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TRACE-CLASS AND NUCLEAR OPERATORS

CARLOS S. KUBRUSLY

ABSTRACT. This paper explores the long journey from projective tensor prod-
ucts of a pair of Banach spaces, passing through the definition of nuclear
operators still on the realm of projective tensor products, to the of notion of
trace-class operators on a Hilbert space, and shows how and why these con-
cepts (nuclear and trace-class operators, that is) agree in the end.

1. INTRODUCTION

This is an expository paper on trace-class and nuclear operators. Its purpose is
to demonstrate that these classes of operators coincide on a Hilbert space. It will
focus mainly on three points: (i) where these notions came from, (ii) how they are
intertwined, and (iii) when they coincide. Being a plain expository paper, this has
no intention to survey the subject, neither to offer an extensive bibliography on it.

To begin with, let us borrow the definitions of nuclear and trace-class operators
from Sections 4 and 5 (where these definitions will be properly posed).

o NUCLEAR OPERATORS. An operator T' on a Banach space X is nuclear
if there are X*valued and X-valued sequences {fr} and {yx} such that

ok el lykl] < oo and Tx = 37, fr(x)yx for every z € X.

o TRACE-CLASS OPERATORS. An operator T on a Hilbert space X is trace-
class if Zﬂ/<|T\eW; ey) < oo for an arbitrary orthonormal basis {e,} for X and
the series value does not depend on {e.}.

Perhaps the first lines in Robert Bartle’s review of [9] might be a suitable start:
“Grothendieck [8] showed that a Banach space X’ has the approximation property if
and only if, for every nuclear operator 7': X — X (i.e., operator having the form T" =
S (Fieshy) with i € X% gy € X, and 3, [full [ yall < 00), the number tr(T) =
>k (frs k) is well-defined (i.e., is independent of the choice of {fi} and {y;} in the
representation 7' = 3", (fx ; -)yx) and can be used to define a trace function.”

Bartle’s concise description nicely summarizes the apparently long way to be
covered from Grothendieck’s projective tensor products (where nuclear operators
originate from), to trace-class operators, and finally concluding that these classes
coincide. The familiar notion of trace as the sum of eigenvalues is a fundamental
result known as Lidskii Theorem [17], [7, Theorem 8.4] which still remains an active
research topic (e.g., [23, 11, 6, 3, 25, 20]).

These concepts (nuclear and trace-class) are linked together since their early
days. Schatten in his celebrated 1950 monograph [27] (which actually is an offspring
of his 1942 thesis) describes nuclear Hilbert-space operators as being precisely the
trace-class: “The trace-class may be also interpreted as X @AX *7 127, Theorem 5.12]
— the completion of the tensor product of a Hilbert with its dual, with respect to
the greatest reasonable crossnorm (i.e., the projective norm).
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The paper is organized as follows. Section 2 summarizes some common nota-
tion and terminology. Section 3 poses the necessary results on crossnormed tensor
products of a pair of Banach spaces, since this is the proper setup where nuclear
transformations come from. Nuclear transformations are defined in Section 4 (The-
orem 4.1) as the range of a linear contraction of the projective tensor product
X* @Ay into the Banach space B[X, )] of all bounded linear transformations from
X to Y, which yields the characterization of nuclear operators mentioned above.
Section 5 deals exclusively with trace-class operators on a Hilbert space, and gives
a thorough view of basic properties of these operators. Section 6 shows in Theorem
6.1 that nuclear and trace-class operators in fact reduce to the same thing.

All terms and notation above will be defined here in due course.

2. NOTATION AND TERMINOLOGY

Throughout the paper all linear spaces are over the same field F (and the field
F in this context means either R or C). If X,),Z are linear spaces, then let
L[X, Z] and b[Xx), Z] denote the linear spaces of all linear transformation of X
into Z, and of all bilinear maps of the Cartesian product Xx)Y into Z. If X, ), Z
are normed spaces, then let B[X, Z] denote the normed space of all bounded (i.e.,
continuous) linear transformations of X into Z equipped with its standard induced
uniform norm, and let b[X'xY, Z] denote the normed spaces of all bounded (i.e.,
continuous) bilinear maps of X' XY into Z equipped with its usual norm, which are
both Banach spaces whenever Z is (see e.g., [16]).

A subspace of a normed space is a closed linear manifold of it. If X" is a normed
space, then X* = B[X,F| stand for its dual; if M is a subset of an inner product
space, then M~ stands for the orthogonal complement of M. Range and kernel of
a bounded linear transformation T' € B[X, Y] between normed spaces X and Y will
be denoted by R(T) — a linear manifold of ) — and N (T') — a subspace of X
— respectively. If two normed spaces X' and Y are isometrically isomorphic, and if
y € Y is the isometrically isomorphic image of x € X, then write X =2 Y and x = y.

Let X and ) be arbitrary normed spaces. By an operator we mean a bounded lin-
ear transformation of a normed space into itself. Set B[X] = B[X, X]; the normed
algebra of all operators on X. Let By[X,)]| and B [X,Y] stand for the normed
spaces of all bounded finite-rank (i.e., dimR(T") < oco) and of all compact lin-
ear transformations T: X — ), respectively. Similarly, set Bo[X] = Bo[X, X] and
Boo [X] = Boo[X, X]; the ideals of the algebra B[X] consisting of all bounded finite-
rank and of all compact operators, respectively, so that Bo[X] C B [X] C B[X].
Moreover, let By [X,Y] (accordingly, By [X] = Bn[X, X]) stand for the normed
spaces of all nuclear transformations. It is worth noticing that there are different,
also common, notations such as K for compact, F for finite-rank, and N for nuclear
operators — at the end of Section 5 it will become clear the reason for our choice in
favor of the above sub-indexed-B notation (see also, e.g., [29, Sections 6.1 and 7.1]).
A Banach space Y has the approzimation property if Bo[X',Y] is dense in By [X, V)]
for every normed space X — every Banach space with a Schauder basis has the
approximation property, in particular, since the range of a compact linear transfor-
mation is separable, every Hilbert space has the approximation property.
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3. PRELIMINARIES ON CROSSNORMED TENSOR PRODUCT SPACES

The algebraic tensor product of linear spaces X and Y is a linear space X @ Y for
which there is a bilinear map 6: XxY — X ® Y (called the natural bilinear map
associated with X ® ) whose range spans X ® ) with the following additional
property: for every bilinear map ¢: X'x) — Z into any linear space Z there exists
a (unique) linear transformation ®: X ® Y — Z for which the diagram

xxy —%, z

N e
xXey

commutes. Set z ® y = 0(x,y) for each (x,y) € Xx). These are the single tensors.
An arbitrary element f in the linear space X ® ) is a finite sum ), x; ® y; of single
tensors, and the representation of /- as a finite sum of single tensors F =), z; @ y;
is not unique. (For an exposition on algebraic tensor products see, e.g., [15].)

If X and Y are Banach spaces and X'* and V* are their duals, then let z ® y and
f ® g be single tensors in the tensor product spaces X ® )Y and X* ® Y*. A norm
|- [« on X ® Y is a reasonable crossnorm if, for every z € X, y€ Y, f€ X% g€ V3

(@) llz@yla <=yl

(b) f@gliesin (X @YY, and [f & glea < Ifl gl (where | - lua is the

norm on the dual (¥ @ ¥)* when (X ® )) is equipped with the norm || - ||4),

so that X* @ Y* C (X @ Y)* It can be verified that (i) ||z ® y|la = ||z|| ||ly|| Wwhen-

ever || - || is a reasonable crossnorm, and (ii) when restricted to X* @ Y* the norm

Il - 4o on (X ® YV)* is a reasonable crossnorm (with respect to (X* ® Y*)*). Two

special norms on X' ® Y are the so-called injective || - ||, and projective || - ||, norms,
Il = sup

(i)
A<, 1911, e, gevs 2,

F/\ Ty (K]
1= g o S el

for every F =), z; @ y; € X ® Y, where the infimum is taken over all (finite) rep-
resentations of F € X ® Y. It can also be shown that (iii) these are indeed norms
on X @ Y, that (iv) both || - ||, and || - || , are reasonable crossnorms and, moreover,
that (v) a norm || - || on X ® Y is a reasonable crossnorm if and only if

IFll, < lIFlla < lIF[l, forevery FecX@).

Let X @Y = (X @Y, || - |la) stand for the tensor product space of a pair of Banach
spaces equipped with a reasonable crossnorm || - ||, which is not necessarily com-
plete. Their completion (see, e.g., [13, Section 4.7]) is denoted by X ®,) (same
notation | - || for the extended norm on X ®,)). In particular, ¥ ® ) and X @AJ}
are referred to as the injective and projective tensor products. For the theory of the
Banach space X ®,Y (in particular, ¥ ®,) and X ® ) see, e.g., [10], [2], [26], [4].

The next two fundamental results on the projective tensor product will be need
along the next two sections. The first one is referred to as Grothendieck Theorem
(see, e.g., [4, Proposition 1.1.4] and [26, Proposition 2.8]). In fact, most results
mentioned in this section (and beyond) are Grothendieck’s, and there are different
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theorems named after Grothendieck (the one in Theorem 3.1 below is not the classi-
cal Grothendieck Theorem as in, for instance, [4, Chapter 4] and [22]). The second
result in Theorem 3.2 below is called the Universal Mapping Principle (see, e,g., [4,
Theorem 1.1.8] and [26, Theorem 2.9]). Proofs are included for sake of completeness.

Theorem 3.1. (GROTHENDIECK). If X and Y are Banach spaces, then for every
FeX®Y there exist X-valued and Y-valued sequences {xy} and {yx}, respec-
tively, for which the real sequence {||zk|| |lyx|l} is summable and

F = kak @ Yk

(ie., F € X(/X\)A)} is representable in the form of a countable sum F =", 1 ® yi in
the sense that it is either a finite or countably infinite representation). Moreover,
the projective norm || - ||, on X@Ay is given by

[l AN A

where the infimum is taken over all representations y , 1 @ yr of F € X@Ay.

Proof. Let X @Ay be the completion of X ®, Y. Identify X ®,) with isometrically
isomorphic images of it, and so regard X ®,) as being dense in X @AJ}. Thus take
FeX® Y\X®,Y (otherwise the resulting finite sum is trivially obtained) so that
[ is arbitrarily close to elements in X ®,). Take an arbitrary € > 0. For each posi-
tive integer k take F =3 "% z; ® y; in X®,Y such that

IF = Fell, < 53¢

In particular, |[|F1]l, = [|F || < IF1—F|,. < 53 and hence ||[F1], < [[F|l, + §3-

Take a representation y_.*, z; ® y; for F 1 for which >, ||z;|| ||y;|| is close enough
to [F1ll, = infrayms oo S el s, say
S el < 72l 2 < 1)L+
Computing the norm of F i1 — Fr € X®,) we get
1Pk = Frlly Pk = FlLIF = Frll < Sor + 530 = 5363 < e,

so we can take a representation ZL‘EH z; ®y; for F i1 — Fp € X®,Y for which

>itmia Izl il s close enough to ||F k41 — F il say

|~

Nk+1
ST el < ke = Fallo+ Gk < 5565+ 5

N—
|
™

8-

(V)
>

Since || - ||, is a reasonable crossnorm we get for each k > 1

Nkl - ny k Tj41
S e owl, = S el > ST el

k
IF|l 4 e+ ezj:] L < ||F |+ 2e.

A

Thus the sequence {z; ®y; } is absolutely summable with >, ||lz; @ y; ||, < [|F || .+ 2e.
Therefore, since X @Ay is a Banach space, the sequence is summable. This means
the sequence of partial sums {>_*, z; ® y;} converges in X @AJ}. Hence the limit

Fe X@Ay of Fr=>1" z;®y; € X®,) is represented as
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and
10 <3 e @will, = 3 llel lell < 1+ 22,

so that the projective norm ||F ||, of F is the infimum of >, ||z;|| ||yi|| over all
representations of f of the form ZZ T ® Y. d

Theorem 3.2. UNIVERSAL MapPING PRINCIPLE. If (X,),Z) is an arbitrary
triple of Banach spaces, then

bXxY, 2] = BX® Y, Z]
(i.e., the Banach spaces X xY, Z] and B{X ® Y, Z] are isometrically isomorphic).

Proof. Take the natural bilinear map 6 € b[X'x), X @ Y] associated with the tensor
product space X ® Y. It is readily verified that the composition with 8, namely
Co(®)=Po0f € b[XXY,Z] forevery ®eLIX®Y,Z],

defines a linear-space isomorphism Cy: L[X @ Y, Z] — b[X'xY, Z]. Equip the linear
space X ® Y with the projective norm to get the normed space X ®,). Since Z is
a Banach space, B[X ®,), Z] is a Banach space which is a linear manifold of the
linear space LIX®,), Z]. Let J be the restriction to B[X ®,Y, Z] of the linear-
space isomorphism Cy on L[X' ®,Y, Z], which remains linear and injective,

J =Colpixe,y,z): BX®Y, Z] = R(J) C blXxY, Z].

Next we show that (a) R(J) = b[Xx), Z] and (b) J is an isometry onto R(J).
(Let || - ||, and || - [[, stand for the norms in B[X'®,Y, Z] and b[X'xY, Z].)

(a1) If ® € B[X®,Y, Z], then J(®) = Cy(®) = o € b|X'xY, Z] is such that
oz, y) = T (®)(x,y) = (Pob)(z,y) =(z©@y) forevery (z,y) € XX,
and hence
1T (@) (z,9)ll> = [ eyl <[Pl lzeyll, =l =l ]yl (+)

Then the bilinear map J(®) is bounded. Thus J(®) € b[A'xY, Z] for every ® in
BX®,Y, Z], and so R(J) C b[XxY, Z].

(ag) Conversely, if ¢ € bJXxY, Z], then there is a unique ® € B[X®,), Z] such
that Ca(®) = b0 0 = ¢. So

@z @y)lz = 19 b(z,y)llz = o y)ll> < [0l llylly
for every (z,y) € Xx). Hence for an arbitrary F =), z; ®y; € X®,),

loF)l. = [oXmen| =X o@ e
Sl lellelivills = 161, D il il

Since this holds for every (finite) representation of F = ). z; ®y;, and since ||F ||, =
inf >, ||zl +||yil|, over all representations, then for every F € X ®,Y

()= < llll, 1711 ()

and the linear ® is bounded: ® € B[X®,), Z]. So ¢ = Cy(®) = J(P) C R(J).
Thus, as this holds for every ¢ € b[X'x X, Z], we get bJXxX, Z] C R(J).

(a) By (a1) and (ag) we get R(J) = b[A' XY, Z].

IN
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(b) Take an arbitrary ® € B[X®,Y, Z]. As we saw in (%),

1T (@) (@, y)ll = < [l =l [l
for every (z,y) € XxY. Then the bilinear map J(®) is bounded with norm

[T (@), < [I®]],-
Conversely, the unique ¢ = Cp(®) = J(P) is such that ¢ € b[X %Y, Z] because
R(JT) C b[XxY, Z] by (a1) and so, as we saw in (),
9 )2 < 191,11,
for every F € X®,Y. Therefore,

1], < llell, = [T (@),

B —

Thus || T (@), = |||, for every ® € B[X¥®,Y, Z]. That is, J is an isometry.

(¢c) Then the linear transformation J: B[X ®, Y] — b[X' xY, Z] is a surjective isome-
try by (a) and (b), which means J is an isometric isomorphism. Hence B[X ®,), Z|
and b[X x), Z] are isometrically isomorphic Banach spaces,

BX®,V, 2] = bXxY, Z].

I

Consider the completion X @Ay of X¥®,). Since Z is complete, it follows that
BX® Y, 2] 2BXeY,Z
So the stated result follows by transitivity. |

4. NUCLEAR OPERATORS

Let X, ),V be Banach spaces. As a starting point, consider the following expres-
sion involving the projective tensor product.

X*®,V" C (X V)" = blXxV,F] = B[X, V.

The above inclusion comes from the definition of a reasonable crossnorm, the first
isometric isomorphism is a particular case of the universal mapping principle for
the projective norm as in Theorem 3.2, and the second one is the classical identi-
fication of bounded bilinear forms with bounded linear transformations (see, e.g.,
[2, Section 1.4, p.6]). For the particular case where ) is isometrically isomorphic
to the dual of some Banach space V (for instance, if is ) is reflexive), then we get
X* @Ay C B[X, )], where the inclusion means algebraic embedding. On the other
hand, this not only holds in general (no restriction to Banach spaces being the dual
of some Banach space) but is strengthened to an isometric embedding for the injec-
tive norm instead: the injective tensor product X* @)V)} is isometrically embedded
in the Banach space B[X,)], and so it is viewed as a subspace of B[X,)]:

X*©,Y C B[X,))

(see, e.g., [4, Proposition 1.1.5]). This fails in general for the projective norm, and
the theorem below shows how far one can get along this line in the general case.

Theorem 4.1. There is a natural transformation K : X* @Ay — B[X, Y] such that

(a) K is a linear contraction with | K| =1,
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(b) the range R(K) of K is characterized as follows: T € B[X,))] lies in R(K)
if and only if there are X*-valued and Y-valued sequences {fi} and {yir} for
which the real sequence {||fx|| ||y} is summable and

Tx = Zkfk(:c) yr for every x € X,
and
(c¢) for each Te R(K),

TN = inf
Il {rey v}, T=S0 fu () uk Zkak” el
defines a norm on the linear space R(K) for which ||T| < ||T||n-

Proof. Let X* be the dual of X. Take an arbitrary F = >, fr ® yp € X* @Ay SO
that ||[F||, = inf >°, || fxllllyx|l by Theorem 3.1. Associated with F consider the
natural transformation Wp: X — ) given by

Upx = Zkfk(w) yr forevery xze X,

which is linear and does not depend on the representation ), fr ® yx of F. Also,
Wy is bounded. In fact [z < 3, Il fell [yl 2] So W2 < [, Jlz], for every
xr € X. Thus Wy lies in B[X, Y] for each F € A*® ). This defines a transformation

K:X*® Y — B[X,Y] suchthat K(F)=WUp forevery F €X*® ).

(a) K is clearly linear. It is contraction as well. In fact, as || Vx| < ||F || ||z| for
every z € X, |K(F)| = Ve = supy = Yzl < [|F]|, for every F € X*® Y. So
K € B[x*®,Y,B[X, Y]] with [|K[| = supyr — [K(F)| <1. Reversely, for f @y
in 8 Y with ||l = gl = 1 we get [ soyall = |£(z)l[lyll = |£(z)], and hence
IK(f @yl = Vreyll = supjg= [F(@)] = [l =1 =[Iflllyl = [[f @yl Then
with F = f@y in X*®,Y we get ||F||, =1and |[K(F)| = ||F|,. Thus ||K]| > 1.
(b) By definition, K (f @ y) =T € B[X,)] if an only if T = Vg, (z) = f(x)y for
every € X. Then for an arbitrary F =5, fr @ yp € X* @Ay,

K(r)=TeBlX,Y] ifanonlyif To=Vr(@)=> fi(z)u

for every x € X, since K(F)=3, K(fx ® yx) because K is linear and bounded.
This characterizes the range R(K) of K.

(¢) As for ||-||n being a norm on R(K), we verify the triangle inequality only.
Take T, 1" € R(K) so that T+ T" = >, fu()yx + 2k [1.()ys, = >k fr (-)yy. Thus
1T+ T\~ = inf g g g0 Ok 17l el + I FlHyg D) = inf gy 320 15 Iy <
inf gy Dok 1kl lyell +nf g7 520 (172 HIwR | = [Tl x + [IT]| 5. Now for the norm

inequality: if T € R(K), then there are {fr} and {yx} with {||fx|||lyx]} summable
such that T'(xz) = >, fx(z)yk, and so ||Tz|| = ||, fx(z)yx ||, for every 2 € X. Thus

17N = sup |Tz] < sup > | fillllyellllzl = [/l llgx]

llzll=1 [l =1

so that [T <inf > (| fxll lgrll = [T - O

A transformation T' € B[X, )] is nuclear if it lies in the range R(K) of such a nat-
ural contraction with unit norm K € B[X*® Y, B[X,V]] defined in Theorem 4.1,
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and the range R(K) is called the linear space of nuclear transformations. Thus set
By[X, Y] = R(K) C B[X,Y]. In particular, By[X]=By|[X,X] C B[X].
Theorem 4.1 prompts the following redefinition:

A linear transformation T € B[X, Y] between Banach spaces X and Y is nu-
clear (i.e., T € By[X,)Y)]) if there are X*valued and Y-valued sequences { f }
and {yx} such that ), || fx| ||yx| < oo and Tz = 3", fr(x)yx for every z € X.

The expression Tz = )", fu(x)yx is a nuclear representation of T' and

|7l =inf Y | fullllysll for every T By[x,Y]

(where the infimum is taken over all nuclear representations of T') defines a norm
on the linear space By[X, Y], the nuclear norm, such that | T| < ||T||n-

The linear contraction K of norm one in Theorem 4.1 is not necessarily injective
(thus it may not be an isometry) and R(K) is identified with the quotient space of
X*® Y modulo N(K), that is, By[X, V] = (X*® V)/N(K) (see, e.g., [26, p.41]),
and therefore By [X, Y] is a Banach space. However, if one of X* or Y is a Banach
space with the approximation property, then AN'(K) = {0} (see, e.g.,[26, Proposition
4.6]), and so in this case By[X,V] =2 X™* @AJ}. In particular,

X is a Hilbert space => By[X] 2 X*® X 2 X® X*.
Moreover, By [X] is a two-sided ideal of the Banach algebra B[X] by the next result.

Corollary 4.2. Let X,Y,V,W be Banach spaces. If T € By[X,)], R € B[V, X]
and L € B[Y,W)], then LTR € BN[V,W] and |LTR|ny < ||L||IT||~|R]-

Proof. This is a straightforward consequence of the definition of nuclear transfor-
mation: as Y, || fxll [|yx]| < o0 and Tz = 3", fr(z)yk, set gr = frR € V* and wy, =
Lyx € W. S0 3, llgelllyell < Sy 1 fell lynl[[RIl < o0 and TRz = 5, gx (@) v Also
> Ikl llwill < 32 I el Tw LI < oo and LTz = 32, fi(z) wp. O

From now on let X be a Hilbert space. Denote the inner product in X by (-;-),
and take the Banach algebra B[X] of all operators on X. Consider the Fourier Series
and the Riesz Representation Theorems (see, e.g., [13, Theorems 5.48 and 5.62]).
A functional f lies in A'* if and only if there is a unique z in X, called the Riesz
representation of f, such that f(z) = (x;z) for every x € X and ||z|| = ||f]]. Thus
on a Hilbert space the previous redefinition can be rewritten as follows:

An operator T € B[X] on a Hilbert space X is nuclear (i.e., T € By[X]) if
there are X-valued sequences {z; } and {yx} such that 3, ||zx| ||yx| < co and
Tx =), (x;zk)yr for every z € X.

For each T € B[X] let T* € B[X] stand for its Hilbert-space adjoint.
Corollary 4.3. Let T € B[X] be an operator on a Hilbert space X.
(a) If there exist X-valued sequences {zx} and {yx} such that

Tx = Zk<x 5 2k)Yk  for every x € X,

then
Tz = Zk<x;yk>zk for every x € X.
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(b) T is nuclear if an only if its adjoint T* is nuclear and ||T*||n = || T||n-
Proof. Let T € B[X] be an operator on a Hilbert space X.
(a) Suppose there are X-valued sequences {z;} and {yx} such that
Tz = Zk<x;zk>yk for every z € X.
Then (Tz;y) = (Cplwsz)ymsy) = Xpleiz) (sy) = S (@5 Wiy z) =

(233, (y 3 yk) 21 ) for every z,y € X, and therefore (by uniqueness of the adjoint)
Ty = Zk<y;yk>zk for every y € X.

(b) Immediate from item (a) and the definition of nuclear operator on X. O

5. TRACE-CLASS OPERATORS

Let X be a Hilbert space. A summary of the elementary expressions required in
this section goes as follows. For each T € B[X] set |T| = (I*T)? € B[X]. Then

|Tz|? = (Tz; Te) = (T*Tx;x) = (|T|*x;2) = (|T|z; |T|x) = || |7

for every z € X. So |T|| = |||T||. Since ||T||? = || T*T|| = |TT*| = HT*||2, we get
TP = 170> = TP = [Pl = 17 = [
Moreover, since [|Q2 |2 = [|Q| = ||Q?2||Z for every nonnegative operator Q € B[X],
1|2 = i) = | i)

Hence for each x € X,
HTlel® = 713 T Fl* < [T F P T = [T T = 17T ).

Now let {e,} er and {f,},er be arbitrary orthonormal bases for a Hilbert space
X, indexed by an arbitrary nonempty index set I’ (alternate notation: {e,}, or
{e4}). By the Parseval identity (viz., ||z||? = > s e4)|? for every x € X) we get

2_ . 2 _ * . 2 * 2
S ITlP=0 T =S T e P Y, T

whenever any of the families {||Te,|}, or {||T7f,||}~ is square summable (i.e., if
> |Te,||? < oo or >, 1T f+]I? < 00) for some orthonormal bases for X'. Applying

the above displayed identity to |T'|2 € B[X] instead of T € B[X] we get
Z#‘ﬂew jey) = Zw<|T‘fw3fv>'

Thus if the family of positive numbers {(|Te,;e,)}, = {|| IT|ze, 21, is summa-
ble, then its sum does not depend on the orthonormal basis {e,}, for X.

An operator T' € B[X] on a Hilbert space X is trace-class if Y_(|T|e4;e,) < 00
for an arbitrary orthonormal basis {e,} for X.

Let B1[X] denote the subset of B[X] consisting of all trace-class operators. Since
(IT)x;z) = || \T|%:1:||2 for every x € X, an operator T lies in By [X] if and only if
> | |T‘%€7H2 < oo for an arbitrary orthonormal basis {e,}. So for T'€ By [X] set

1Tl =" ([Tleyser) =D [[IT17es .
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Clearly, ||T|| = |T|. Then |T|> = T*T € B[X] is trace-class (i.e., |T|?lies in B;[X])
if and only if 3 ||T]e4||? < oo; equivalently, if > | Te|? < oo.

An operator T'€ B[X] on a Hilbert space X is Hilbert-Schmidt if |T|? € B1[X];
equivalently if - |7 e4||? < oo for an arbitrary orthonormal basis {e,} for X

Let B[X] denote the subset of B[X] consisting of all Hilbert—-Schmidt operators. If
T lies in By[X], then set || T||3 = > [ Te~||? so that from what we have seen above,

Il = (32 1Tesl2)* = (32 [1Tles 2)* = (17 ]F = 17l

and so (recall: | |T| } = |T|) we may infer:
T Bi[X] = |T| € Bi[X] <= [T|7 € By[x] and ||y = |||T]]|, = [||T1?]2,
T € By[X] <= |T| € Bo[X] <= |T> € By[X] and T3 =||T] Hz =ITP|,-

Lemma 5.1. Let X be a Hilbert space. The following assertions hold true.
(a) The set Ba[X] is a linear space and || - ||2: Ba[X] — R is a norm on By[X].

(b) If S € B[X] and T € B3[X], then max{||ST||2, |TS|l2} < IS |T]|2-
(¢) By[X] is an ideal of the algebra B[X)].
(d) B2[X] C Bo|X] and ||T| < ||T||2 for every T € Ba[X].
(e) T* € By[X] if and only if T € Ba[X] and ||T|2 = || T*2.
Proof. Suppose S and T lie in B[X] and consider the following assertion.
Claim 1. 1f S, T € By[X], then S+ T € By[X] and [|S + T||2 < ||S]l2 + [|T|2-

Proof of Claim 1. Let the index « run over an arbitrary index set I' # &, consider

the Schwarz inequality on the Hilbert space £2 over I, and take S, T € By[X] so that
1 1 .

> 1Ses I Tes [ < (32, I1Ses[?) 2 (32, ITey[12) 2 = [|S]l2/T|l2 if S, T € B2 [X]. Thus

2
T+ 5|3 = Zwuse7 +Tey|? < ZW(HSeWH + | Te, )

= 3 lISe P+ 3 1T, 2 +23 [Ses | [Tes |

< ISIZ + T3 + 208201 Tll2 = (ISll2 + [7]2)%. O

Since homogeneity, nonnegativity and positivity for |- [|2: Ba[X] — R is readily
verified, Claim 1 is enough to ensure that

Ba[X] is a linear space and || - ||z is a norm on it.
Also, if S € B[X] and T € By[X], then [[ST[5= > |STe,||> < [IS|* >, [Te,]* =
IS 171]3. Similarly, |TS|[3 = 37, | TSe||? = 32, (TS) ey = 32, [|S*T e, [|* <
IS*112 32, IT*e5]1? = IS]1* 32, [1T'es | = [[S||IT'[|3. Therefore,

max{ || ST, | TS[l2} < IS T[]
and

Bs[X] is an ideal (i.e., a two-sided ideal) of B[X].
Now take an arbitrary T'€ Ba[X] so that > - |T*e % = > er [ Te|? < o0, and

take any integer n > 1. Thus there is a finite set N,, C T'such that >, v [T ex||? < L
for all finite sets N C T\ N,, (Cauchy criterion for summable families — see, e.g.,[13,
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Theorem 5.27]). So > e\ w, T*e,||? < L. Recall that Tz = > er(Tx ey )e, for
every x € X' (Fourier series expansion). Set T,z =), . v (T ; ex)ey, for each z € X,
which defines an operator T}, in Bo[X] because N, is finite, Hence ||(T — T, )x||? =
> ver, [Tz el )2 < (ZweF\Nn T*e,||?)||x|* for every & € X. This implies that
T, —T|| — 0, and so T is the uniform limit of a sequence of finite-rank operators
on a Banach space, and therefore T' is compact (see, e.g., [13, Corollary 4.55]).

Every Hilbert—Schmidt operator is compact.
As we saw above, > | Te,||? = > [T*e,||? and ||Te|| < ||T||2 if |le]| = 1, and so
T* e By[X] if and only if T € By[X] and ||T|| < ||T|l2 = [|T%||2- O
The norm || - ||z on the linear space Bo[X] of all Hilbert—Schmidt operators is

referred to as the Hilbert—Schmidt norm.

Theorem 5.2. Let X be a Hilbert space. The following assertions hold true.

(a) The set Bi[X] is a linear space and || - ||1: B1[X] — R is a norm on By[X].

(b) T € By[X] if and only if T = AB for some A, B € By[X].

(¢) B1[X] C Bo[X] and ||T|3 < ||T|||T|lx so that | T|2 < ||T||x for T € B1[X].
(d) Bi[X] is an ideal of the algebra B[X].

(e) If S € B[X] and T € By[X], then max{| ST, |TS|1} < |IS|I|T]l1-

(f) T*e By[X] if and only if T € B1[X] and ||T|1 = ||T%|1-

(8) BolX] C Bi[X].

Proof. Suppose S and T lie in B[X] and consider the following assertion.
Claim 2. 1f S,T € B;[X], then S + T € By[X] and ||S + T|js < ||S|1 + ||T]1-

Proof of Claim 2. Consider the polar decompositions T+S = W|T + S|, T = W1|T)|
and S = W5 |S|, where W, W, W5 are partial isometries in B[X], so that |T+ S| =
WH(T+S), |T| = W;T, and |S| = W3T. Hence (Schwartz inequality on £2 over T")

1T+l =3 (T +Sleyie,) <0 |(TessWhe,)| + 3 [(SeysW'e,)
B ZWK‘T'%&/;|T‘%W1*Wew>| +ZW}<\S|%6A/;\SI%W§WM>}

IN

S Tt 1T wWiwe, || + 3 [[1S1Fe,|[[[ISEWs We,|
> T]te,?)? > TEWWe,|?)?
(ZWH |S‘%€7H2)% (Z"/H |S‘%W2*W67 2)%

= 1712 |l, 1w w |, + 187l [[IsFwrw ],
< |IZIE |2 IwWsw -+ ||1S12])2 1Ws W < 1Tk + 1IS])s-

IN

+

(Recall that T'€ Bi[X] = |T|% € By[X] = [T|FA € By[X], 3. |||T]%e,|* =
HTIE 5= Tl (5, ][ 1712 Aes|[) 2 = || T2 All, < |[I71%]|, | 4]l by Lemma 5.1(b),
and |W|| = ||[W1]| = ||[W2]| = 1 since these are partial isometries). [
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Claim 2 is enough to ensure that

Bi[X] is a linear space and || - [|; is a norm on it,
since || - |1 is trivially homogeneous (so every multiple of an operator in B;[X]
lies in B1[X]), and nonnegativeness and positiveness for || - ||; are readily verified.

Consider again the polar decomposition T'= W, |T| = Wi |T|2|T|2. If T € B;[X],
then [T lies in By[X] and so W;|T)|2 lies in By[X] as well according to Lemma
5.1(c). Conversely, suppose T'= AB with A, B € By[X]. Thus T lies in By[X] by
Lemma 5.1(c) again. Since |T'| = W{T we get |T| = W*AB with A*W € By[X]
(according to Lemma 5.1(c) once again). Therefore

> (Tlersen) < 37 1Bes [ 4 Wes | < (37 [1Be ) (3 4 We,|?)*

(by the Schwarz inequality on both Hilbert spaces X and 2 over I', as we did
before). Hence T € B1[X] with ||T||; < ||B|l2]|A*W||2 < || B]2||A|l2. Summing up:

Te Bi[X] <= T= AB for some A, B € By[X] and ||T|1 <|Al2]B|z2-
Also, since the product A B lies in By[X] by Lemma 5.1(c), B1[X] C By[X]:
Every trace-class operator is Hilbert—Schmidt.

Moreover, since || |T|z||* < || T || |T\%xH2 for every x € X and ||T|| < ||T|l2 (by Lem-
ma 5.1(d)), we get |73 = 32, [1Tle, ||> < ITIS, |1T17es||* = | T |- So

ITZ < ITITIh = 1Tz < |7l for every T € Bi[X].

Hence if T' lies in B [X] and S lies in B[X], then ST = (SA)B and T'S = A(BS) for
some A, B € By[X]. Thus ST = CB and T'S = AD with both C = SAand D = BS
in By[X] according to Proposition Al(c). So ST and T'S lie in By[X]. Therefore

B1[X] is an ideal (i.e., a two-sided ideal) of B[X].

Claim 3. Let {e,} be any orthonormal basis for X. If T € B;[X] and S € B[X], then

(1) >, (Teyseq)| <|T[y and }_ (Tey;e,) does not depend on {e,},

(ii) >, (TSeyieq) =32, (STey;eq),

(i) |3, (SITle, se)] = | 5, (ITISe, se,)
Proof of Claim 8. Let T = W1|T| be the polar decomposition of T € B1[X]. Since

1

|T|% € B[ X] with |||T[2], = |T||7 and W7l =1 we get by Lemma 5.1(b),

. 1 1o, 1 ER—
() 3 Tersel = 2 [T ey [TEWTe)| < 37 [[IT12e | 11 Wre, |

< (32 imiFe2) (3 lmEwie|?)?

1 1o 1 1 %
<ATUF T EW (|, < ITIF [T (|, (W3 < 1T

< STl

I

(by the Schwarz inequality on both Hilbert spaces X and (2 over I' again). Thus
{(Te,;ey)} is a summable family, and by taking an arbitrary orthonormal basis
{f+} for the Hilbert space X, and applying the Fourier Series Theorem, we get

(2) Y (Teyie) =0 (Teyifo) (fssen)s= 30 Ui T fa) = 32 (Tfs o).
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By (i1) and (i) we get (i). As ST and T'S lie in B;[X] by (d), it follows by (i) that
the sums in (ii) exist and do not depend on the orthonormal basis. So let {f,} be
any orthonormal basis for X and consider again the Fourier Series Theorem. Thus

(ii) 27<Tse7 ) ZZW<SeW :T*e,) :ZM@@7 fsNTfs 5 eq)
= ZWS(Te7 i f5)(STs;eq) :ZV<T€7 ;S ey) :Z (STey;ey).

v

Recall: T € By [X] <= |T| € Bi[X] <= |T|% € By[X] with | T = || |T]||, =||IT|% |2
(so that S|T| and |T|S lie in By[X] by (d)), and if A € Bo[X] and B € B[X], then
|AB]l2 < ||All2||B|| by Lemma 5.1(b). Therefore, before applying (ii), we get

(iii) ‘Z#S\Tm;ew‘ - )Zv<\T|%eW;|T\%S*ew>)
< (X lrite)?)? (3 llmiEste,|?)?

= T2 ||, 1Tz (l, < T[], 1712, 1]
= |7 [|S]]. O

Now apply Claim 3(iii) to support the following argument. Consider again the polar
decompositions T'= Wh|T|, ST = Wr|ST|, and T'S = Wg|T'S|, where Wy, W,
Wp are partial isometries in B[X] (with norm one as well as their adjoint), and
so |ST| = WiST = WiSW4|T| and |T'S| = WEHTS = WEWA|T|S. Since T lies in
Bi[X], Claim 3(iii) ensures ||ST|j1 =} (|ST ey ;eq) = > (WESWAT ey seq) <
WSWAl T < AIWZIISIHWAIITIL = (ST Since WeWA|T| € By[&],
Claim 3(iii) also ensures TS|y = >_, (ITSleyseq) = > (WEWA[T|Se, ey) =
2 (SWEWAT ey ; ) < [SWEWAIITI < [SHIWEN W ([T = [IS1 T2 Thus

max{[|ST 1, TS} < [[SI[IT]s-

If T € B1[X], then T=AB with A, B € B2[X] by (b) (and so A% B* € By[X] by
Lemma 5.1(e)). Then, using (b) again, 7%= B*A* € By[X]. Dually, if T* € B;[X],
then T' = T** € B1]X]. Now by taking the polar decompositions T'= W1|T| and
T =W{|T*| we get |T*| = W{*T* = W{*|T|Wj. Therefore ||T*||y = H|T*\ ||1 =
Wi TIwille < W] Wl = [[1T1]], = IT]: by (e) (proved above).
Dually, |7l = [ 7**]s < ]}y Thus

TeBi[X] <= T*e Bi[X] and |T*[1=|T]h.

Finally, recall that R(T)~ = N(T*)L. If dim R(T) is finite, then so is dim N'(T*)=.
Let {es} be an orthonormal basis for N'(T*) and let {ej } be a finite orthonormal ba-
sis for N(T*)+. As X = N(T*) + N(T*)*, then {e,} = {es} U {ex} is an orthonor-
mal basis for X. Now either 7*e, = 0 or T*e., = T™*ej,. Therefore Z«,<|T* leyieqy) =
S k{|T*|ex; ex) < co. Thus T € By [X]. So T € By [X] by (f). Hence Bo[X] C By [X]:

Every finite-rank operator is trace-class. O

To proceed we need the following auxiliary result which will support Remark 5.4
and Theorem 6.1. It is a standard application of the Spectral Theorem for compact
operators (for similar versions see, e.g., [19, Theorem 6.14.1], [29, Theorem 7.6]).
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Proposition 5.3. If T is compact, then there exist an orthonormal basis {e,} for
X and a family of nonnegative numbers {p,} such that

|T|x = Z pr{x;ey)ey  for every x € X.
v

Proof. The operator |T'| € B[X] is nonnegative (so normal) and compact. (As the
class of compact operators from B[X] is an ideal of B[X], the nonnegative square
root |T| of the nonnegative compact |T|? is compact since |T'|? = T*T is compact
— see e.g., [13, Problem 5.62].) Since H \T|xH = ||[Tz| for every x € X we get
N(|T]) = N(T). Then by the Spectral Theorem there is a countable orthonormal
basis {ey} for the separable Hilbert space H = N (T)~+ consisting of eigenvectors of
|T'| associated with positive eigenvalues {1 } of |T'| such that |T'|u = >, px(u;ex)e
for every u € H (see, e.g., [14, Corollary 3.4]). Since X = H & N with N’ = N (T),
there is an orthonormal basis {e,} = {ex} U {es} for X'. Here {e;} is an orthonormal
basis for the (not necessarily separable) Hilbert space N, where |T'|v =0 for v € N/
so that the above expansion on H describes |T'|z for all = v & v in the orthogonal
direct sum X="H & N (with |[T'|e; =0, Te, = pxek, and p, = 0 if v # k). O

Remark 5.4. Take T'€ B[X] so that || Tz| = || |T|z| for every x € X.If {e,} is any
orthonormal basis for X, then 3 (ITleyseq) < > I1Tle,|| = >, [ITe, || and so

ZWHT&,H <oo = Zn,<|T‘€"f;€"/> < oo = Te€BiX].

Conversely, Proposition 5.3 ensures the existence of an orthonormal basis {e.} for

X such that [T'|e = pye,. So ZA, [Tey || = ZWH |T‘ew|| = ZA, My = Z'y <‘T|€“/ ; 6“/>'
Since B1[X] C Boo[X] according to Theorem 5.2(c) and Lemma 5.1(d), we get

Te B|X] — T ; < — T < 00.
1[ ] E A/<| \e7 ew> 00 E 7H eA,H 00
Therefore

(a) T e Bi[X] < > |[Te,|| < oo for some orthonormal basis {e~}.

Again, suppose (|IT)e+; ey) < 0o, which means T lies in By[X]. By Theorem
5.2(b) T'=AB with A,B € Bo[X] and s0 >_, | Ae,||? < oo and > |Be,|? < o0
for an arbitrary orthonormal basis {e, } for X. Since 2|(Te,, e,)| = 2|(ABey; e,)| =
2A(Bey A%e,)| < 2 Bes [ A%, || < | BeslP+ A%y |, wo get 257 |(Tesen)] <
S IBey|? + 52 1A%, P = 5|1 Bey P + 32, ey 2 < oo. Hence

(b) TeBi[X] = > [(Tex;e,)| < oo for every orthonormal basis {e~ }.

(Actually, Claim 3(i) in the proof of Theorem 5.2 has shown by a different proof
that T'€ B [X] implies }__ [(Tex; ey)| < [|T]|1.) However, the converse of (b) fails:

(¢) >, [(Texseq)| < oo for every orthonormal basis {e,} =& T € Bi[X].

Indeed, take a unilateral shift S € B[X] of multiplicity one on an infinite-dimensional
separable Hilbert space X. Then S shifts a countable orthonormal basis for X'. Say
Sey = exy1 for each integer k > 0 for some orthonormal basis {ex} for X. Observe
that (Sfx; fx) =0 for every orthonormal basis {f} for X. In fact, take any or-
thonormal basis {f} for X and consider the Fourier expansion of fj in terms of
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{ex}, viz., fi="Y2,(fr;ej)e;, and s0 Sfi= Y2 (fr;e;)Se;. Then
(Sfis fi) = (X (fieesin Y (frsee) = D (fiie)(Fre(ezie)
= Zj<fk§ e;)(friejin) = Zj<€j+1  fi)legs fr) = (ejinies) =0,

by taking the Fourier expansion of each ey, in terms of {fi }. Thus >, |(Sfx; fx)| =0
for every orthonormal basis {fx}. But S is an isometry, so S*S =TI and hence
|S| = I, the identity on X. Thus S ¢ B1[X] (it is not even compact).
Theorem 5.5. Let X be a Hilbert space. The following assertions hold true.

(a) (Bi[X],]l - |l1) is @ Banach space.

(b) Bo|X] is dense in (Bi[X],] - |I1)-

Proof. (a) Essentially the same argument that proves completeness of ({1, ] - |1).
Let {T,,} be an arbitrary B;[X]-valued Cauchy sequence in (B;[X], ]| - ||1). Then it
is a Cauchy sequence in the Banach space (B[X],] - ||) (since || - || < - |l1), and so

T, = T| — 0 for some T € B[X].

Recall that the product of a pair of uniformly convergent sequences of operators
converges uniformly to the product of the limits, and also that uniform convergence
is preserved both under the adjoint and under the square root operations (see, e.g.,

[13, Problems 4.46, 5.26, 5.63]). Thus ||T,, — T|| = |||T — T|%||*> — 0 implies
1T —TI%|| =0 and |||Ta|? — T3] — 0.
Let {e, },er be any orthonormal basis for X. Thus || |Tn|%eﬂ,||2 — H |T\%en,H2 and so
171 =32 T Re? <sup D HTal*es || = sup [ Talls < oo,

since {7, } is bounded in (B [X],] - ||1) because it is Cauchy in (Bi[X],] - ||1). Then
T € B1[X]. (Recall that ||T,, — T'|| — 0 and T € B1[X] does not imply ||T;, — T||s — 0
— see [12] for all possible implications along this line.) Now take an arbitrary € > 0.
Again, since {T,,} is Cauchy in (B1[X],] - ||1), there exists a finite positive integer
ne such that for every m,n > n,,

> T = TulFes P <37 170 = Tonl2es ||? = T — Ty <2

for every finite set J C I'. Since limmH [T, — Tm\%eﬂ,HQ = H T, — T\%eWH2 for each
n and e, it follows that > ; | 1T _T|%e"/

170 =Tl =3~ T = TlFes|* = sup > T = Te | <e

whenever n > n., where the supremum is taken over all finite sets J C I'. This
means || T, — T||1 — 0. So every Cauchy sequence in (B;[X], ] - ||1) converges in it.
(b) Recall: (i) Bo[X] C B1[X] C B [X], and (ii) Hilbert spaces have the approxima-
tion property which means Bg[X] is dense in (Bso[X],] - ||), and so Bo[X] is dense
in (By[X],]| - ||). To verify that Bo[X] is dense in (By[X], ] - ||1) proceed as follows.
Let {e4},er be any orthonormal basis for X' and take an arbitrary T € 5;1[X]. So

T = Zwer<\T|67 jey) = Sup ZW€J<|T\67;67> < 00,

2 < ¢ for every finite set J C T and so
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where the supremum is taken over all finite sets J C I'. Take an arbitrary £ > 0.
The above expression (asserting that the family {(Te.,e)}~ is summable) ensures
the existence of a finite set J. C T" for which }° cp . (|Tey;ey) < e. Then set

X. = span{e, € X:v € J.}, a finite-dimensional subspace of X, and take T, =
T|x. in Bo[X]. (Indeed, R(T.) = T(X:) is finite-dimensional since X is.) Thus

IT=Telli =3 (T =Teleyien) =3 AITlesieq) <e,
and therefore By[X] is dense in (B1[X],] - ||l1)- O

Either Claim 3 in the proof of Theorem 5.2 or Remark 5.4(b) ensure that the fam-
ily {{Tey,e,)}, is summable (i.e., the series {3 (T'ey, e4)} converges in (F, |- [))
for every orthonormal basis {e,} for the Hilbert space X, and the limit does not
depend on the choice of the orthonormal basis. Therefore if T'€ By [X] and {e,} is
any orthonormal basis for X, then set

tr(T) = ZW<T67;67> and hence ||T|; = tr(|T7).

The number tr(7T") € F is the trace of T'€ B1[X] (so the terminology trace-class).
The norm || - ||y = tr(| - |) on the linear space B;[X] of all trace-class operators is
referred to as the trace norm. Thus the trace-class itself can be written as

Bi[X] ={T € B[X]: tr(|T|) < oo}.
By Theorem 5.2 (and Claim 3 in its proof), for every T'€ B1[X] and S € B[X],
(D) < T, w(T) =u(D),  w(TS) = t(ST),
(ST | = [ (1T19)] < ISHIT -
Actually, if T € By[X] so that |T|? € B;[X], then
tr(|72)) = te(T*T) = | T3 < |73
Also, since inner products are linear in the first argument,
tr(-): Bi[X] — F is a bounded linear functional (i.e., tr(:) € B1[X]Y).
Remark 5.6. Astr(-): By[X] — F is bounded and linear, and according to Theorem
5.2(b,c) and Lemma 5.1(e), consider the function ( ; )o: Ba[X]xBy[X] — F given by
(T;S)e =tr(S*T) for every S,T € Ba[X].
Equivalently, for every S,T € By[X] and for an arbitrary orthonormal basis {e },

(T;S)g = Z%Ten, ;Seq).

Since tr(-) is linear, tr(T*) = tr(T), and (T;T)y = tr(T*T) = ||T||3, the function
(+; )2 is a Hermitian symmetric sesquilinear form which induces a quadratic form.
In other words, (-;-)2 is an inner product on Bs[X] that induces the norm || - ||2:

(B2[X], |l - ||l2) is an inner product space where the norm || - ||2 is generated by
the inner product defined by (T'; S)g = tr(S*T) for every S,T € By[X].
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Note that the Schwartz inequality for this inner product on By[X] is a straight-
forward consequence of the definition of the Hilbert-Schmidt norm | - ||2 (and, of
course, of the Schwartz inequality on both Hilbert spaces, X and 2 over I'):

(T3 8)2| = |r(S™T)| = )ZW<T6~/;SGV> < ZWHTGWII [Seyll

< (32, Imesl?)? (32 lSesl2)* = T2 Slla - for every S.T € BalX].

Similarly to Theorem 5.5, it can be verified that

(a) (Ba2[X],] - ]l2) is a Hilbert space,

(b) Bo[X] is dense in (Ba[X], | - ||2)-
In fact, a proof of (a) follows the same argument as in the proof of Theorem 5.5(a)
with By[X] and]| - |1 replaced by Bs[X] and || - |a. This shows that (Ba[X], ]| - [|2)
is complete, thus a Banach space, and so a Hilbert space since the norm || - ||2 is
induced by an inner product: |T|s = (T;T)s2 = tr(|T\2)% for every T € By[X]. In
the same way, a proof of (b) follows exactly as the proof of Theorem 5.5(b).

Trace and Hilbert—Schmidt classes are naturally extended in a similar fashion to
classes of operators B,[X] for every p > 0 so that Byo[X] C Bp[X] C By[X] C Boo[X]
for every p, ¢ such that 0 < p < g < oo (see, e.g., [5, 7, 28, 29]). This, however, goes
beyond the scope of the present paper. For further readings on trace-class see also,
for instance, [24, 1]. In particular (cf. [24, Theorem VI.26] and [1, Theorem 19.2]),

(BuX), || - 111) is a the dual of (Boo[X), || - ) (ive.. Boo[X]* 22 By[X]),
(BIX], |- 1) is a the dual of (By[X], || -|1)  (i.e.. Bi[X]* = BIX]),

which to some extent mirror the well-known classical duals ¢j = {1 and {7 = {
(see, e.g., [18, Examples 1.10.3.4] among many others).

6. CONCLUSION

Quite often the term nuclear operator is tacitly attributed to trace class operators
without further explanation such as, for instance, “an operator will be called nuclear
if it belongs to B1[X]” [7, Section IIL.8]. This prompts our final result.

Theorem 6.1. If X is a Hilbert space, then
B, [X] = By[X] and | -]i ="~

Proof. The proof is based on the he polar decomposition for Hilbert-space operators
as follows. First, Proposition 5.3 is applied to show that B;i[X] C By[X] in part
(a). Then the injectiveness of T' when it acts in N (A)* is explored to obtain the
reverse inclusion By[X] C By[X] in part (b), which also yields the norm identity
|l - li=1 - [|v- Thus, to begin with, take an operator T' € B[X] on a Hilbert space X.

(a) If T € By[X], then it is compact. Thus consider the setup in the proof of Propo-
sition 5.3, where {e,} is an orthonormal basis for the Hilbert space X and {ex}
is a countable subset of it which is an orthonormal basis for the separable Hilbert
space H = N(A)+ C X. Take the direct sums 7= Ty & O and |T| = |T| |H &0
on X="H& N, where T|y € B[H] is injective. Thus Ty has a polar decomposi-
tion T'|y = V|T| |H where V € B[H] is an isometry (see, e.g,. [13, Corollary 5.90])
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so that T' = V|THH @ O € B[X]| = B[H @& N]. For each ey, in H set f, = Vey in H
so that {fx} is an H-valued orthonormal sequence. Then by Proposition 5.3

|T|x = Zn/un,@c jey)ey andso Tx = Zn/,uﬂ,(x ey fy forevery ze X,
with f, =0 € N if v # k. Moreover, recalling that u., = 0 if v # k,

Zﬂ,'“”/ = széu%eﬂ,;eg)eé = Z’Y<|T‘€7; ey ).
Therefore if T' € B1[X], then
Zw,uﬂ, =|ITh <oco and Tz = Zkﬂk<x§€k>fk for every z € X,
where {er} and {fx} are H-valued unit sequences (thus X-valued unit sequences).
(b) Conversely, since X = N(T)* & N(T), we may regard only the action of T' =

Ty @O and |T| = |T)| |H @ O on 'H = N(T)*. So for notational simplicity write T
and |T| for the injective operators T'|y and |T| }H. Suppose

Tz = Zkak<$;zk>yk for every z € H,

for some H-valued sequences {zj} and {yx} and for some scalar sequence {ay} with
llze|l = lyk|| = 1 and >~ |ak| < co. Thus (by polar decomposition)

|T|x=V*Tz = Zkak<az sz )wy  forevery xeH=N(T)*t C X,

where wy, = V*yj, so that ||wy|| < 1. For every orthonormal basis {e;} for H,
Zj<|T|€j €j> = Zj<zkak<ej§zk>wk§ €j> = ijkak<ej§ z) (Wk; €5)
<3 ol | (esizdbwnien)| = D, Janl ks 26)| < 3, Jan| < oo

So T lies in By [H]. Moreover, since Tx = Y, ap(x; zx)yx for every z € H,

Zkﬂk =T = Zk<\T|ek;€k> < ZkH T |ex|| = ZkHTekH < Zk\aﬂa

for any orthonormal basis {ej} for H. So ||T'||; = min )", |ak|, the minimum taken
over all scalar summable sequences {ay} as in the above representation of 7.

From (a) and (b) we get the following statement:

An operator T lies in B[X] if and only if there are X-valued unit sequences
{2z} and {yx} (i-e., ||zk]| = |lyk]| = 1) and a scalar summable sequence {ay}
(i.e., D op lag| < 00) such that Te =Y, ap(x;zk)yx for every x in X'. More-
over, |T'||; = inf )", |o], where the infimum is taken over all scalar summable
sequences for which the above expression for T'z holds.

Such an expression for Tz is precisely a nuclear representation of T" as in Section 4.
Then By [X] = Bn[X]. Also, with the infimum taken over all nuclear representations
of T € By[X], we get (for arbitrary unit sequences {zx} and {yx} and summable
scalar sequence {ax ) [Ty = inf 3 okl 2l gell = if Sy o = |70y O

Thus the notions of nuclear and trace-class coincide on Hilbert spaces. For their
relationship beyond Hilbert spaces, the same first lines of Bartle’s review in Math-
ematical Reviews we borrowed to open the paper can be used to close it, viz.,
”Grothendieck showed that a Banach space X' has the approximation property if
and only if for every nuclear operator 7=, fx(-)yx the number tr(T)=3>", fr(yx)



TRACE-CLASS AND NUCLEAR OPERATORS 19

is well-defined” (see, e.g., [4, Theorems 1.3.6, 1.3.11, 1.4.18 and Proposition 1.4.19]).
This can be regarded as a starting point for characterizing the trace property in
Banach spaces. For further readings along this line see, for instance, [21, 11, 6].
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