STOCHASTIC APPROXIMATION ALGORITHMS AND APPLICATIONS

C. S. Kubrusly and J. Gravier

Pontificia Universidade Catolica do Rio de Janeiro, Brazil

ABSTRACT

This study presents the conditions of applicability of stochastic approximation algorithms that minimize a mean-square error criterion for identification of a linear discrete-time stationary system without dynamical numerator. The acceleration of the convergence is discussed. Then a tentative is outlined to overcome the previous requirement of states accessibility.

I - INTRODUCTION

The first part of the paper concerns the identification of a completely unknown functional form of a memoryless system where the input signals have unknown continuous probability density functions [1].

The second part applies this technique to identify a stationary linear discrete-time system and shows that the convergence is still obtained [2], but that the accelerated convergence is not anymore a consequence of the first part. Finally, a suggestion is given to overcome the requirement of having measurable states to apply this technique.

II – IDENTIFICATION OF A MEMORYLESS SYSTEM

Given a stationary discrete-time and memoryless system, Fig. 1, where:

Figure 1 - Memoryless system

- 1) The inputs are sequences of independent and identically distributed m-vectors $x^n = [x_1^n \ x_2^n ... \ x_m^n]^T$, with real random components x_i^r , $\forall i \in I = [1, 2, ...]$ such that $||x^n|| < \infty$.
- The real-valued continuous bounded function f(x) is defined over the set of possible sequences xⁿ.
- 3) vⁿ is a zero-mean white noise process with covariance $E[v_n v_k] = \psi_v^2(n) \ \delta_K(n-k) < \infty$, independent of xⁿ.

Let define $\hat{f}(x) \Delta c \phi^{T}(x)$ as a linear estimate of f(x) based on the components $\phi_i(x)$ of $\phi(x) = [\phi_1(x) \dots \phi_n(x)]^{T}$ which are preselected functions, linearly independent, real-valued, continuous and bounded over the set

of possible sequences x^n , $\forall i = 1, 2, ..., N < \infty$.

Saridis et al. [1] proved that a stochastic approximation algorithm to estimate a real vector c which minimizes a cost function $J(c) \triangle E[\|f(x) - \hat{f}(x)\|^2]$ is:

$$c^{n+1} = \frac{1 - \lambda_n}{1 - \mu_n} c^n + \frac{M_n \phi(x^n)}{(1 - \mu_n)/\mu_n} + \phi^T(x^n) M_n \phi(x^n) \times \left[\frac{\lambda_n}{\mu_n} z_n - \frac{1 - \lambda_n}{1 - \mu_n} \phi^T(x^n) c^n\right]$$
(1)

Where:

$$M_{n+1} = \frac{1}{1-\mu_n} \left[M_n - \frac{M_n \phi(x^n) \phi^{\mathsf{T}}(x^n) M_n}{(1-\mu_n + \phi^{\mathsf{T}}(x^n) M_n \phi(x^n)} \right]$$
(2)

 λ_n and μ_n are sequences of real numbers which satisfy conditions of the following type:

$$\gamma_{n} \in (0,1), \forall n \in I ;$$

$$\sum_{n=1}^{\infty} \gamma_{n}^{2} < \infty$$

$$\prod_{n=1}^{\infty} (1-\gamma_{n}) = 0$$
(3)

The initial conditions of (1) and (2) are such that $||c^1|| < \infty$, $||M_1|| < \infty$ and det $M^{-1} \neq 0$ where M_1 is an NxN symmetrical matrice.

The sequence cn resulting of (1) is such that

$$P [\lim_{n \to \infty} c^n = c] = 1$$

The accelerated convergence is obtained by minimization of an upper bound of the mean-square-error of cⁿ,

$$\begin{array}{c} \mathsf{E}[\,\|\,c^n\!-\!c\,\|^2_{\ \ \, M^{-1}}\,M^{-1}\,]\ ,\ \forall n\!\in\!I. \end{array}$$

This results in choosing the sequences λ_n and μ_n having the properties (3) presented below:

$$\lambda_{n} = \frac{\zeta_{n}^{2}}{\zeta_{n}^{2} + \sigma_{n}^{2}} \quad \text{and} \quad \zeta_{n+1}^{2} = \frac{\zeta_{n}^{2} \sigma_{n}^{2}}{\zeta_{n}^{2} + \sigma_{n}^{2}}$$

where:

$$\zeta_n^2 \triangleq \mathsf{E}[||\mathbf{r}^n - \mathbf{r}||^2] \tag{4}$$

 $r \stackrel{\wedge}{=} E[z \phi(x)]$

 $r^n = M_n^{-1}c_n$

$$\sigma_n^2 \triangleq \mathsf{E}[\,\|\,\mathbf{z}_n \,\,\phi(\mathbf{x}^n) - \mathbf{r}\,\|^2\,] \tag{5}$$

If
$$\psi_{v}^{2}(n) = \psi_{v}^{2}$$
, then

$$\mathsf{E}[\mathsf{I} \mathsf{z}_{\mathsf{n}}\phi(\mathsf{x}^{\mathsf{n}}) - \mathsf{r}\,\mathsf{I}^{2}] \triangleq \sigma^{2}, \forall \mathsf{n} \in \mathsf{I}$$
(6)

Hence
$$\lambda_n = \frac{1}{n + \sigma^2 / \zeta_1^2}$$
 and $\zeta_n^2 = \frac{\sigma^2}{(n-1) + \sigma^2 / \zeta_1^2}$

with
$$\zeta_1^2 \stackrel{\wedge}{\leq} \mathbb{E}[[r^1 - r]^2]$$

Similarly for μ_n we have:

$$\mu_{n} = \frac{1}{n + \tau^{2} / \eta_{1}^{2}} \text{ and } \eta_{n+1}^{2} = \frac{\tau^{2}}{(n-1) + \tau^{2} / \eta_{1}^{2}}$$

where:

$$\eta_{n}^{2} \stackrel{\sim}{\underset{=}{\overset{\sim}{=}}} \mathbb{E}[|\mathbf{M}^{-1} - \mathbf{M}^{-1}||^{2}]$$
(8)
$$\mathbf{M}^{-1} \stackrel{\sim}{\underset{=}{\overset{\sim}{=}}} \mathbb{E}[\phi(\mathbf{x}) \phi^{\mathsf{T}}(\mathbf{x})] , \text{ det } \mathbf{M}^{-1} \neq 0$$

and $\tau^{2} \stackrel{\sim}{\underset{=}{\overset{\sim}{=}}} \mathbb{E}[|\phi(\mathbf{x}) \phi^{\mathsf{T}}(\mathbf{x}) - \mathbf{M}^{-1}||^{2}]$ (9)

The equations (4) - (9) are different from Saridis' original work where these relations are defined as upper bounds.

Two necessary conditions to obtain the results concerning the accelerated convergence were that x^n and v^n be mutually independent.

III – IDENTIFICATION OF A LINEAR SYSTEM

Given now a stationary, discrete-time, linear system Fig. 2:

 $x^{n+1} = Ax^n + bw_n \tag{10}$

$$Z_n = h^T x^n + v_n \tag{11}$$

where:

$$A = \begin{bmatrix} 0 & : I \\ \vdots & a^T \end{bmatrix}$$
$$x^n = [x_1^n x_2^n \dots x_m^n]^T, \forall n \in I ; b = [b_1 \ b_2 \ \dots \ b_m]^T$$

is a known vector with Ib $I < \infty$; h is an m-vector $h = [10 \dots ...0]T$; $a = [a_1 a_2 \dots a_m]T$ is an unknown vector with $IaI < \infty$, w_n and v_n are zero-mean white noise independent processes with covariances

$$E[\mathbf{w}_{n}\mathbf{w}_{k}] = \psi_{\mathbf{w}}^{2} \, \delta_{k}(n-k) < \infty$$

and
$$E[\mathbf{v}_{n}\mathbf{v}_{k}] = \psi_{\mathbf{v}}^{2} \, \delta_{k}(n-k) < \infty$$

The identification problem consists in determining the vector \boldsymbol{x}^n using the observed $\boldsymbol{z}_n.$

From (10) and (11) we obtain:

$$z_{m+n} = a^T x^n + \nu_{m+n} \tag{12}$$

where:

(7)

The solution of (12) is analogous to the problem of section II with the fundamental advantage that f(x) is now a linear combination of x.

The equation (12) can be represented by:

$$z_{m+n} = f(x^n) + \nu_{m+n}$$

where:

$$f(x^n) = a^T x^n$$
 as shown in Fig. 3.

Figure 3 – System under consideration in (12)

It is easy to prove [3], [4] that:

- 1) xn are identically distributed
- 2) | xⁿ | <∞
- v_{m+n} is a zero-mean random variables independent of xⁿ with covariance E[v_{m+n} v_{m+k}] <∞.

Comments:

The three above conditions are sufficient to apply the algorithms of section II. It is important to emphasize that: the two conditions x^n and ν_{m+n} mutually independent $\forall n$, are not satisfied in this case. This modification does not affect the convergence criterion but only the accelerated convergence. Saridis et al. [2] used a stochastic approximation algorithm to estimate recursively the vector a given by:

$$a^{n+1} = \frac{1-\lambda_n}{1-\mu_n} a^n + \frac{Q_n \times^n}{(1-\mu_n)/\mu_n + \times^n Q_n \times^n} \left[\frac{\lambda_n}{\mu_n} z_{m+n} - \frac{1-\lambda_n}{1-\mu_n} x_n T_n \right]$$
(13)

where:

$$Q_{n+1} = \frac{1}{1 - \mu_n} \left[Q_n - \frac{Q_n x^n x^n^T Q_n^T}{(1 - \mu_n)/\mu_n + x^n^T Q_n x^n} \right]$$
(14)

 λ_n and μ_n satisfy the conditions (3).

The initial conditions of (13) and (14) are such that $||a^1|| < \infty$, $||Q_1|| < \infty$ and det $Q^{-1} \neq 0$ where Q_1 is an NxN symmetrical matrice.

The sequence an resulting of (13) is such that

 $P[\lim_{n \to a} a^n = a] = 1$

As commented here, it is not anymore possible to accelerate the convergence of the algorithm using the results of section II because:

For two vectors p and q we have:

$$|p \pm q|^{2} = |p|^{2} + |q|^{2} \pm 2p^{T}q$$

$$\leq |p|^{2} + |q|^{2} + 2|p| |q|$$

$$\leq 2(|p|^{2} + |q|^{2})$$

If p and q are two independent random vectors, with at least a zero-mean one, then:

$$E[||p \pm q||^2] = E[||p||^2] + E[||q||^2]$$
(15)

But if they are not:

$$E[lp \pm q l^{2}] = E[lp l^{2}] + E[lq l^{2}] \pm 2E[p^{T}q]$$

$$\leq E[lp l^{2}] + E[lq l^{2}] + 2E[lp l q]]$$

$$\leq 2 (E[lp l^{2}] + E[lq l^{2}])$$

This explains why we could use the equality (15) in section II and the impossibility of using:

$$E[|p\pm q|^2] \le E[|p|^2] + E[|q|^2]$$

in section III as done in [2].

IV – SIMULTANEOUS IDENTIFICATION AND STATES ESTIMATION: A PARTICULAR CASE

A great disadvantage of the algorithm (13), (14) is the required accessibility of the states. To by-pass this difficulty it should be possible to try using a simultaneous iteration between the stochastic approximation algorithm presented in (13), (14) and a Kalman filter whose equations for the stationary monovariable case are given below [4]:

Gain equation:

$$kn = R_n h/(h^T R_n h + \psi_v^2)$$
(16)

A posteriori variance algorithm:

$$V_n = (I - k^n h^T) R_n$$

A priori variance algorithm:

$$R_{n+1} = A_{n+1} V_n A_{n+1}^{\dagger} + b \psi_w^2 b^{T}$$
(18)

Filter algorithm:

$$\hat{\mathbf{x}}^{n+1} = \mathbf{A}_{n+1} \hat{\mathbf{x}}^n + \mathbf{k}^{n+1} (\mathbf{z}_{n+1} - \mathbf{h}^T \mathbf{A}_{n+1} \hat{\mathbf{x}}^n)$$
(19)

where:

×

 A_{n+1} is the (n+1)th estimate of A.

The approach suggested above, fig.4 (next page), is applied to the particular case of a system given by the following equations:

$$n^{+1} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -0.656 & 0.784 & -0.18 & 1 \end{bmatrix} \quad x^{n} + \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix} w_{n}$$
$$z_{n} = [1 \quad 0 \quad 0 \quad 0]^{T} x^{n} + v_{n}$$
$$E[w_{n}] = E[v_{n}] = 0$$
$$E[w_{n}^{2}] = \psi_{w}^{2} = 1$$
$$E[v_{n}^{2}] = \psi_{w}^{2} = 0.25$$

where v_n and w_n have Gaussian distributions. A program is developped to simulate this numerical example with the following initial conditions.

$$x^{1} = \hat{x}^{1} = a^{1} = 0$$

 $Q_{1} = R_{1} = I$

The sequences λ_n and μ_n chosen are:

$$\lambda_n = \frac{1}{n+0.5} \quad \text{and} \quad \mu_n = \frac{1}{n+1}$$

Using only the observations z_n of the simulated system we obtained the results given in Table 1 and plotted in Figure 5. In this particular case the sequence of estimates an converges numerically to the a priori known real vector a.

Figure 5 – Quadratic error obtained by simultaneous identification and estimation.

(17)

Figure 4 – Diagram of the simultaneous identification and state estimation

$meat value: a' = [-0.050 \ 0.764 \ -0.16 \ 1]'$					
n	a ⁿ = [a ₁ ⁿ	a2	a ₃ n	a₄] ^T	la ⁿ —al ²
100	-0.532	0.717	-0.260	1.026	2.7 x 10−2
200	-0.543	0.781	-0.288	0.958	2.6 x 10 ⁻²
300	-0.584	0.732	-0.282	1.015	1.9 x 10−2
400	0.498	0.743	0.202	0.895	3.8 x 10−2
500	-0.547	0.723	-0.216	0.997	1.7 x 10 ⁻²
600	-0.637	0.741	-0.239	1.071	1.1 x 10−2
700	0.650	0.752	0,200	1.048	3.7 x 10− ³
800	-0.654	0,797	-0.246	1.054	7.6 x 10 ⁻³
900	0.632	0.778	0.236	1.030	4,7 x 10 ⁻³
000	0.661	0.770	-0.233	1.075	8.7 x 10− ³

Table 1: Performance of simultaneous identification and estimation

V - CONCLUSION

The relations to be satisfied for optimization of the accelerated convergence of the stochastic approximation algorithm are modified in the case of a stationary linear discrete-time system.

To avoid the exact measurement of the initial state at each step, a numerical tentative is made to use simultaneously the two recursive stochastic approximation and Kalman filter algorithms. Further research is under way to extend these results.

REFERENCES:

 G. Saridis, Z. J. Nikolic, and K. S. Fu, "Stochastic approximation algorithm for system identification, estimation and decomposition of mixtures", *IEEE Trans. Systems Science and Cybernetics*, vols. SSC~5, pp. 8-15, January 1969.

- [2] G. Saridis and G. Stein, "Stochastic approximation algorithms for linear discrete-time system identification", IEEE Trans. Automatic Control, vol. AC-13, pp. 515-523, October 1968.
- [3] A. Papoulis, Probability, Random variables, and Stochastic Processes, New-York: McGraw-Hill, 1965.
- [4] A.P. Sage, and J.L. Melsa, Estimation Theory with applications to Communications and Control, New York: McGraw-Hill, 1971.