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ALGEBRAIC TENSOR PRODUCTS REVISITED: AXIOMATIC
APPROACH

C.S. KUBRUSLY

ABSTRACT. This is an expository paper on tensor products where the standard
approaches for constructing concrete instances of algebraic tensor products of
linear spaces, via quotient spaces or via linear maps of bilinear maps, are
reviewed by reducing them to different but isomorphic interpretations of an
abstract notion, viz., the universal property, which is based on a pair of axioms.

1. INTRODUCTION

The purpose of this paper is to offer a brief and unified review with an expository
flavor on the common realizations of algebraic tensor products (either via quotient
space or via linear maps of bilinear maps) by reversing the presentation order. In
other words, this exposition focuses on the approach where the so-called universal
property is taken as an axiomatic starting point, rather than as a theorem for a
specific realization. This leads to the abstract notion of algebraic tensor products
of linear spaces (the pre-crossnorm stage), where the concrete standard forms are
shown to be interpretations of the axiomatic formulation.

The origin of a systematic presentation of tensor products in book form dates
back to Schatten’s 1950 monograph [21], where the notion of direct product of
linear spaces was given in terms of formal products (which match what its now
called tensor product space and single tensors) and their symbols in the form of
finite sum of formal products. This followed a Kronecker-product-like notion on
finite-dimensional spaces given in Weyl’s 1931 book [23, Chapter V]. Grothendieck’s
fundamental work in the 1950’s has been unified and updated by Diestel, Fourie
and Swart in 2008 [3]. See also Pisier’s 2012 exposition [17]. In Grothendieck’s
pioneering work, the notion of tensor product space was essentially given in terms
of the dual of the linear space of bilinear forms (or, more generally, the linear space
of linear maps of bilinear maps). The same way of defining tensor product also
appears in Halmos’s 1958 book on finite-dimensional vector spaces [5, Section 24]
(although the formal products variant is also mentioned as a possible alternative).
Another representative along this line (dual of the linear space of bilinear forms) is
Ryan’s 2002 book on tensor products of Banach spaces [20].

On the other hand, a different but still usual approach for defining tensor product
relies on quotient spaces of free linear spaces (equivalent to the linear space of formal
linear combinations) of Cartesian products of linear spaces. This has been sometimes
referred to as algebraic tensor product (although the previous approach is equally
algebraic). See e.g., [1, pp.22-25], [22, Section 3.4] and [19, Chapter 14] for a linear
space version, and [15, Section TX.8] and [14, Section XVI.1]) for a module version.

The present paper is organized as follows. Notation, terminology and auxiliary
results are brought together in Section 2. This is split into three parts: formal linear
combination, quotient space, and bilinear maps. Tensor products are axiomatically
defined in Section 3, and common properties shared by the concrete formulations
are obtained from such an abstract formulation. The usual realizations, viz., the
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quotient space and linear maps of bilinear maps, are individually inferred from
Definition 3.1 and are considered in Sections 4 and 5.

2. NOTATION, TERMINOLOGY, AND AUXILIARY RESULTS

Let X and Y be linear spaces over the same field F, and let L[X, )] denote the
linear space over F of all linear transformations from X to ). For X =) write
L[X] = L[X, X], which is the algebra of all linear transformations of X" into itself.
The kernel N (L) = L~({0}) and range R(L) = L(X) of L € L|X,))] are linear
manifolds of X and Y respectively. A linear transformation L € L[X, )] is injective
if N(L) = {0} and surjective if R(L) = Y. By an isomorphism (or an algebraic
isomorphism, or a linear-space isomorphism) we mean an invertible (i.e., injective
and surjective) linear transformation. Two linear spaces X and ) are isomorphic
(notation X = Y) if there is an isomorphism between them. For the particular case
of Y =T the elements of L[X,F] are referred to as linear functionals or linear
forms, and the linear space L[X,F] of all linear functionals on X is referred to
as the algebraic dual of X, denoted by X* (i.e., X* = L[X,F]). For an arbitrary
linear transformation L € L[X, Y] consider the linear transformation Lf € L[V¥ X*]
defined by Lfg = gL € X* for every g €V* (ie., (L*g)(z) = g(Lz) € F for every
g €Y% and every z € X — we use both notations gL or g o L for composition). This
L¥ € L[Y% X*] is the algebraic adjoint of L € LIX,)].

The next subsections summarize not only notation and terminology, but also
auxiliary results that will be required in Sections 4 and 5.

2.1. Formal Linear Combination. Let S be an arbitrary nonempty set and let
F be a field. Consider the linear space F¥ of all scalar-valued functions f:S—F
on S. Let # stand for cardinality and consider the set

$={f cF": f(S\A) =0 for some A C S with #A < oo}

of all functions f:S — F which vanish everywhere on the complement of some
finite subset A of S (which depends on f). This § is a linear manifold of F*, and
so is itself a linear space over F. For each s € S take the characteristic function
es = X531 8 — [ of the singleton {s} C S. As is readily verified the set

S = {es}ses is a Hamel basis for the linear space .

Thus an arbitrary vector f € &, being a scalar-valued function taking nonzero values
only over a finite subset {s;}? ; of S, has a unique expansion with «; € F:

n
f = Zi:laies‘i S ’$

The linear space § is called the free linear space generated by S. Since #{es}ses =
#5S (i.e., each element s from the set S is in a one-to-one correspondence with each
function ey from the Hamel basis S for the function space §), then dim & = #S = #S5.
This sets a natural identification = such that s ~ e; and so S &~ S, which in turn
leads to a natural identification for an arbitrary linear combination in §,

n n
E izlaz’es.,- ~ E izlaisiv

where Z?:laisi is referred to as a formal linear combination of points s; € S (al-
though addition or scalar multiplication is not directly defined on the set S), the
collection of which is the linear space of formal linear combinations from S. So any
function f in the linear space & is identified with a formal linear combination of
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points in S, and the set S that generates the free linear space § is identified with
the Hamel basis S for &. In this sense the set S may be regarded as a subset of &,
and a function f in $ may be regarded as a formal linear combination. Thus write

f= Zi]aisi for Zi]aisi ~fed and SC@ for S~SCg.

2.2. Quotient Space. Let M be a linear manifold of a linear space X over a field
F, let [z] = z + M denote the coset of x € X modulo M, and let X' /M stand for
the quotient space of X modulo M, which is the linear space over F of all cosets
[x] modulo M for every x € X. Consider the quotient map (or the natural quotient
map) m: X — X /M of the linear space X onto the linear space X'/ M, defined by

w(z) =[z] =2+ M for every z € X,

which is a surjective linear transformation according to the usual definition of ad-
dition and scalar multiplication in X' /M.

Proposition 2.1. Universal Property. Let X and Z be linear spaces over the same
field, let M be a linear manifold of X, consider the quotient space X /M, and take
the natural quotient map m: X — X /M. If L € L|X,Z] and if M C N (L), then
there exists a unique L € L[X /M, Z] such that

L=Lom.
In other words, the diagram
x L. z

SN
X/ M
commutes, which means the quotient map 7 factors the linear transformation L

through X | M. Moreover, in this case N'(L) = N(L)/M and R(L) = R(L).

Proof. See, e.g., [19, Theorem 3.4, 3.5]. (For a module version see, e.g., [15, Theorem
V.4.7]; for a normed space version see, e.g., [16, Theorem 1.7.13]). O

Remark 2.1. Let M be linear a manifold of a linear space X. A set { [es]}sea of
cosets modulo M (with each es in X) is a Hamel basis for the linear space X'/ M
if and only if {es}sea is a Hamel basis for some algebraic complement of M (see,
e.g., [12, Remark A.1(b)]). Hence every Hamel basis {e,},er for X is such that
{[e4]}~er includes a Hamel basis for X/ M. Since the quotient map 7: X — X' /M
is surjective, the image m(Ex) of an arbitrary Hamel basis Ex for X includes a
Hamel basis Ex/rq for X/ M (i.e., Ex a € 7(E£x)). Therefore

spanm(Ex) = X /M for every Hamel basis Ex for X,

and so every element [z] of X' /M can be written as a (finite) linear combination of
images under 7 of elements of an arbitrary Hamel basis for X.

2.3. Bilinear Maps. Let X', )V, Z be nonzero linear spaces over a field F. Take the
Cartesian product X' x) (no algebraic structure imposed on X' xY besides the fact
that both X and ) are linear spaces). A bilinear map ¢: XxY — Z is a function
from the Cartesian product X x) of linear spaces to a linear space Z whose sections
are linear transformations. Precisely, let ¢¥ = ¢(-,y) = ¢|xx{y}: X — Z be the y-
section of ¢ and let ¢, = ¢(x,-) = @liz3xy: Y — Z be the z-section of ¢. These
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functions ¢¥ and ¢, are linear transformations: ¢¥ = ¢(-,y) € L[X, Z] for each y
in Y and ¢, = ¢(x,-) € L]V, Z] for each = in X. Let Z° denote the linear space
over the same field F of all Z-valued functions on a set .S, and let

bXxY, 2] = {¢ € 2¥*V: ¢ is bilinear }

stand for the collection of all Z-valued bilinear maps on X' x)Y. The particular case
of Z = F yields a bilinear functional ¢: Xx)Y — [, also referred to as a bilinear
form. Bilinearity of elements ¢ in b[X' xY, Z] ensures b[X' x Y, Z] is a linear manifold
of the linear space Z¥*Y, thus a linear space over F itself. Let R(¢) = ¢(X'x))
denote the range of ¢ € b[X' x), Z], which in general is not a linear manifold of Z.

As a composition of linear transformations is a linear transformation, a composi-
tion of a bilinear map with a linear transformation is a bilinear map. Also, a restric-
tion of a bilinear map to a Cartesian product of linear manifolds is again a bilinear
map (as a consequence of the definitions of linear manifold and of bilinear map).

Proposition 2.2. Let X,Y, Z be linear spaces over the same field F, and let M
and N be nonzero linear manifolds of X and Y. If ¢: MxN — Z is a bilinear
map, then there exists a bilinear extension 9/5: XxY — Z of ¢ defined on the whole
Cartesian product X <)Y of the linear spaces X and ).

Sketch of Proof. Every linear transformation on a linear manifold of a linear space
has a linear extension to the whole space, whose proof is an application of Zorn’s
Lemma (see, e.g., [10, Theorem 2.9]). If a bilinear map is the product of two (alge-
bra-valued) linear maps, then the proof is an application of the linear case. A proof
for the general bilinear case follows an argument similar to the linear case. |

Bilinear maps can also be extended by factoring them by the natural bilinear
map through a tensor product space (see, e.g., [6, p.101]). Indeed, Proposition 3.3
will say that X%V, Z] = LIX @ Y, Z], where X ® Y stands for tensor product,
and this ensures bilinear extension out of linear extension. It is, however, advisable
to have the above extension result independently of the notion of tensor product.

3. TENSOR ProDUCT OF LINEAR SPACES: AXIOMATIC THEORY

Definition 3.1. Let X and ) be nonzero linear spaces over the same field F. A
tensor product of X and ) is a pair (7,6) consisting of a linear space T over F
and a bilinear map 6: Xx) — 7 fulfilling the following two axioms.

(a) The bilinear map 6 € b[X'x), 7] is such that its range R(f) spans 7.

(b) If ¢ € b|X' XY, Z] is an arbitrary bilinear map into a linear space Z over F, then
there is a linear transformation ® € L[7, Z] for which

p=oo00.
That is, the diagram
xxy 2 z

AL

commutes, and so 6 factors every bilinear map through 7. The linear space 7 is
referred to as a tensor product space of X and ) associated with 6, and 0 is referred
to as the natural bilinear map (or simply the natural map) associated with 7.
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There are different interpretations of tensor products. For instance, the quotient
space and the linear maps of bilinear maps formulations are examples of common
procedures for building tensor products. These will be shown to be isomorphic, and
will be exhibited in the next two sections. So the existence of tensor products will
be postponed until then. Definition 3.1 is our starting point for providing these
interpretations. A similar start has been considered, for instance, in [14, Section
XVI.1] and [19, Chapter 14] for the quotient space formulation, in [24, Section 1.4]
and [4, Chapterl] for both formulations, and in [7, Section 1.6] and [2, Section 2.2]
for the linear maps of bilinear maps formulation aiming at tensor norms.

The value 6(z,y) of the natural bilinear map 6: XxY — 7 = span §(X x)) as-
sociated with 7 at a pair (z,y) in X'x) is denoted by = ® y,

xr@y=0(x,y) € T forevery (z,y)€ XX,

and x @ y is called a single tensor (or a decomposable element, or a single tensor
product of © and y) in the tensor product space 7. Take (z,y) € Xx)Y and a € F
arbitrary. Since 6 is bilinear, then a(r @ y) = (ax) ® y = z ® (ay) for any a € F.
So a multiple of a single tensor is again a single tensor, and the representation
of a nonzero single tensor is not unique. Proofs for the next two propositions are
straightforward form Definition 3.1, thus omitted.

Proposition 3.1. An element of a tensor product space is represented as a finite
sum of single tensors (and such a representation is not unique):

FeT << F= qu@yz (a finite sum).

Proposition 3.2. If 7 is a tensor product space, then the linear transformation
¢ € L[T, Z] associated with each ¢ € b[XxY, Z] as in Definition 3.1 is unique.

The natural bilinear map 6 associated with a tensor product space 7 is unique
and, conversely, 7 associated with € is unique. This is shown in the next theorem
and its corollary. From now on all linear spaces anywhere are over the same field F.

Theorem 3.1. Let X and Y be linear spaces. Let (7,0) and (7',0") be tensor
products of X and Y. Then there is a unique isomorphism © € L|T',T| such that
O 00 = 0. That is, such that the following diagram commutes:

XxY _9 T
N
7.

Proof. Let (T,60) and (7",0") be tensor products of X and Y. For any bilinear map
¢: Xx)Y — Z into a linear space Z there are linear transformations ®: 7 — Z and
®': T'— Z such that ¢ = ® 0 § = &0 ' (Definition 3.1), which means the diagrams

xxy -4 z xxy -2, z
0\\ Tq) and 0,\\ T‘b/
T T’

commute. Since §': XxY — T'and #: XxY — T are bilinear maps, then there are
linear transformations ®’: 7 — 7’and ©: 7' — T such that ¢/ = ©’cfand § = Oo ¢’
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(Definition 3.1 again), which means the diagrams

xxy -2 xxy 4. T
Mol
T T

commute. Therefore
=(000)of and O6=(©00)o0d.

Let Is denote the identity function on an arbitrary set S. By the above equations,
©’0O|r@ey =Ir@): R(0') — R(0') and © o O'|ge) = Ir@): R(0) — R(0).
Since © and ©’ are linear transformations (and so are their compositions), and

since span R(0) = 7 and span R(#") = 7’ by Definition 3.1, then we get
0’00 = 00 O|panre) = lspanr(er) = I17,
000" =000 |panr©) = Lspanr(e) = I1.
Hence © and ©' are the inverse of each other, and are unique by Proposition 3.2. [

Corollary 3.1. A tensor product of linear spaces is unique up to an isomorphism
in the following sense. If (T,0) and (T',0") are tensor products of the same pair
of linear spaces, then (7,0) = (©7',060") for an isomorphism © in LIT',T]. In
particular, two tensor product spaces of the same pair of linear spaces coincide if
and only if the natural bilinear maps coincide.

Proof. This is an immediate consequence of Theorem 3.1. O

A tensor product for a given pair of linear spaces is unique up to an isomorphism
by Corollary 3.1. Then for a given pair (X,)) of linear space it is common to write

T=XQ)Y
for the tensor product space, and (X ® ), 0) for the tensor product, of X and Y.

Proposition 3.3. Take an arbitrary triple (X,Y, Z) of linear spaces. The linear
spaces b[XxY, Z] and LT, Z] are isomorphic:

XXV, Z| 2 LX), Z].
Proof. Take any ® € L[T, Z]. The composition ® 0 §: XxY — Z lies in b[X' xY, Z]
since 6 is bilinear and @ is linear. Let Cyp: L[T, Z] — b[X x), Z] be defined by
Co(®) =Do0 € b[AXY,Z] forevery &€ L[T,Z].
For every ¢ in b|X' XY, Z] there is one and only one ® in L[T, Z] for which ¢ = ® 0 6

according to Proposition 3.2. Then Cjy is injective and surjective, and so invertible.
Since it is readily verified that Cy is linear, then Cy is an isomorphism. O

Thus a crucial property of a tensor product (7, 6) is to linearize bilinear maps
(via factorization by 6 through 7) in the sense of in Proposition 3.3. In particular,

(X @) 2 blXxY,F|.

Theorem 3.2. Let 7T = X ® Y be a tensor product space of X and Y, let E and
D be nonempty subsets of X and Y respectively, and set

TE,D={$®y€X®y:xGEandyGD}.
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(a) If span E = X and span D =), then spanTgp =X ® ).
(b) If E and D are linearly independent, then Tg p is linearly independent.

Therefore, if E is a Hamel basis for X and D is a Hamel basis for Y, then Tg p
is a Hamel basis for T =X ® ).

Proof. (a) Take an arbitrary element F = >""" ,2; ®y; from X @ Y. If span E = X
and span D =) then consider any expansion of each z; € X in terms of vectors
e;; from E and any expansion of each y; € Y in terms of vectors d; ;, from D. Since
x ®y = 6(x,y) for each pair (x,y) € XxY, and since §: XxY — X ® Y is bilinear,

n m Y/ n,m,£

F = Zi:] (Zj:]/gjei,j ® Zk:]'kai,k> = Zi,j,k Bivk(ei; ® dik)-
Thus F lies in spanTg,p. Then ¥ ® Y C spanTg,p. So spanTg,p =X @ V.
(b) Let E'={e;}T and D'= {dx } _, be arbitrary nonempty finite linearly inde-
pendent subsets of E and D respectively, and consider the linear manifolds

M = span E' = span {e;}7; C X and N = spanD’= span {di};—; C V.
Set Z = L[F™ F*), identified with the linear space of all £xm matrices of entries in
F. Take ¢p: MxN — Z given for u = Z;n:] Bje; € Mand v = Zi:] Yidi € N by
o(u,v) = (ﬂj’yk) €eZ for j=1,....m and k=1,...,¢,

where (ﬂj’yk) is the {xm matrix whose entries are the products ;7 of the coeffi-
cients of the unique expansion of arbitrary vectors u € M and v € A in terms of the
linearly independent sets E' and D', Tt is readily verified that ¢: MXxN — Z is a bi-
linear map. Thus consider the linear transformation ®: M ® ' — Z such that ¢ =
® 0§ according to axiom (b) in Definition 3.1. So ¢(u,v) = ® (8(u,v)) = ®(u @ v)

for every u = Z;”:l Bje; in M and every v = Zi:l ~rdg in M. In particular,

®(e; @ di) = d(ej,di) =k,
where I1; ;. € Z is the {xm matrix whose entry at position j, k is 1 and all other en-
tries are 0. These matrices form a linearly independent set in Z. (In fact, {II,, k}?}f:l
is the canonical Hamel basis for Z.) Take any pair of integers k', j* and suppose

ej @ dj is a linear combination of the remaining single tensors {e; ® dj }; ke with
I'={j,k=1to m,{: j#7,k#kK},say

ejr @ dy = Zj’kej,‘sj,k (ej © di).
Then, as ®: M @ N — Z is linear,
Hj/,k’ = @(ej/ ® dk/) = Z

and so 0 =0 for every j,k € I’ since {Hj,k};ﬁ,;il is linearly independent in Z.

8y Ple; @dy) =y

) 11
jker' b ktlgks

5.
jker

Hence {e; ® dj };",;il is linearly independent in Tg p. In other words,
Tpp={z@yeX®@)Y: z€F and y € D'}

is a finite linearly independent subset of Tz, p whenever E’ and D’ are finite linearly
independent subsets of F and D. Thus if E and D are linearly independent subsets
of X and ), then every finite subset of each of them is trivially linearly independent,
and so is every finite subset of Tg, p as we saw above. But if every finite subset of
Tg,p is linearly independent, then so is Tg, p (see, e.g., [10, Proposition 2.3]). O
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Corollary 3.2. dim(X @ Y) =dim X - dim Y.

Proof. If E and D are Hamel basis for X and ), then Tg,p is a Hamel basis for 7 by
Theorem 3.2. Also Ty, p = {x QueXRY:xeFEand y € D} is in a one-to-one
correspondence with Ex D as E and D are linearly independent. Since #(ExD) =
#E - #D by definition of product of cardinal numbers (see, e.g., [10, Problem 1.30]),
then #Tg,p =#E - #D. Thus follows the claimed dimension identity. O

A straightforward consequence of the dimension identity of Corollary 3.2 is this.
Tensor product is commutative up to an isomorphism:

Xey=)yaod.
Next we identify a special type of linear manifold of a tensor product space.

Proposition 3.4. Let X and Y be linear spaces. Suppose M and N are linear
manifolds of X and Y respectively. Let (X @ Y,0) be a tensor product. Set M @ N =
span R(0|pxnr). Then M@ N is a linear manifold of the tensor product space
X®Y and (M @N,9) is a tensor product with 9 = 0| pxnr-

Proof. Consider Definition 3.1. Let (X ® Y, ) be a tensor product. Take any biline-
ar map ¢: XxY — Z. Let &: X ® Y — Z be the linear transformation such that

=00

Let M and N be linear manifolds of X and ). Take the restriction 8| ax s of the
natural bilinear map 6 to the Cartesian product MxN C X'x) so that

Ol pmxn s MXN — RO pmxn) C span R(O| pmxnr) C span R(0) = X @ Y,
which is a bilinear map. Now consider the restriction ¢|ar(xn of the arbitrary bi-
linear map ¢: XxY — Z to MxN, which is again a bilinear map for which

¢‘M><N = (q) o 9)|M><./\f =do O‘MXN = ®|spanR(0|MxN) © H‘MXNa

where ®[span R(9] 1) 18 the restriction of the linear transformation ®: X @ Y — 2
to the linear manifold span R(f|ar(xnr), again a linear transformation. Proposition
2.2 says that every bilinear map ¢: MxN — Z is of the form ¢|pxn: MXN — Z
for some bilinear map ¢: XxY — Z. Thus for every bilinear map ¥: MxN — Z
there is a linear transformation @ |span r(6](xn) : SPAN R(O|A1xn7) — Z such that

d) = C:D‘spanR(O\MXN) o 0|M><./\f

Set M@N = span R(0|pmxn) € X®Y, alinear manifold of the linear space X ® Y,
and ¥ = 0| mx 7, the bilinear restriction of the bilinear 6. Thus by Definition 3.1

(M @ N,9) is a tensor product. O

Therefore M @ N stands for the tensor product space of linear manifolds M and
N of the linear spaces X and ) according to Corollary 3.1 and Proposition 3.4.

Definition 3.2. A linear manifold Y of a tensor product space 7 = X ® Y is reg-
ular if Y= M ® N for some linear manifolds M and N of the linear spaces X and
Y. Otherwise T is called irregular.

The next characterization of regular linear manifolds is straightforward from
Theorem 3.2. For a collection of properties of regular linear manifolds see [9, 11].
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Proposition 3.5. A nonzero linear manifold Y of X @ Y is reqular if and only if
Y = spanTg, pr

for some nonempty subsets E' C E and D’ C D for Hamel bases E and D for X
and Y respectively.

The concept of tensor product of linear transformations is given as follows.

Definition 3.3. Let X', ), V, W be linear spaces and consider the tensor product
spaces X @ Y and V @ W. Let A € L|X,V] and B € L[V, W] be linear transforma-
tions. For each .1 , z; @ y; in X ® Y set

(A®B)Y 1z ®yi =y 1 Az; @ By, in Vo W.

This defines a map A ® B of the linear space X ® ) into the linear space V @ W,
which is referred to as the tensor product of the transformations A and B, or the
tensor product transformation A ® B.

Proposition 3.6. Take A € LIX,V] and B € L]Y,W].
(a) In fact, A® B in Definition 3.8 defines a linear transformation,
A@BeLIX@Y,VW],
and (A® B)F does not depend on the representation Y . x;Qy; of FE X ® Y.
(b) The map 0: LIX, V|XL[Y, W] — LIX @ Y,V @ W] defined by
0(A,B)=A®@B forevery (A,B)eL[XV|XLY,W,
with AQ B € LIX @Y,V W] as in (a), is bilinear.

(c) Set
LIX, V] LY, W] = span R(6) C LIX @Y,V @ W].

Then (L[X,V]® LY, W],0) is a tensor product of L[X,V] and L[V, W].

(d) The transformation A@ B € LIX @ Y,V @W)] in (a) coincides with a single
tensor in the tensor product space L[X,V]® L[V, W]:

A®B € LIX,V|RLY,W] C LIX Y,V W)
Proof. Items (a), (b), (d) are readily verified. Item (c) goes as follows. Note that
span R(0) = span {A@ B € LIX @ Y,V @W]: A € LIX,V] B € L]V, W]}
={Y" AQBELIX @Y, VW] AcLX,V], BEL[Y, W], neN]}.
For each bilinear map ¢: L[X,V]xL[Y, W] — Z take ®: span R(f) — Z defined by
@(Z;Ai ® B,») =Y 6(AiB) € Z forevery Y. A;©Bi € span R(0).

Since ¢ is bilinear, it is easy to show that @ is linear: ® € L[span R(#), Z]. Moreover,
for every (A4, B) € LIX,V]XL]Y, W]

(®oh)(A,B) = <I)(0(A, B)) =®(A® B) = ¢(A, B).
Thus ¢ = ® o 8, equivalently, the diagram
LIX VXL W] 2 2

N e

span R(6)
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commutes. Therefore (span R(),0) satisfies the axioms of Definition 3.1. O

The particular case of V = W =T is worth noticing. In this case
LIX,V] = LIX,F] =X LYW =LYF =Y and

LIXQY, VW] =LIX@V,FRF]=LX®V,F]= (X))
Indeed, dim(F @ F) =dimF =1 by Corollary 3.2. So write F @ F=F forF @ F < F
as usual. Since L[X,V] ® LY, W] C L|IX @ Y,V @ W] by Proposition 3.6(c), then
XY C (X))

Basic results on tensor product transformations are given next. Most are straight-
forward or readily verified: properties (a,b) are trivial since A ® B is a single tensor,
(c,d) are straightforward by definition of A ® B, and (e,f) are readily verified for
the regular linear manifolds N'(A) @ N'(B) and R(A) ® R(B). For the nonreversible
inclusion in (f) see, e.g., [13]. Ttem (g) says: tensor product of linear transforma-
tions is commutative up to isomorphisms, which means A ® B and B ® A are iso-
morphically equivalent in the sense that TTo(A ® B) = (B @ A)TI; for isomorphisms
M: XY —->YeX and I2: VW — W®YV (whose existence follows from the
fact that ¥ @ Y =2 )Y ® X as a consequence of Corollary 3.2). We prove (h) below.

Proposition 3.7. Let VW, X, Y, X', V' be linear spaces. Take A, A1, Ay € LIX,V]
B,B1,By€ LY, W], C € LIX',X], D€ LY ,Y] and also a, 3 € F. Then
(a) af(A®B)=0dAQFB=afA®B=A®afB,
(b) (A1 +A2)® (B1+ Bs) =A1 @ B1 + A2 ® By + A1 ® By + As @ Bo,
(¢c) AC®BD=(A®B)(C®D),
(d) If A and B are invertible, then so is A@B and (A®B) '=A"'@B 1,
() R(A)©@R(B) =R(A© B),
(f) N(A)@N(B) S N(A® B),
(g) A B=B® A.
(h) (A® B)! = A* @ B
Proof. (h) Take A€ L[X,V], Be L[V, W], At e L]V}, X¥], Bt € LW, V!]. Consider
the single tensors A ® B in L[X,V] ® LY, W] C LIX @ Y,V @ W] and A* @ B in
LIV, X @ LWE Y C L)V @ WE X @ VH], and the algebraic adjoint (A ® B)*
in L[(Y @ W), (X @ V). Take an arbitrary f ® g € V¥ @ W! C (V @ V). By defi-
nition of tensor product transformation and of algebraic adjoint
(Ao B)(fog)=AfoBy=fAogB € XY C(Xal), (v
(A®BF(fog) =(feg)(AeB) € (X V) ()

Claim. (f@g)A®@B)=fA®g¢B € X' @Y C (X))

Proof. Take an arbitrary single tensor x ® y in X @ YV, and an arbitrary single ten-
sor A® B in LIX,V]® L]Y,W]. By definition of tensor product transformation,
(A® B)(z ® y) = Az ® By, a single tensor in ¥V ® W. Next take an arbitrary single
tensor f ® gin V¥ @ Wt = L[V, F] ® L)W, F] so that, by definition of tensor product
transformation, (f ® g)(Az ® By) = fAx @ gBy € F ® F = F. On the other hand,
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since fA € X* = L[X,F] and gB € Y* = L[V, F], then (definition of tensor product
transformation), (fA® ¢B)(z ®@y) = fAxr ® gBy € F @ F = F. Summing up:
(f@g)(AeB)(z@y) = (f ©g)(Az © By) = fAz @ gBy = (fA® gB)(z © y)
for every t@y e X ® Y. Thus (f@g)(AQB)F = (f®9)(A®B)>., 2z, Qy; =
>i(feg)(AeB)(ziey) = 3 ,(fAdgB)(xi@y) = (fA®@gB)Y 2@y =
(fA® gB)F for every F € X ® Y, and hence
(feg)(A®B)=fAeyB
in Xt @Y =LX,Fl@LY,F]CLXRY,Fl=(Xe)): O
Then by (x), (*xx) and the above claim
(A*@BY)(fog)=(AeB)(feg)
for every single tensor f ® g € X* @ Y*. Thus by a similar argument
A' @ B = (A® B)
in L[X* @ V8, F] = (X* @ Y*)*, concluding the proof of (g). d

4. AN INTERPRETATION VIA QUOTIENT SPACE

Let X and Y be nonzero linear spaces over a field F. Take the Cartesian product
S = Xx)Y of X and ). Consider the notation and terminology of Subsection 2.1.
Thus ¢ is the free linear space generated by S (i.e., the linear space of all functions
f: X%xY — F that vanish everywhere on the complement of some finite subset of
AXxY), and S = {e(z,4)} (z,y)es is the Hamel basis for $ consisting of characteristic
functions e(4,,) = X{(zy)} = X{a3Xqyy: AxY — F of all singletons at each pair
of vectors (z,y) in the Cartesian product S = X' x). With the identification ~ of
Subsection 2.1 still in force, take the sums of elements from S whose double indices
have one common entry and consider the following differences.

(1) E(z14a2,y) — Clz1,y) — E(xa,y) ~ (x1+ T2 7y) - (271 ay) - (I2 ,y),

(ii) E(z,y1+x2) — C(z,y1) — C(z,y2) (.r Y1+ y2) - (x s yl) - (.r s y2),

(i)  e(amy) — Xe(ay) = (aw,y) —alz,y),

(IV) €(z,ay) — X €(x,y) ~ (CE, Oly) - OZ(I, y)a
for every z,x1, 29 € X, every y,y1,y2 € YV, and every a € F. The above differences
are not null. If they were, then we could identify a bilinear rule on the ordered pairs
(x,y) € XxY. Thus look at equivalence classes [e(,,,)] of characteristic functions

€(z,y)in S C @, gathering those differences at the origin of a quotient space as fol-
lows. Take the linear manifold M of & generated by the differences in (i)—(iv), viz.,

%

M = span {e(w1+m2,y) ~ C(z1,y) T C(z2,y) 0 Cmyita2) T C(zy1) T E(z,y2)
Clamy) ~ Ve(ay)s  Clmay) — X €(ay) J-

Take the quotient space $/M of $ modulo M, consider the natural quotient map

T $— /M,

0: XxY — $/M
on S = XxY as follows. For every (z,y) € X'x)Y set §(x,y) = 7(e(z,y)). Therefore
6(S) = n(S).

and define a map
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The Hamel basis S = {€(4,y) } (z,y)es for the linear space § generated by S is naturally
identified with S itself, and so the domain of 8 is identified with the domain of the
restriction 7|s of the natural quotient map 7 to S, that is, S & S. Since they also
coincide pointwise, then 6 is naturally identified with 7|s. So write

0=m|s for O=nls.

Elements of &/ M which are images of the map 6: Xx) — $/M are denoted by
z ® y, and again referred to as single tensors or decomposable elements:

@y =0(z,y) = m(esy)) = [€@,y)] forevery (z,y)€ XxY.
Theorem 4.1.  ($/M,0) is a tensor product of X and .
Proof. Consider the axioms (a) and (b) in Definition 3.1.

(a1) By definition of M, the differences in (i) to (iv) lie in M = [0] € &/ M. Thus
with 0(z,y) = 7(e(q,y)) = [€(a,y)) it follows that 8: X'xY — $/M is a bilinear map.

(ag) Since S = {e(z,y)}(z,y)caxy is a Hamel basis for the linear space &, then
span 7(S) = $/ M (cf. Remark 2.1). Thus as R(6) = R(r|s),

span R(6) = span R(n|s) = span 7 (S) = $/ M.

(b) Take a bilinear map ¢: XxY — Z into a linear space Z and consider a trans-
formation ® on the free linear space $ generated by the Cartesian product X' x),
$: $— Z,

defined by
O(f) = Zi:1ai d(zi,y;) € 2 forevery f= Zizlaie(%yi) €,

which is clearly linear. Moreover, since <’Iv)(e(mi,yi)) = ¢(z,y), then

B(s) = 0(9).
Again, since S &~ § = A'x ), then 5\5 is naturally identified with ¢. So write
dlg = 0.

Furthermore, since ¢: X x)Y — Z is bilinear, then ® evaluated at the differences in
(i) to (iv) is null. Hence the linear manifold M of & is such that (M) = 0. That
is, M C N(®). Thus by Proposition 2.1 there exists a unique linear transformation

o F/M— Z
such that ® = ® o 7. Therefore restricting to S C & and since span 7(S) = /M,
we get ¢ = ®ls = (P o7)|[s = P|spanr(r) © T|s = @ 0 0. Equivalently, the diagrams

$ _>3’ z s %, z

ST s
$/M $/M

commute. Identifying again S ~ S (thus regarding S = A'x) as a subset of ¢ and
writing 0§ =7|g for 6 =7|s and ¢ = ®|g for ¢ = P|s), then the diagram
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XXJ?L Z

N e
$/M.

commutes. Therefore the pair ($/M, 0) satisfies the axioms of Definition 3.1. O

5. AN INTERPRETATION VIA LINEAR MAP OF BILINEAR MAPS

Let X and )Y be nonzero linear spaces over the same field F, take the Cartesian
product X'xY of X and ), and consider the linear space b[X' x), F] of all bilinear
maps into an arbitrary but fixed linear space F over F. Associated with each pair
(z,y) € XxY, consider a transformation z @ y: b[Xx), F] — F defined by

(z@y) (W) =v(r,y) € F forevery € bXxY,F].

This again is referred to as a single tensor and as is readily verified x ® y is a linear
transformation on the linear space of bilinear maps,

T ®y € LIb[XXY,F], F].

Thus the term linear maps of bilinear maps means that this approach to tensor
product focuses explicitly on the linearization of bilinear maps. Take the collection

Txy,r= {x®y € L[B[XXY,F|,F]: x € X and y Ey}

of all single tensors. Consider its span, spanTy,y r C L[b[XxY, F], F], which is a
linear manifold of the linear space L[b[X' xY, F], F], and define a map

0: XxY —Txy,F Cspanlyy, F
as follows: for each pair (z,y) € X'x) set
O(z,y) =rQ@uy.
Theorem 5.1.  (spanTy y, 7,60) is a tensor product of X and ).

Proof. Take an arbitrary linear space F. Consider axioms (a), (b) in Definition 3.1.

(a1) O(z,y) is a linear transformation, (x,y) € L[b[XxY, F], F] for each (z,y) in
X' xY, which is given by 0(z,y)(v) = ¢¥(z,y) € F for every ¢ € bJXxY,F]. Then
bilinearity of ¢ is transferred to 6. Hence 6 € b[X' x), span Ty, y. £|.

(ag) Since O(z,y) = x @ y, then R(0) = Tx,y, s, and so span R(f) = span Ty, y, r.

(b) An arbitrary element F of the linear space spanTy, y. r is a linear combination
of single tensors, thus lying in L[b[X' %Y, F], F]. Since 6 is bilinear, then every F
in spanTy y, r is a finite sum of single tensors z @ y = 6(x,y):

F=Y 2@y € spanTyy 5 C LIBXxY,F],F].

Given an arbitrary bilinear map ¢ € b[X' x), Z] into any linear space Z, consider
the transformation ®: spanTy y, y — Z defined by

O(F) = Z(b(azz,yz) € Z forevery F = Zazl ®y; € spanTy,y, r.
As is readily verified, this is a linear transformation: ® € L[spanTx y, #, Z]. Also,

(@0 0)(z,y) = 2(0(z,y)) = P(z ®y) = ¢(z,y)
for every (z,y) € XxY. Hence ¢ = ® o 0, leading to the commutative diagram
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xxy -4,z

N e

span—l—;(,yﬁf

and therefore the pair (spanTy y r,0) satisfies the axioms of Definition 3.1. O

This interpretation, where single tensors are defined as linear transformations
of bilinear maps, is specially tailored to highlight the central property of tensor
products as a tool to linearize bilinear maps according to Proposition 3.3.

An important particular case refers to linear and bilinear forms by setting 7 = F.
In this case single tensors are linear forms of bilinear forms,
@y Ty yr C LBXXY,F], F] =bXxY, F¥,

in the algebraic dual of b[X'xY,F]. Particularizing still further, besides setting
F =T, replace the above linear space b[X' xY,F] by the following subset of it:

bty [X XV, F] = {¢ € bJXxV,F]: ¥(x,y) = p(z)v(y) for (u,v) € Xﬁxyﬁ},

consisting of products of linear forms u € X* = L[X, F] and v € Y* = L[, F]. The
set byixyt[X'xY,F] is not a linear manifold of b[A' x), F]. Define single tensors
as before. To each (z,y) € XxY associate a function z @ y: by yi [X XY, F] = F
defined for every ¥ € byu,yi[X' x),F] by

(@ @y)(u,v) = (z @ y)(W) =v(z,y) = plz) v(y) forevery (u,v) € X¥xVE

The difference between this and the previous procedure is due to the fact that single
tensors are not linear transformations (or linear forms) any longer as their domain
brtxyt [XxY,F] is not a linear space. However, as is readily verified they can be
regarded as bilinear forms on the Cartesian product of the linear spaces X*and Y*:

r @y € b[X <V F| = b[L[X,F|x L[V, F], F].
Thus take the collection T/—’m, of all these single tensors
T/IY,)) = {x®y € b[Xﬁxyﬁ,IF]: re€Xand y € y},

and consider its span, spanT}(’y, which is now a linear manifold of the linear space
blX f xyﬁ,IF] of all bilinear forms of pairs of linear forms. As before, define a map
0': XxY — Thy C spanTyy, for each pair (z,y) € X'xY by

0'(z,y) =z @y.
Now the value of 6’ at (x,y) € X' x) is a bilinear form, /(z, y) € b[X*xY* F], which
is given by 0'(x,y)(u,v) = u(z) v(y) € F for every (u,v) € XixY*.
Corollary 5.1.  (spanTjy,¢') is a tensor product of X and Y.

Proof. Consider the proof of Theorem 5.1. Replace F by F so that L[b[X x), F], F]
is replaced by L[b[XxY,F], F]. Then replace the linear space b[X x), F| by the
subset byiyyi[X xY, F], still keeping the same definition of single tensors, so that
Tay, 7 C LIV[XXY, F], F| is replaced by Ty C b[L[X,F]xL[Y,F], F|. Again,
0': XxY — spanTy y r is a bilinear map with span R(0') = spanT} y, 5. Thus the
argument in the proof of Theorem 5.1 still holds, associating with each bilinear map
¢: X'xY — Z the same linear transformation ® into Z now acting on span'l'/’y’y. O
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Remark 5.1. Here is a common and useful example of such a particular case (with
F =C). Let X and Y be complex Hilbert spaces with inner products (-;-)x and
(-;-)y, which are sesquilinear forms (not bilinear forms). Algebraic duals X* and
V! are now naturally replaced by topological duals X* and Y* of continuous linear
functionals. A single tensor for each (z,y) € X%} is usually defined in this case by

(x@y)(u,v) = (z;uyx (y;v)y forevery (u,v)e Xx).

(See e.g., [18, Section I1.4] and [8].) The Riesz Representation Theorem for Hilbert
spaces says that p lies in X*and v lies in Y*if and only if u(-) = (-;u)x and v(-) =
(-;v)y for some win X and v in Y. Thus identify 4 € X* and v € Y* with u € & and
v € Y such that the pair (u,v) € XxY is identified with the pair (u,v) € X*xY*
Then a single tensor  ® y associated with a pair (z,y) € Xx) is in fact a bilinear
form z @ y: X*xY* — C in b[X*xY*, C], which is equivalently written as

(z @ y)(u,v) = plx) v(y) forevery (i) € X*xV".
6. FINAL REMARKS

6.1. Multiple Tensor Products. It is clear how the preceding arguments (in Sec-
tions 3, 4 and 5) can be naturally extended to cover the notion of an algebraic tensor
product of a finite collection {X;}7_, of linear spaces over the same field, yielding a
tensor product space @);-_;X; of a finite number of linear spaces. This is based on
the notions of multiple Cartesian products [];", X;, n-tuples, and multilinear maps
as a natural extension of Cartesian product of two linear spaces, ordered pairs, and
bilinear maps. All results in Sections 3, 4 and 5 remain true (essentially with the
same statement, following similar arguments) if extended to such multiple tensor
products. To extend a result on tensor product from a pair of linear spaces to an
n-tuple (or to an co-tuple) may be a relevant task. Sometimes this is a simple job
(achieved by induction) but not always. On the other hand, what may also not
be always simple is the other way round: when a notion is initially defined for an
n-tuple, it may be wise to go down to a pair to see clearly what is really going on.

6.2. Tensor Products of Banach Spaces. We have been dealing with algebraic
tensor products X ® ) of linear spaces X and ). A natural follow-up is to equip the
underlying linear space X ® ) with a norm and advance the theory of tensor prod-
ucts to Banach spaces. So a new starting point is to equip X ® YV with a suitable
norm. If X and ) are Banach spaces and X'* and Y* are their duals, then let x ® y
and f ® g be single tensors in the tensor product spaces X ® Y and X*® Y* A norm
|- ]| on X ® Y is a reasonable crossnorm if, for every x € X, y €Y, f€ X*, g€ X*,

(@) [z @yl <] llyll,
(b) f@gliesin (¥©¥)", and f@gll < |flllgll (where | -] is the norm on
the dual (¥ ® ¥)* when (X ® Y) is equipped with the norm in (a)),

so that X* @ Y* C (X @ Y)* It can be verified that (i) the above norm inequalities
become identities, and (ii) when restricted to X* ® Y* the norm || - ||« on (X ® Y)*
is again a reasonable crossnorm (with respect to (X* ® Y*)*). Two special norms
on X ® Y are the so-called injective || - ||, and projective || - ||, norms,

S f) olwi)

Iy

-l = sup
IFI<T, lgll <1, fEX™, g€V *

Fll,.= inf MEANEAIB
11 = o™ e oy, 2l ]

’
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for every F =3 ,2; ®y; € X ® Y. It can be shown that (iii) these are reasonable
crossnorms, and (iv) a norm || - || on X ® ) is a reasonable crossnorm if and only if

IFI, < IFI<IIFll, forevery f eX®).

Anyhow, equipped with any reasonable crossnorm, a tensor product space X ® Y
of a pair of Banach spaces X and ) is not necessarily complete. Thus one takes the
completion X®@Y of X ® Y. For the theory of the Banach space X®) the reader
is referred, for instance, to [7, 2, 20, 3]. If X and ) are Hilbert spaces, then X Y
becomes a Hilbert space when one takes the reasonable crossnorm on X ® ) that
naturally comes from the inner products in X and ) as in Remark 5.1, by setting

(1 @Y1, 22 QY2)xey = (T1 @ 2)x (Y1 @ Y2)y (see, e.g., [18, 22, 8]).
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