0.778 -0.632 900 
7.6 X 10-3 1.054 -0.246  0.797 -0.654 800 
3.7 x 10-3 1.048 -0.200  0.752 -0.650 700 
1.1 x 10-2 1.071 -0.239  0.741 -0.637 600 
1.7 x le2 0.997  -0.2  16 0.723 -0.547  500 
3.8 x 10-2 0.895 -0.202 0.743 -0.498 400 
1.9 x 10-2  1.01 5 -0.282 0.732 -0.584 300 
2.6 x 10-2 0.958 -0.288 0.78 1 -0.543  200 
2.7 x 10-2 1.026  -0.260 0.717 

lo00 -0.661 0.770 -0.233 1.075  8.7 x 10-3 

V  -CONCLUSION SSC- 5, pp. 8-15, January 1969. 

The  relations to be satisfied for optimization of the 
accelerated  convergence of  the stochastic approximation 
algorithm are modified in the case of a stationary  linear 
discretetime system. 

To avoid the exact  measurement of the initial state at  
each step, a numerical  tentative is made to use simul- 
taneously the two recursive  stochastic approximation and 
Kalman filter algorithms. Further research is under  way to 
extend these results. 
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