cne
PAPER No. FP3-6

STOCHASTIC APPROXIMATION ALGORITHMS
AND APPLICATIONS

C. S. Kubrusly and J. Gravier

Pontificia Universidade Catolica do Rio de Janeiro,

ABSTRACT

This study presents the conditions of applicability of
stochastic approximation algorithms that minimize a
mean-square error criterion for identification of a linear
discrete-time stationary system without dynamical numer-
ator. The acceleration of the convergence is discussed. Then
a tentative is outlined to overcome the previous requirement
of states accessibility.

| — INTRODUCTION

The first part of the paper concerns the identification
of a completely unknown functional form of a memoryless
system where the input signals have unknown continuous
probability density functions [1}].

The second part applies this technique to identify a
stationary linear discrete-time system and shows that the
convergence is still obtained [2], but that the accelerated
convergence is not anymore a consequence of the first part,
Finally, a suggestion is given to overcome the requirement
of having measurable states to apply this technique.

It — IDENTIFICATION OF A MEMORYLESS SYSTEM

Given a stationary discrete-time and memoryless
system, Fig. 1, where:
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Figure 1 — Memoryless system

1) The inputs are sequences of independent and identically
distributed m-vectors x" = [x] xD... x3, 1T , with real
random components x§, Vi€l = [ 1,2, ... ] such that ixn}
< oo,

2) The real-valued continuous bounded function f(x) is de-
fined over the set of possible sequences xn.

3)vn is a zero-mean white noise process with covariance
Elvnvk] = ¥&(n) 8x(n—k) < =, independent of xn.

Let define f{x) A ¢ ¢T(x) as a linear estimate of f(x)
based on the components ¢i(x} of o¢(x) = [¢,(x)
... ¢ntx)]T which are preselected functions, linearly inde-
pendent, real-valued, continuous and bounded over the set
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of possible sequences xn, ¥ i = 1,2, ..., N <o,

Saridis et al. {1] proved that a stochastic approxi-
mation algorithm to estimate a real vector ¢ which mini-
mizes a cost function J{c) A E[ Il f(x) — f(x) I? ] is:

1—Xn Mnpa{xn)

chtl = ch + X
1—un (1—pn)un + ¢T(xN)Mp, ¢(xn)
An 1-An
[— zn - ¢T (xn)e"] (1)
Hn T—un

Where:
1 Mag(xn)oT (xn )My

Mpip = Mn — (2)

1—n (1—pn + ¢T (xMIMp, pixn)

An and upn are sequences of real numbers which satisfy con-
ditions of the following type:

Tn €(0,1), ¥n€l ;

==}
2 i<
n=1

o0

M {(1—y,) =0 (3)

n=1

The initial conditions of (1) and (2} are such that ¢! |
< oo, IM,I<eo and det M~! # O where M, is an NxN
symmetrical matrice.

The sequence ¢ resulting of {1) is such that

P [limen=c]=1
N—>oo

The accelerated convergence is obtained by mini-
mization of an upper bound of the mean-square-error of ¢n,

ELl cn—cH:ﬂ_ ). ¥nElL
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This results in choosing the sequences A, and up, having the
properties {3) presented below:

$h s
An = and $nyy =
§2 + 0}

2 2
nOn

§h + on

763



S AE(Im —rP] )
rAElz ¢ix)]

= Mgplcn

on D E[zy ¢lxn) ] (5)
If Y3n) = Y2, then

E[1 zag(xn) — rI2]A 0%, ¥n€l (6)

2
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and {n =

Hence A,, = —_—
n+o? /32 (n=1) + 62/2
with 1 AE[Ir —rl?] @

Similarly for un we have:

1 2
fn = and pisyy = ——
n+r? /g2 {n—1) + 73 /n?
where:
n AE[IM™ ~ M1 12] (8)

M7 AE[6(x) 6T(x)] , detM™'#0
and 72 AE[1 ¢(x) ¢T (x) - M~'1?] (9)

The equations {4} — {9) are different from Saridis’
original work where these relations are defined as upper
bounds.

Two necessary conditions to obtain the results con-
cerning the accelerated convergence were that xn and vh be
mutually independent.

111 — IDENTIFICATION OF A LINEAR SYSTEM

Given now a stationary, discrete-time, linear system

Fig. 2:
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Figure 2 — Linear system

XN+l = AxN + bwy (10)

Zn=hTx" + v, (11)

where:

xn = [xPxp .. x}{IT, ¥n€l; b=(b, b, ..by]T
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is a known vector with Ib 1<ece; his an m-vectorh=[10 ...
..0IT; a=[a, 8, ... am [T is an unknown vector with lal<es,
wy and v, are zero-mean white noise independent processes
with covariances

Elwnwk] = Y& Sk (n—k) <oo

Elvnvk] = 7 Sk (n—k) <oo

The identification problem consists in determining the
vector xf using the observed zp,.

From (10) and {11) we obtain:

Zm+n =8TXN + Umin (12)
where:

Vm+n HbT wm#n-1 +yp g

wm+n-1 Q[Wmﬂl-l Wm+n-2 + - wnlT

The solution of (12) is analogous to the problem of
section 11 with the fundamental advantage that f(x) is now a
linear combination of x.

The equation (12) can be represented by:

Im+n — f(x") + Vm+n
where:

f(xn) = aT xn as shown in Fig. 3.

N

min
—_— "'TLJL e
aT fi(x )=a'x \fj nen
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Figure 3 — System under consideration in {12)

It is easy to prove {3}, [4] that:

1) xn are identically distributed

2} Ixnl<oo

3) vy 4q is @ zero-mean random variables independent
of xn with covariance E[vm +n ¥m+k ] <.

Comments:

The three above conditions are sufficient to apply the
algorithms-of section 11, It is‘important to emphasize that:
the two conditions xn and vm +n Mutually independent ¥n,
are not satisfied in this case. This modification does not
affect the convergence criterion but only the accelerated
convergence. Saridis et al, [2] used a stochastic approxi-
mation algorithm to estimate recursively the vector a given
by:

1—An Qn xn An 1-\p
antl = an + — Zm+n —

T—pp (1-un)/pn + xnTQuxn | g 1—ptn

xnT an {(13)



1 Q, x" x"T Qf
1—utn (1-nMun+xnT Q, x0

(14)

\n and up, satisfy the conditions (3).

The initial conditions of (13) and (14) are such that
latl <o, 1Q, 1< o and det Q™! # 0 where Q, is an NxN
symmetrical matrice.

The sequence an resulting of (13} is such that

P [liman=a] =1

As commented here, it is not anymore possible to
accelerate the convergence of the algorithm using the results
of section || because:

For two vectors p and q we have:

IptqP = 1pP + Ig I?P +2pTq

<lipP +IiqlF +2bl Igl
<2(kpP +1qP)

If p and g are two independent random vectors, with
at least a zero-mean one, then:

EllptqP]=E[lpP]+E[lIqP] (1)

But if they are not:

E[lptqlP ] =E[lpP]+E[lqIF] % 2E[pTq]
<E[1pR]+E[IqP]+2E[1pl K]
<2(E[1pP]+E[lqP])

This explains why we could use the equality (15} in
section |1 and the impossibility of using:

E{lptqP1<E[{IpP]+E[Iql]

in section 1] as done in (2].

IV — SIMULTANEOUS IDENTIFICATION
AND STATES ESTIMATION:
A PARTICULAR CASE

A great disadvantage of the algorithm (13), (14) is the
required accessibility of the states. To by-pass this difficulty
it should be possible to try using a simultaneous iteration
between the stochastic approximation algorithm presented
in (13), (14) and a Kalman filter whose equations for the
stationary monovariable case are given below [4]:

Gain equation:

kn = Rp h/(hTRph + Y2} (16)
A posteriori variance algorithm:

Va = {1 —knhT)R, ]
A prioti variance algorithm:

Rn+1 =An+1VaAhs, +b y3, bT (18)
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Filter algorithm:

KN+l = Apy, X0+ kntl(z,, —hTApy; %0)(19)
where:

An+, is the (n+1)th estimate of A.

The approach suggested above, fig.4 (next page), is

applied to the particular case of a system given by the
following equations:

[ 0 1 0 0 )
0 0 1 0 1
xn+l—= ng4
0 0 0 o o |Wn
0656 0784 -0.18 1 1
zn=[1 0 0O OJT xn+v,

Elwn]=E[vwn]=0

Elwi]=yw =1

Elva]= ¥y =0.25
where v, and wp have Gaussian distributions.

A program is developped to simulate this numerical
example with the following initial conditions.

x!=x!=at=0

Q =R, =1

The sequences A, and yu, chosen are:

1 1
An = and pup =—
n+0.5 n+1

Using oniy the observations z,, of the simulated sys-
tem we obtained the resuits given in Table 1 and plotted in

Figure 5. In this particular case the sequence of estimates an
converges numerically to the a priori known real vector a.
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Figure 5 — Quadratic error obtained by simultaneous
identification and estimation.
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Figure 4 — Diagram of the simultaneous identification and state estimation

Table 1: Performance of simultaneous identification and estimation

Real Value: aT = [ -0.656 0.784 -0.18 17

n an=[a] a] 2 a7 Ia"—al2
100 —-0.532 0.717 —0.260 1.026 27 x10-2
200 —0.543 0.781 —0.288 0.958 26x10-2
300 —0.584 0.732 —0.282 1.015 1.9 x 10-2
400 -0.498 0.743 —0.202 0.895 3.8x10-2
500 -0.547 0.723 -0.216 0.997 1.7 x 10-2
600 -0.637 0.741 —0.239 1.0M 1.1x 10-2
700 -0.650 0.752 —0.200 1.048 3.7x10-3
800 -0.654 0.797 —0.246 1.054 7.6x 103
900 -0.632 0.778 -0.236 1.030 47 x10-3

1000 -0.661 0.770 -0.233 1.075 8.7x10-3

V — CONCLUSION

The relations to be satisfied for optimization of the
accelerated convergence of the stochastic approximation
algorithm are modified in the case of a stationary linear
discrete-time system.

To avoid the exact measurement of the initial state at
each step, a numerical tentative is made to use simul-
taneously the two recursive stochastic approximation and
Kalman filter algorithms. Further research is under way to
extend these results.
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