ERRATUM/ADDENDUM TO "POWERS OF POSINORMAL OPERATORS", OPERATORS AND MATRICES 10 (2016), 15–27

C.S. KUBRUSLY, P.C.M. VIEIRA, AND J. ZANNI

ABSTRACT. Erratum/Addendum to the paper Powers of posinormal operators, Operators and Matrices 10 (2016), 15–27.

The statement of Lemma 2 in the above paper is incomplete (in that we overlooked the necessary assumption of closed range to prove the second part of it — we referred to [2, Proof of Lemma 5.31] overlooking that that result is stated for Fredholm operators where ranges are closed). The corrected statement and proof go as follows (notation and terminology as in [4]).

Lemma 2. Take any operator $A \in \mathcal{B}[\mathcal{H}]$ and an arbitrary integer $k \geq 1$. If

$$asc(A) \le k$$
 and $dsc(A) < \infty$ or $asc(A) < \infty$ and $dsc(A) \le k$,

then

$$dsc(A) = asc(A) < k$$
,

and so

$$\mathcal{R}(A^n) = \mathcal{R}(A^k)$$
 and $\mathcal{N}(A^n) = \mathcal{N}(A^k)$ for each integer $n \ge k$.

If, in addition, $\mathcal{R}(A^n)$ is closed for every n, then

$$dsc(A^*) = asc(A^*) \le k,$$

and so

$$\mathcal{R}(A^{*n}) = \mathcal{R}(A^{*k})$$
 and $\mathcal{N}(A^{*n}) = \mathcal{N}(A^{*k})$ for each integer $n \ge k$.

Proof. Take an arbitrary $A \in \mathcal{B}[\mathcal{H}]$. Consider the following auxiliary results.

CLAIM (I).
$$\operatorname{asc}(A) < \infty$$
 and $\operatorname{dsc}(A) < \infty \implies \operatorname{asc}(A) = \operatorname{dsc}(A)$.

Proof of Claim (i). This is a well-known result, see e.g., [6, Theorem 6.2]. \square CLAIM (II).

- (a) $\operatorname{dsc}(A^*) < \infty \implies \operatorname{asc}(A) < \infty$,
- (b) $\operatorname{asc}(A) < \infty \implies \operatorname{dsc}(A^*) < \infty$ if $\mathcal{R}(A^n)$ is closed for every integer n > 1,
- (c) $\operatorname{asc}(A) < \infty \implies \operatorname{dsc}(A^*) < \infty$ if $\mathcal{R}(A^n)$ is not closed for some integer $n \ge 1$.

Proof of Claim (ii). Take an arbitrary positive integer n.

(a) If
$$\operatorname{asc}(A) = \infty$$
, then $\mathcal{N}(A^n) \subset \mathcal{N}(A^{n+1})$ so that $\mathcal{N}(A^{n+1})^{\perp} \subset \mathcal{N}(A^n)^{\perp}$ (since $\mathcal{N}(\cdot)$ is closed — indeed, $\mathcal{M} \subset \mathcal{N} \Longrightarrow \mathcal{N}^{\perp} \subseteq \mathcal{M}^{\perp}$ and $\mathcal{N}^{\perp} = \mathcal{M}^{\perp} \Longrightarrow \mathcal{M}^{-} = \mathcal{N}^{-}$).

Date: February 17, 2022; revised: November 16, 2022; accepted: November, 17 2022. 2010 Mathematics Subject Classification. Primary 47B20; Secondary 47A53. Keywords. Hyponormal operators, posinormal operators, quasiposinormal operators.

1

Equivalently, $\mathcal{R}(A^{*(n+1)})^- \subset \mathcal{R}(A^{*n})^-$. As $\mathcal{R}(A^{*n+1}) \subseteq \mathcal{R}(A^{*n})$, the above proper inclusion ensures the proper inclusion $\mathcal{R}(A^{*(n+1)}) \subset \mathcal{R}(A^{*n})$. So $\operatorname{dsc}(A^*) = \infty$, and

$$\operatorname{asc}(A) = \infty \implies \operatorname{dsc}(A^*) = \infty.$$

(b) If $\operatorname{dsc}(A) = \infty$, then $\mathcal{R}(A^{n+1}) \subset \mathcal{R}(A^n)$. Suppose $\mathcal{R}(A^n)$ is closed so that $\mathcal{R}(A^{n+1}) \subset \mathcal{R}(A^n)$ implies $\mathcal{R}(A^n)^{\perp} \subset \mathcal{R}(A^{n+1})^{\perp}$. That is, $\mathcal{N}(A^{*n}) \subset \mathcal{N}(A^{*(n+1)})$. Hence $\operatorname{asc}(A^*) = \infty$. Therefore

 $\operatorname{dsc}(A) = \infty \implies \operatorname{asc}(A^*) = \infty \quad \text{if } \mathcal{R}(A^n) \text{ is closed for every integer } n \geq 1.$

Dually (as $A^{**} = A$ and $\mathcal{R}(A^n)$ closed $\iff \mathcal{R}(A^{*n})$ closed),

$$\operatorname{dsc}(A^*) = \infty \implies \operatorname{asc}(A) = \infty \quad \text{if } \mathcal{R}(A^n) \text{ is closed for every integer } n \geq 1,$$

(c) To verify (c) consider the following example. Take A such that $\mathcal{N}(A^*) = \{0\}$ and $\mathcal{R}(A^*) \neq \mathcal{R}(A^*)^- = \mathcal{H}$. Then $\mathcal{N}(A) = \mathcal{R}(A^*)^\perp = \{0\}$, and hence $\mathrm{asc}(A) = 0$. We show that $\mathrm{dsc}(A^*) = \infty$.

Since $\mathcal{R}(A^*) \neq \mathcal{R}(A^*)^- = \mathcal{H}$, take $v \in \mathcal{H} \setminus \mathcal{R}(A^*)$. Suppose $\operatorname{dsc}(A^*) < \infty$, say, suppose $\operatorname{dsc}(A^*) = n$. Then $\mathcal{R}(A^{*n}) = \mathcal{R}(A^{*n+1})$, and so there exists $w \in \mathcal{H}$ such that $A^{*n+1}w = A^{*n}v$. Thus $A^{*n}(A^{*n}w - v) = 0$ so that $A^*w = v$ (since $\operatorname{asc}(A^*) = 0 \Longrightarrow \mathcal{N}(A^{*n}) = \{0\}$). Hence $v \in \mathcal{R}(A^*)$, which is a contradiction. Thus $\operatorname{dsc}(A^*) = \infty$. \square

CLAIM (III).
$$\operatorname{dsc}(A) < \infty \implies \operatorname{asc}(A^*) \le \operatorname{dsc}(A)$$
.

Proof of Claim (iii). Consider the argument in the proof of Claim (ii-a). So $\operatorname{dsc}(A) = n_0$ implies $\mathcal{R}(A^n) = \mathcal{R}(A^{n_0})$ for every $n \geq n_0$. Thus $\mathcal{R}(A^n)^- = \mathcal{R}(A^{n_0})^-$. Equivalently, $\mathcal{N}(A^{*n_0}) = \mathcal{N}(A^{*n_0})$ (as $\mathcal{R}(\cdot)^{\perp} = \mathcal{N}(\cdot^*)$), which implies $\operatorname{asc}(A^n) \leq n_0$. \square

If $\operatorname{asc}(A) \leq k$ and $\operatorname{dsc}(A) < \infty$ (or if $\operatorname{asc}(A) < \infty$ and $\operatorname{dsc}(A) \leq k$), then

$$dsc(A) = asc(A) \le k$$

by Claim (i). Moreover, this implies that $\operatorname{asc}(A^*) \leq \operatorname{dsc}(A) \leq k$ by Claim (iii). Now suppose $\mathcal{R}(A^n)$ is closed for every n. Since $\operatorname{asc}(A) \leq k$, we get $\operatorname{dsc}(A^*) < \infty$ by Claim (ii-b). Then, since $\operatorname{asc}(A^*) \leq k$, Claim (i) ensures that

$$dsc(A^*) = asc(A^*) \le k.$$

The range and kernel identities follow from the definition of ascent and descent. \Box

Consequently, Theorem 1 and Corollary 1 are to be modified, whose proofs follow the same argument as before, now applying the correct version of Lemma 2.

Note. Posinormal operators were introduced in [5] (see also [3]) — an operator is posinormal if its range is included in the range of its adjoint.

Theorem 1. Take $T \in \mathcal{B}[\mathcal{H}]$. Suppose $\mathcal{R}(T^n)$ is closed for every $n \geq 1$.

- (a) If T^k is posinormal for some $k \ge 1$ and $dsc(T^m) < \infty$ for some $m \ge 1$, then T^n is posinormal for every $n \ge k$.
- (b) If T^k is posinormal for some $k \ge 1$ and T^{*m} is posinormal for some $m \ge k$, then T^n is posinormal for every $n \ge k$ and coposinormal for every $n \ge m$.

Corollary 1. Take $T \in \mathcal{B}[\mathcal{H}]$. Suppose $\mathcal{R}(T^n)$ is closed for every $n \geq 1$.

(a) If T is posinormal and $dsc(T) < \infty$, then T^n is posinormal for every $n \ge 1$.

(b) If T is posinormal and coposinormal, then T^n is posinormal and coposinormal for every $n \geq 1$.

In fact, the assumption " $dsc(T) < \infty$ " in Corollary 1(a) above can be dismissed, yielding a corrected version of Corollary 3:

Corollary 3. If T is posinormal and $\mathcal{R}(T^n)$ is closed for every $n \geq 1$, then T^n is posinormal.

In a subsequent paper [1], the above assumption " $\mathcal{R}(T^n)$ is closed for every $n \geq 1$ " has been weakened, yielding a sharper result as follows.

Theorem [1]. If T is posinormal and has closed range, then T^n is posinormal and has closed range for every $n \ge 1$.

ACKNOWLEDGMENT

We thank Paul S. Bourdon and Derek Thompson who pointed out an error in the previous version of Lemma 2 (at the previous version of Claim (ii-b)). The counterexample in Claim (ii-c) was communicated to us by Paul S. Bourdon.

References

- [1] P.S. Bourbon, C.S. Kubrusly, and D. Thompson, Powers of posinormal Hilbert-space operators, available at https://arxiv.org/abs/2203.01473
- [2] C.S. Kubrusly, Spectral Theory of Operators on Hilbert Spaces, Birkhäuser-Springer, New York, 2012.
- [3] C.S. Kubrusly and B.P. Duggal, On posinormal operators, Adv. Math. Sci. Appl. 17 (2007), 131–148
- [4] C.S Kubrusly, P.C.M. Vieira, and J. Zanni, Powers of posinormal operators, Operators and Matrices 10 (2016), 15–27.
- H.C. Rhaly, Jr., Posinormal operators, J. Math. Soc. Japan 46 (1994), 587–605.
- [6] A.E. Taylor and D.C. Lay, Introduction to Functional Analysis, Wiley, New York, 1980.

Catholic University of Rio de Janeiro, 22453-900, Rio de Janeiro, RJ, Brazil $E\text{-}mail\ address:\ carlos@ele.puc-rio.br$

NATIONAL LABORATORY FOR SCIENTIFIC COMPUTATION, 25651-070, PETRÓPOLIS, RJ, BRAZIL $E\text{-}mail\ address:}$ paulocm@lncc.br

Catholic University of Rio de Janeiro, 22453-900, Rio de Janeiro, RJ, Brazil $E\text{-}mail\ address:}$ jzanni@gmail.com