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ON THE EXISTENCE, EVOLUTION,
AND STABILITY OF INFINITE-
DIMENSIONAL STOCHASTIC
DISCRETE BILINEAR
MODELS"
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Abstract.  Sufficient conditions for mean-square stability of infinite-dimensional
discrete bilinear models driven by Hilbert-space-valued randorn sequences are
given in this paper. It is shown that the class of models under consideration can be
properly defined as the uniform limit of finite-dimensional bilinear models. The
stochastic stability problem is approached by analysing the evolution and the
asymptotic behaviour of the state expectation and correlation sequences for such a
limiting model.
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1. Introduction :

Bilinear systems, which hold several significant structural properties, have
been in evidence for the past decade. Motivations for considering such a special
class of nonlinear dynamical systems operating in a stochastic environment have
been extensively discussed in the available literature (e.g. see the references in
Kubrusly, 1986). The major part of it is related to continuous-time evolution and
finite-dimensional models. However, on the one hand, some effort has aiready
been made towards infinite-dimensional continuous-time bilinear models (e.g.
see Zabczyk, 1979) and, on the other hand, many real systems are naturally
described by discrete-time bilinear models (e.g. see Goka, Tarn and Zaborsky,
1973, and the references therein). Therefore, it seems opportune to attempt to
an investigation of infinite-dimensional discrete-time bilinear models. These can
be thought of either as an extension of finite-dimensional discrete-time models,
or as a discrete version of continuous-time infinite-dimensional models (result-
ing, for instance, from usual discretization procedures).

Here we shall be focusing on the discrete evolution and asymptotic behaviour
of bilinear systems operating in a stochastic environment, whose model is
formally given by the following difference equation.

xiv1 = [Ao +k§1Ak<wi;€k>]xi+ui,
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where {A;; 2=0} is a sequence of bounded linear operators on some separable
Hilbert space H, {¢.; k=1} is an orthonormal basis for H, and {u; i=0}, {w:
i=0)} and {x;; i=0} are H-valued random sequences. If 4 is finite-dimensional,
then such a model characterizes precisely a finite-dimensional discrete bilinear
system, since the above series is finite. For such a finite-dimensional case, the
evolution of the state moments is easy to obtain under independence assump-
tions (e.g. see Kubrusly, 1986). This supplies a suitable framework to investi-
gate mean-square stability, by analysing the asymptotic properties of the state
moments (e.g. see Kubrusly, 1986; Kubrusly and Costa, 1985, and the
references therein). On the other hand, if we set A,=0 for every £=1, then the
above model is naturally reduced to a linear one. In this case the evolution of the
state moments are easily obtained, even when H is infinite-dimensional, which
enable us (at least in principle) to investigate their asymptotic behaviour.
Actuaily, mean-square stability for infinite-dimensional discrete linear systems
has already been properly addressed in the current literature (e.g. see
Kubrusly, 1985; 1987; Zabczyk, 1975).

The main goal of the present paper is to supply sufficient conditions for
mean-square stability for the general case, where H is infinite-dimensional and
{Ay; B=0} is any uniformly bounded sequence. This will be achieved in Sec. b.
The background material that will be required for supporting the stability results
is presented in Secs. 2 to 4. Notational preliminaries are given in Sec. 2. In Sec.
3 it will be shown that the infinite-dimensional model under consideration can be
rigorously defined as the uniform limit of finite-dimensional models on the
Hilbert space 52 of all second-order H-valued random variables. Settion 4 deals
with the evolution of the state expectation and correlation sequences, whose
asymptotic properties will be analysed in Sec. 5.

2. Preliminaries

In this section we pose the notation and basic results that will be needed in
the sequel. Throughout this paper we assume that H is a separable nontrivial
Hilbert space, with || || and <;> standing for norm and inner product in A,
respectively.

Nuclear operators.  Let B[X, ¥] denote the Banach space of all bounded linear
transformations of a Banach space X into a Banach space Y, and set B[X]1=B{X,
X1]. We shall use the same symbol || | to denote the uniform induced norm in
B[X,Y]. Let C*€B[H] be the adjoint of CEB[H] and set |C|=(C*C)"*
€ B[H]", where B{H]*={C€B[H): 0=C=C*}={CeBIH]: C= 1C|} is
the closed convex cone of all self-adjoint nonnegative operators on H. The class
of all compact operators from B[H] will be denoted by B.[H).If CEB.[H] (or
equivalently, |C|€B.[H]), let {4,=0; k=1} be the nonincreasing nonnega-
tive null sequence made up of all singular values of C (i.e. eigenvalues of 1ch,
each nonzero one counted according to its multiplicity as an eigenvalue of | C|.
Set | C||,=Z,Z1A and let B,[H]1={CEB.[H]: ICli <1 be the class of all
nuclear operators on H. || ||, is a norm in By[H], [[C|=[|C|}, for every
CeB,[H], and (B,[H], | ”1) is a Banach space. Set B,[H1"=B,[H]
MB[H]*. For any f,g€H, define the outer product operator (fOg)€B,[H]
as follows: (fog)h=<h;g>f for all h€H, so that (fof)€B,[H] .
The above standard concepts may be found in Gohberg and Krein (1969),
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Schatten (1970) and Weidmann (1980).

H-valued random variables. Let 5 denote the Hilbert space of all second-
order H-valuéd Tandom variables, whose inner product <;>, is given by
<x;y>_=e{<x;y>} for every x,y €2, where ¢ stands for expectation of
scalar-valued random variables. Let | ||, denote the norm induced by <;>

that |||, 2=¢{[x}?} <o for every x €27, As usual (cf. Kubrusly, 1987) the
expectation E{x}€H and the correlation operator &{x0y}E€B,[H] are
(uniquely) defined for every x,y €5 by the formulas: <E{x};g>=¢{<x;8>}
and <& {x0y}f;g>=¢{<f;y><x;g>} for every f,g € H. A random sequence
{x,€5¢, =0} is correlation stationary if there exists Q €5,[H 1" such that
&{x;0x,}=0 for every 1=0.

Remark 1: Recall that £{ }: 2#—H is a linear map, E{Cx}=CE{x}, and
&{xox} €B,[H]", for every x €3¢ and CEB[H]. The following basic results,
which are readily verified, will also be needed in the sequel. For any «,v,x,y
€z and C,DEB[H],

(@ &{(u+v)ol(x+y)} = &{uox} + &{ucy} + &{vox} + &{voy},
Cé&{xoy)D* = £{Cx0Dy} = &{DyoCx}*,

(b) l&{xoy}ll, = =l Mzl B} = Nzl 2=l &{xox},,
sl = el lsl,

p » i
(c) \ 12=m | <(E{x}oE{x})eser>| = Em | <(&{zxox}e;er>|,
for any integers 1<m=<p, and for any orthonormal basis {e,; k=1} for H.
Moreover, if a given sequence {x,€5#; n=1} converges in (7, || |.) to
X €57, then '
(d) lim |E{x,} —E{x}| = lim, | &{x,0%,} —&{x0x}]|,

= lim || &{x,09} - &{x0y}{, =0, Yy € XF

Remark 2: For any family {2: € SE€EZ#D} set I ren)={YEH" ¥ is
independent of {x: €5¢; E€Z+#D}}. In particular, F,={y €5 y is indepen-
dent x €5#}. The following well-known independence properties (e.g. see
Neveu, 1965) will be required in the next sections.

(a) If x €7, then, for every measurable functionals ¢, y:H->C,

e{p() v(y} = e{P0)} e{v}.
(b) I {y, €3¢ vEY+#D)} is independent of {x: €5¢; EEZFD} then, for any
finite subset {x~ 1<k=m} of {xg; EEZ}, and for every measurable map
N.:H"—H,

N(I;_-l, T, x';-m) € j{)’u’ vET}
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3. Model description

The purpose .of .this _section is_to_properly pose the infinite-dimensional
bilinear model that has been formally introduced in Sec. 1. This will be achieved
in Lemma 1. We begin with an auxiliary result that will suffice our needs.

Proposition 1. Let w€? If {e,; k=1} is the orthonormal basis for H
made up of all eigenvectors of &{wow)€ B, [H]*, and {4, €B{H]; k=0} is
uniformly bounded, then

n
{& (1) def. Ay + glAk<w;ek>: S, n=1}
converges uniformly. Equivalently, there exists a map &/, F,~»3¢ such that
OSUP |l-95¢'w(n)v—&xf,,,v|le]|v[|ﬁ—> 0 as n—oow,

FVES,

which is bounded, homogeneous and additive. That is: suppwyes, Wt/
o]l <, &, av=as,v for every a €€ and v €5, and for each i=1

&wa (Zi)j) = .E&Y(wvj,
j=0 j=0

whenever v;€.%, for every =0, 1, --+, i and (Ej-iovj)efw for every k=
1, -, i
Proof. From Remark 2(a), we have K

<Ap<w;ep>v; A<wie>v>, = <&{wowle;e,> <Apv;A >,

for every k,I=1, whenever y€.%, Hence, with 4,20 standing for the
eigenvalue of & {wow} associated with the eigenvector ¢, for each k=1, we get

b p
|2 Ap<w;ep>vl| 2= 2 <Ap<wie,>v; A<w;e,>v>,
k=m x klI=m

P
< sup [Pl 1,2 Z 0

m=h=

for all » €%, and for any 1<m=p, according to Remark 1(b). Therefore,

sup sup || u(n+vo=sL,(m)o| /vl

vzl 0#ver,

< 1
?
< 22[3“&1“\ (k:%ﬂlk) — 0 as n— «,

which implies uniform convergence. Note that the limiting map &, fails to be a
bounded linear one just because its domain ., is not a linear subspace of 7.
Actually, boundedness is straightforward and homogeneity is trivial. The
additivity property holds for i=1 because {.,(n); n=1} eonverges (strongly
on %) to & ,. Since it holds for =1 it is a simple matter to conclude the proof
by induction.

Lemma 1. Let {w;€5%; i=0} be a correlation stationary sequence, let {eg;
k=1} be the orthonormal basis for H made up of all eigenvectors of
E{wow;} €EB[H]", and let {A, EB[H]; k=0} be uniformly bounded. Set, for
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every =0,

g
&, =Ag + kgi_dgf;@_fﬁk?: T, H

according to Proposition 1. Given x, €2# and {u; €S i=0}, assume that
wo € Fr, and w; € Iz, . 1 1. won e 1)  for every j=1. Then the difference
equation in ¢

xiv1 = (Aot 2 Ap<wier>lr + u;
has a unique solution, which lies in .#, for every i=0. The solution is given by
X1 = Ay Xo+to
and
i=1
X =y A Xy T Zl&iw R P T e i T for every i=2.
- e -

Proof.  Set vo=xy and v,,,=u; for every j=0. Under the above independence
conditions we get, for every =1,

=1
(a) thz’wr,_l--x@’w)vj + v € Fy,

i=1 i
(b) ‘ﬂﬂh‘ [Eﬂ&{wi—i“'&{w,vj + vl = Ed—gw, Té &‘{w‘,b‘j-

This can be readily verified by induction, according to the additivity property for
&, in Proposition 1, with the help of Remark 2(b). Now it is a simple matter to
verlfy that the sequence in (a) is the umque solution of x;. 1=, x;+v; with
xo= 1y, according to (b).

1. Expectation and correlation evolution

Consider the infinite-dimensional bilinear model defined in Lemma 1. In this
section we shall investigate the expectation and correlation evolution for the
state sequence {x;€F,; i=0} generated by such a model. This will be
developed in Lemma 2 below. We begin now with two auxiliary propositions.

Proposition 2. Let {e,; k=1} be any orthonormal basis for H, and let
{A,€B[H]; k=0) be an arbitrary sequence. For a given w €7¢ and each n=1
set M,(n),F.(n)EB[H], Ku,n),L,n),Tyn)EBIB[H]], and P,(n)
€ B[H,B;[H]] for any u €57, as follows;

M,(n) = EAk<E{w}; ep>, F,n)=Ag+ M,(n),

K (mQ] = 2 <(E{w}oE{w}ese,>AQA5", vQ € BIH},
L,(m)[@] =kli=1<é°{wow}e,;ek>AkQAf*, vQ € B[H].
T(m)1Q] =j“2=1 <(&{wowy—E{w}oE{wh)ese,>A,QA*, YQ € BIH],
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PE(n)[h] = AghoE {u} +k§1AkhOé°{uow}ek, VheH .

Let {&,(n): £, —2¢; n=1} be given as in Proposition 1. Then, for every n=1,

() K,(n)[Q1 = M, (n)QM,(n)*, vQ € B[H],
(b) T.m(Q] = L, Q] - K.,(mlR], : vQ € B[H],
(c) 0 =K,mi|Q1=L,mI]|Q]], vQ € BlH]),
() Kol = |Mm)|* = (Lol
() E{A,(mv} =F nE{v}, Vo € Iy
(f)y &{ (o, ,(n)v}

=F (n)&{vov}F, (m)* + T ,(m)[E{vov}], Vo € £, ,
() F{HA(n)vou} =.Pui‘(f’t)[l‘?{?f}]- Yo € Sy wy -

Proof. The results in (a) and (b) are trivial, and (c) is equivalent to
(c) 0= T,mQ]]= LRI, vQ € BlH],
according to (b). The first inequality in (c) is immediate‘;lfr‘orn (a). Since
<T,()[|Q|1h; h>
=k'$=ls{<e,g;w—E{w}> <w—E{whs x>} <|Q[FArh; | QT4 h>

1 1
-—'k‘12=1<|Q|3<eg;w—E{w}>A,*h; | QP <ep;w—E{w}>A h>,
18 ®
= |Ql”(k§1<w—E{w}; ek>Ak) rl 2 VQEBIH], VheH,

for every n=1, it follows the first inequality in (¢') or, equivalently, the second
one in (c). This implies the inequality in (d). Actually, for every n=1,

K. (m)]| =“51“191I|Mw(n)QMw(n)*ll = | M, (n)|?
Q=
= Ko ] = | LU = [Lo(m].

The results in (e), (f), and (g) are readily verified by Remarks 1(a) and 2 (a, b).

Remark 3: Note that, for every n=1,
@ [Tl s ITuml el vQ € B, [H),
(b) PX(n)h] = &{ ,(n)hou}, YheH.

Moreover, if {e,; k=1} is made up of all eigenvectors of &{wow} €B[H]Y,
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then
(c) l Rai(ﬂ),[h,uI—L—Sﬁ(rllfl—&”_-tmﬁ-g-?-“"—q-k-”----”--w--”-,,) ] M&ll, Yh€E€H,
@ L,0Q] = 2 LAQA*, vQ € BLH),

with A,=0 standing for the eigenvalue of & {wow} associated with ¢, for each
k=1.

Proposition 3. The sequences defined in Proposition 2 converge uniformly
whenever supg=oflA,{ <o and {e,; k=1} is made up of all eigenvectors of
&{wow} B [H]".

Proof.  Since Xy Apg=|&{wow}|,=llw] Z<, we get by Remark 3(d)

sup||Ly(n+v)~L,(n)|| < sup|Al? kzl Ay—0 as n—oox.
v=1 k=1 =

Hence {L,(n); n=1} converges uniformly. Now recall that {|fog|| =|i/|| lig]l and
CfoDg=C(fog)D* for any f,g€H and C,D€B[H]. Therefore, by Remark
1(c),
UM (4 v) =My, () 1R ||? = [ {M (4 v) — M, ()1 (RO R LM, (4 v) — M (1) 1|
LR
= <(E{w}oE{w})eser>Ar(homAX|
ntv e

SSkE?HAk“2”h”2k12 1]<f5’{?fi»‘0w}ez:ek>[

kI=n+1

for all h €H and every n,v=1, so that

L

SE?||Mw(n+v)—Mw(n)]| = 25113||Ak|| (kﬁgﬂlk)z—ﬂ) as  n—>00,

Thus {M,(n); n=1} and {F,(n); n=1} converge uniformly. Then, by
Proposition 2(a, b), {K,(n); n=1} and {T,(xn); n=1} also converge uniform-
ly. By Remarks 1(a, b) and 3(b)

[P+ v)B]-PEm) k]|, = | uln+vih—ot (k| |u] . Yh € H

for every n, v=1. Hence {P,*(n); n=1} converges uniformly according to
Proposition 1.

Lemma 2. Under the assumptions of lLemma 1 the state expectation
{E{x;}€H; i=0} and correlation {&{x;0x;} €B,[H]"; i=0} sequences
evolve as follows;

(a) E{xi+1} = Fw,E{xi} + E{ut}

(b) é°{x,—+10x,-+1} = Fw‘crf"’{x,-ox,-}Fw‘* + Twl[é"{x,-O:c;}]
+ E{H yx;0u;} + E{Hx:0u;}* + &{u;0u;},

where, for each i=0, F, €B[H] and T, € B[B[H]] are the uniform limits of
{Fy(n); n=1} and {T, (n); n=1}, according to Proposition 3. Moreover, if
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20 € Fu,, w, and

{u;, w;} is independent of {xq, o, "=, ®j—1, wo, **, W1}
for every j=1, which implies the former independence assumption, then

(c) E{%410%;41) = F, & {202} F, * + Twl[(g"{x‘.oxi}]
+ ow“[E{x,-}] + Pw:"[E{x‘-}]* o+ é"{u,-Ou,'}

with P, € B{H, B [H]] denoting the uniform limit of {P,(n); nz1} for each
t=0, according to Proposition 3.

Proof. Let &, F, T, P be the limits of {&(n); n=1}, {F,(n)
n=1}, {Tw(n); n=1}, {P2(n); n=1}, according to Propositions 1 and 3. The
following properties are readily verified by Proposition 2(e, f, g) and Re-
mark 1(d): E{A,w}=F,E{v} and &{H w0, 0}=F,{vov}F, *+
T l&{vov}Yvel,, and £{A voul=Pr[E{v}] Yv €., ). Hence we get
(a} and (b) by Remark 1(a), since x,€.%, Yi=0. Moreover, if the above
independence assumption holds then, by Lemma 1 and Remark 2(b), x; € 9, 4,
Vi=0. Thus we get (c).

5. Mean-square stability

Consider an infinite-dimensional discrete bilinear model operating in a
stochastic environment as defined in Lemma 1. In this section we shall be
interested in the asymptotic behaviour of the state expectation and correlation
sequences, whose evolution was given in Lemma 2. In particular, we shall
investigate sufficient conditions on the maps {.%/, } to ensure that those
sequences converge for any admissible initial condition x, and input disturbance
{u;}, and their limits do not depend on x,,. This will be carried out in Theorems 1
and 2 below. First we consider the following auxiliary result, which involves the
concept of Cauchy summable sequence: a Cauchy sequence {y;€Y; =0} ina
normed linear space Y is Cauchy summable if and only if

x“
2 suplly,,—y,fl <=

Proposition 4. Let A€B[X] be uniformly asymptotically stable and
8:X—X be a proper contraction on a Banach space X, such that

| A < 0 Viz0, [fx—6y|| =ollx~y]| Vry €X a+op<l,

for some real constants o=1, 0<a<l, 0=sp<l. If {y;€X; i=0} is a Cauchy
summable sequence then {z;€X; i=0}, given by

201 = Az; + 8z; + v; zy€X arbitrary,

is also Cauchy summable, and its limit z € X does not depend on z4 €X.
Proof. See Lemma (L-1) in Kubrusly (1986).

Assumption 1. In order to reach a proper balance between generality of
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results and simplicity of analysis we make the following assumptions. Let
{w; €%, i=0) be an expectation and correlation stationary sequence, and set

s = E{w;y €H, S=¢{wow;) € BilH]",

for every i=0. Let {e; =1} be the orthonormal basis for // made up of all
eigenvectors of S €B[H]", and let {4, € B[H]; =0} be an arbitrary uniform-
ly bounded sequence. Given x¢ € 2 and {u; € ; i=0}, assume that xo € F(u;, w,)
and

{#;, w;} is independent of {xo, U0, ~**, Uj—1, Wo, 77, W1}
for every j=1. Set, for every ¢=0,
r; =E{u;} €H, R;=¢&{uou;} € BlH],
G; = &{u;ow;} € B([H],
and suppose G;=7;G, for some scalar sequence {¥;€C; i=0}. Assume further
that {¥,€C; i=0)}, {r,€H; i=0), and {R;€B.[H]"; (=0} are Cauchy
summable sequences in €, H, and B[H], respectively; and sup;=o|[R,[, <.

Now, under Assumption 1 and according to Lemma 1, consider the state
sequence {x;€.%,; i=0} generated by the difference equation

o

(1) %iz1 = [Ap + kglAk<wi;ek>]xi+ i, Y
and set for every :=0 '

g, =E{x;} €H, Q; = cr‘?{_x,-Ox,-} € B,[H]".
By Lemma 2 it follows that, for every :=0,
(2) 9 =Fg + 7
(3) Qiv1 = FQF* + T[] + Vilg,]

withF,M €B[H], TeB[B[HI, {P;€B{H,B,[H]];i=0}and {V:H—B,[H];
i=0} given by

F =As+M, M=k§1 Ay<sie,>,

T(Q] = 2 <(S—sos)es e,>AQ4%,  VQ € BIH),
P;[h] = Aghor; +k§1 A hOG ey, Vh € H,
Vih] = P;[h]1 + P [R]*+R,, Yh e H,

according to Propositions 2 and 3. Note that, if Ag=0 or M=0, then

x

(4) FQF* + T{Q] = 2 1,A,QA,%, vQ e B[H],

k=0
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where Ap=1 and A,=0 is the eigenvalue of SEB[H]* associated with the
eigenvector e, for each k=1 (cf. Proposition 2(a, b) and Remark 3(d)).

Definition -1;7- —Fhemodet{1)-is-mean-square stable if, for any xy €5 and
{u; €5¢; =0} satisfying Assumption 1, there exist ¢€H and QeEB | [H]"
independent of x5 €2¢, such that "

@ [lg,—qll-0 as i, () [|Q-Q -0 as i— .
Theorem 1. If there exist real constants =1 and 0<a<1 such that
|Fif <oa’ Yiz=0 and o+ o?|T| <1,

then the model (1) is mean square stable.

Proof. Consider Eq. (2). Since {r;€H; i=0} is Cauchy summable, it follows
from Proposition 4 that {g,€H; i=0} is also Cauchy summable, whose limit
g € H does not depend on the initial condition. Hence Definition 1(a) is satisfied.
Now consider Eq. (3). Set 8=T€B[B[H]]and A[Q]=FQF* forall Q € B{H],
where A € B[B[H]] is such that

IAT] = sup [FQF*||={F|* < o™, ~ Viz0.
len=1

Thus, from Proposition 4, {@;€B,[H]"; i=0} is a Cauchy summable se-
quence in B[H], whose limit @ € B[H] does not depend on the, initial condition,
if {Vilg,]eB,\[H]; i=0} is Cauchy summable in B[H]. Moreover, @ € B[H]*
since B[H]" is closed in B{H]. Hence Definition 1(b) is satisfied, provided the
following hypothesis are verified:

(Hy) {Vilg)€B1[H]; =0} is Cauchy summable in B[H].
(H») The uniform limit @ € B[H]™" is nuclear (i.e. @ €B,[H]T).

Proof of (H;). Recall that eof—goh=(e—g)of+go(f—h) and |fog|=|/|
2| for every e,f,g,h € H and, from the definition of P; and Remarks 1(b) and
3(c), that

12, AhoGienl = )40l +suplld] [SIHIR e}
for all A €H and every i=0. Therefore, for every 1, v=0,
1Pisvla,. 1-Pilglll = [Aolg;,,~a)07irv+A0q,0(rivy =7
+ |2 A, ~0)Cinves

=]

+ 51 Ag,0(Giv = Giles|

< Aol Ugpe, =g l7isnll + la 17 =7l
+ @l 4ol+supl Al IS1)

x ?B(I))”R:“ f(“qiﬂ—qiﬂ + I Y,'_H,—Yfl ||CI1“),

e gy e T
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since sup___[[R;|j, < and G;=7,Go for every i=0. Now

H Vieulg, J=-Vilg ]| = 2”P.-;,,[G’,-”]_P,£+v,[q:']||+”_R;'+V—Ri||

for every ¢, v=0, so that {V,lg,]€B[H]; i=0} is Cauchy summable in B[H],
by the Cauchy summability of {¥;€C; i=0}, {¢,€H; i=0}, {r;€H; i=0}, and
{R;€B{[H]T; 1=0}.

Proof of (Hy). From Eq. (3) we get by induction
i—-1
Qi = A'Qo + Z ATTNOQ1+V;(g)))
for every i=1. Moreover, according to Remark 3(a),

letQill, = I7teill, = [T{liell, Y@ € BilH]".

Hence, since | Af]|so%a® for every i=0,

10, = o%a®lQol, + 2,a DT, +1V,lg )]
for every :=0, so that (cf. Proposition (P-1) in Kubrusly, 1986)
[0l = e+ AN TIFIQol, + Za+ o ITD= Vg I,
for every i=0. However, by the definition of V; and Remafk 3(c),
IVla 1, = 2 (lAs] +sup 4| IS DIRA Flg )l + IR,
for every i=0, so that sup;»gl{R;|| <® ==>sup;»¢||Vi{¢,]{l, < %. Then
sup[Qifl, = [ Qoll, + sup| Vilg;] [W(1=a®=~a®[TIH1]
since (¢®+ || T||)<1. By hypothesis (H,) {Q;€B.[H]*; i=0} is Cauchy

summable in B[H], so that it converges uniformly. Thus @ €B8,[H], since
SUP;=p||Q:]} <% (cf. Weidmann, 1980, p.179).

Remark 4:  Recall that, for any F € B[H] there always exist real constants
>0 and 0=1 such that [[F'||<ca’ for every i=0. Thus, for any operator
FeB[H], set

D, = {{a,0) € R?: a>0, o=1, ||F|=od, viz=0},

which is nonempty. Therefore, Theorem 1 can be restated as follows; if there
exists (a, o) €D, such that

(a) a?+0?|T|| < 1,

then the model (1) is mean square stable. Note that the above condition can be
replaced by
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(b) - 2o+ |\ T| < 1

in the following sense:_if there exists («,¢) € D, such that (b) holds true, then
there exists a pair in D, (not necessarily the same one) for which (a) also holds
true (and, consequently, the model (1) is mean square stable). However, (b) is
stronger than (a) (i.e. (b)==(a)). Actually, if (b) holds true for some pair in D,
say (a',0'), then ||F]<o’'a’<1 (i.e. F is a proper contraction, which is not
imposed by (a)). Hence (for F#0—otherwise the result is trivial) we may
choose o=1 and a=|F|<1, so taht (a,0) €D, (since [F | =[|F||* for every
i=0) and (a) holds true. On the other hand, even if there is no pair in D, for
which (a) is satisfied, the model (1) may still be mean square stable. This will be
the subject of the next Theorem.

Theorem 2. Suppose M=0 so that (4) holds. For each [=0 let
A 6,€B[B[H]] be given by

ALQY = MARQAM,  0[Q) = X 1eAQA*
[,
for all Q € B[H], and let ¢,=1 and «,=0 be real constants such that

oL L , R
AP = AFJAM = o Vi 0.

If infjmo(a+ 0,2 0, )<1, then the model (1) is mean square stable.

Proof.  First note that, if /#¥m then s

MIAFRE? = 2 2l Ax*h||* = <6n[1h;h>
k=m
for every h € H. Thus, for any I#m,

MIAN = sup <OnITh> = 10,0011 = 10,
jali=1 -

If inf=o(a®+ 07| 6)]])<1, then there exists m=0 such that a2+ 0 [ Ol
<1. Hence a,,<1 and ||8,]|<1, since 0,,=1. Moreover, M=0 implies that
F=A4,, so that

|F < ggae’ Yiz 0, IFN2 < |8l ifm >0,
since Ay=1. Therefore | F*||<od’ for every i=0, with 0=0p=1 and 0<a<],

where either a=ay if m=0 or ||6,]|'"?*=a<lif m>0. Now consider Eq. (2),
and recall that Eq. (3) can be written as

Qi+1 = Am[Qz’]+ Qm[Qi]+ Vi[ql-]y

according to Eq. (4). Then the desired result follows from Proposition 4 exactly
as in the proof of Theorem 1. Note that the proof of (H,) remains literally the
same, and the proof of (H,) also applies to the above equation since

16,,{Q11, = 8.l YQEB[H]".
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6. Illustrative examples

~ In this section we shall present an application of Theorems 1 and 2 through
simple illustrative examples. Note that mean-square stability conditions are
given in Theorem 1 in terms of the operators F and 7. However, F and T are
defined as functions of {A,; k=0}, S=&{w,ow;} and s=F {w;}. Similarly,
mean square stability conditions are given in Theorem 2 in terms of the
operators A, and 8, for /=0. However, A; and 8, are defined as functions of
{Ay; =0} and {A; [=1}, which are the eigenvalues of S=&{w;0w;}.
Therefore, both Theorem 1 and Theorem 2 supply sufficient conditions for
mean-square stability of the model (1) in terms of the model operators {Ay;
k=0) and the disturbance {w;; =0}, which define the maps {.,; i=0}.
Consider the set-up of the previous section. Set H =/, (the Hilbert space
made up of all square-summable one-sided infinite sequences of complex
numbers), and let 4, € B[l;] be the sum of a right and a left weighted shift with
weighting sequences ‘

6k(1’ OJ 17 01 lp 0: “')’
€k(11 09 ]-’ Or 1! O, "'),

respectively, for each £=0. Here {8,#0; £k=0} and {g+#0; k=0} are
bounded complex sequences. Thus

0 Er : ] ¢
&, 0
Ag= |77 NS V=0,
| & 01
S
It is a simple matter to verify that
o Jed,  ifi=0,2,4
|AL] = C
Op0r lfl = 1, 3, 5,
with
L
Or = Iakfkl‘,

op = max{|6;|, {ex|}or"

for each £=0. By setting

m, = min{ | 8,1, ||},

M, = max{| 8|, |&!}.

we may write
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Ukz = Mk/mk = 1, Cr = Ty,
for each £=0. ngw set S=diag(Ay, As, ~--) EB1[lz]", where 4,20 for every
k=1 and 'Z%Jg@ ‘and”let s=(p, Ha, ---)€l, be such that
Ek=1#k8k=zk=1‘uk6k=0. Thus M=Zk=1Ak.U.k20, so that
LF = [Ad]l = od, Vi =0,
where 02=0,2=My/my and a=y= 0gm,. Note that

. P . _
AL = AP AC] = oradd, vi=0,

where 0,2=M,/m, and a1=A,"?0,=A,"?0,m,. For simplicity, without loss of
generality as far as the purpose of the present section is concerned, suppose

I(Skl"—"lfkl Vk22,
and set
_3 2 _ S 2
B = kgzlﬂfkl Ezlkwkl -
Under the above assumption it is readily verified that

ITH = sup |2 1ac@as*ll= 1My +B,

ji=1

el = sup |l iolkAkQAk* = Mo*+B.
1

ler=1 %=
Hence
2 2 e MO 2 2
aZ+a?|T| = o (mo+ A M2+ 5),
2 2 M, 2 2
ay +O'1 ” 81" = m, (llml +M0 +ﬁ)

Now let us asign some numerical values for the parameters involved, in order to
illustrate an application of Theorems 1 and 2. We shall consider four simple
examples.

Example 1. (perturbation on the model operator Ay)  Set A;=1, §=3/16,
my=M,=1/4, and My=4/5. Thus

4m02+ 1

@+ | T) = e

Therefore, a®+ 02| T|| <1 whenever 1/4<my=M,=4/5, so that mean-square
stability for the model (1) follows by Theorem 1. On the other hand,
a’+0%|T||=1 whenever 0<mo<1/4, and mean-square stability does not
follow by Theorem (1) in this case. However,

(112+ O'lZH 91 “ = 089,
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so that the model (1) is mean square stable for any admissible value of mq (i.e.
for 0<my=M,=4/5) by Theorem 2 (with [=1).

Example 2 {perturbationon-the model-operator A4;) Replace the param-
eters of the operator A,y by those of the operator A;, and vice versa, so that we
get a situation which is the oposit of that in the preceding example. That is, set
Ai=1, B=3/16, me=My=1/4, and M,=4/5. Thus

a’+o?||T| = 0.89,

and the model (1) is mean square stable for any admissible value of m, (i.e. for
0<m,=M;=4/5) according to Theorem 1 (or equivalently, according to
Theorem 2 for [=0). Note that

4m12+1 =1 if 0 <my = 1/4,

a?+ o 0:) =
P bmy  |<1  if1/4 < my = M, = 4/5.
Example 3. (perturbation on the disturbance correlation) Set B=3/16,
m0=M0=1/4, m1=1f’2, Mlzl. Thus
2 +0*|T| = A+

If A; €[0, 3/4), then a®+0?||T||<1, so that mean-square stability for the
model (1) follows by Theorem 1. On the other hand, for i; €[3/4, 1) we get
a’+0*|| T| =1, and mean-square stability for the model (1) does not follow by
Theorem (1) in this case. However

|[=.£1+_1<1

a’+ 0% 6, P

for any A; €0, 1), so that mean-square stability for the model (1) still holds in
that case, according to Theorem 2 (with /=1).
Example 4. (perturbation on the mixed parameter f) Set mg=m =M,
=1/4, My=1/2, and A,=1. Thus

?+a|T| = 26+ < 1
if and only if €[0, 3/8). Hence, for B&€[3/8, 11/16), Theorem 1 does not
indicate mean-square stability for the model (1). However

5
a?+o%| 6] = B+‘—< 1,

whenever S€[0, 11/16), so that the model (1) is actually mean square stable
for every B€{0, 11/16), according to Theorem 2 (with /=1).

7. Concluding remarks
In this paper we have established conditions for mean-square stability of

infinite-dimensional discrete bilinear systems driven by H-valued second-order
random sequences. The main results were presented in Theorems 1 and 2.
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The finite-dimensional stability results proposed in Kubrusly (1986) were
extended here to infinite-dimensional modeis, which are endowed with a much
richer_topological structure. Such an extension comprised three steps. First,
the infinite-dimensional model under consideration required a proper definition,
since it is not a mere enlargement of a finite-dimensional one, as Proposition 1
indicates. There it was proven the existence of the bounded linear-like map
A F >3 by uniform convergence arguments. Such a map plays a fun-
damental role in bilinear modelling, since it characterizes the multiplicative
action of the input over the state. The infinite-dimensional model was then
properly posed in Lemma 1. Secondly, the evolution of the state expectation and
correlation sequences was considered in Lemma 2. The evolution equations
were given in terms of convergent series of operators, whose essential
properties were derived in Proposition 2, and uniform (rather than just strong)
convergence was ensured in Proposition 3. Last, mean-square stability condi-
tions were supplied in Theorems 1 and 2. As one could expect, the infinite-
dimensional case under consideration also demanded a much deeper stability
analysis than its finite-dimensional counterpart in Kubrusly (1986), as the proof
of hypothesis H, and H, of Theorem 1 revealed.

Finally let us remark on the independence conditions assumed so far. Let
10 €5, {u; €5¢; i=0) and {w; € i=0} be the random disturbances involved
in the Lemmas and Theorems of Secs. 3 to 5, and consider the following
conditions.

(D) 20 € Fu,, wy: izoy and {{u;, wi); i=0) is an independent sequence in 5%,

(1D #,=w; ¥i=0, and {xy, w;; i{=0) is an independent gequence.

(III) %0 € F (. w, i=0y and {u;; =0} and {w;; (=0} are independent se-
quences, which are independent of each other.

(V) 20 € F(y. w; izoy {45 120} and {w;, 120} are independent sequences,
and {u;, w;} is independent of {u;, w;; j#Fi=0} Yj=0.

(V) 20 € Fryy, wor» and {a;, w;} is independent of {xo, o, ***, #;.1, Wo, "*,
w1} izl

It is readily verified that

(D) == (IV), () == V), JI) == (IV), ({1V) == (V)

Note that condition (V) is certainly stronger than what is actually needed to
ensure just the results in Lemma 1 and those in parts (a) and (b) of Lemma 2. On
the other hand, it is enough to ensure all the results in Secs. 3 to 5. However,
condition (V) may look somewhat artificial, so that the stronger condition in (IV)
is sometimes assumed in the related literature (e.g. see Kubrusly, 1986).
Indeed, the even stronger conditions (I), (II) and (I1I), which may be aestheti-
cally more attractive, are very often assumed for modelling stochastic bilinear
systems (e.g. see Kubrusly and Costa, 1985; Zabczyk, 1979; Haussmann, 1974,
respectively). It is also worth remarking that conditions (II) and (IlI) represent
rather different situations, which turn out to suffice our modelling purposes.
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