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ASYMPTOTIC LIMITS, BANACH LIMITS, AND CESARO
MEANS

C.S. KUBRUSLY AND B.P. DUGGAL

ABSTRACT. Every new inner product in a Hilbert space is obtained from the
original one by means of a unique positive operator. The first part of the paper
is a survey on applications of such a technique, including a characterization of
similarity to isometries. The second part focuses on Banach limits for dealing
with power bounded operators. It is shown that if a power bounded operator
for which the sequence of shifted Cesaro means converges (at least in the weak
topology) uniformly in the shift parameter, then it has a Cesaro asymptotic
limit coinciding with its ¢-asymptotic limit for all Banach limits .

1. INTRODUCTION

The purpose of this paper is twofold. It is a survey with an expository flavor
linking the notions in the title, and also includes original results.

The paper is split into two parts, both dealing with bounded linear operators on
a Hilbert space. The first part (Sections 3, 4 and 5) surveys the technique of gen-
erating a new inner product from the original one, and its applications to similarity
to isometries and asymptotic limit for contractions, emphasizing the common role
played by the equation T*AT = A. The central results of this part appear in Prop-
ositions 4.1, 4.2, giving a comprehensive characterization of similarity to isometries.

The second part (Sections 6 and 7) is a follow-up of the first one, extending it
to power bounded operators by means of the p-asymptotic limit associated with a
Banach limit ¢ and, alternatively, to bounded operators by means of Cesaro asymp-
totic limit associated with Cesaro means, still focusing on the role played by the
equation T*AT = A. Theorem 6.1 brings together a large collection of properties of
p-asymptotic limits for power bounded operators, as a generalization of analogous
results for contractions. Similarly, Theorem 7.1 brings together a large collection of
properties of Cesaro-asymptotic limits for bounded operators. Theorem 7.2 shows
that if a power bounded operator is such that its sequence of Cesaro means con-
verges in the weak topology, whose shifted sequences converge uniformly in the shift
parameter, then its Cesaro asymptotic limit coincides with its ¢-asymptotic limit
for all Banach limits ¢. This is followed by an application in Corollary 7.1.

2. NOTATION AND TERMINOLOGY

A linear transformation L on a linear space X is injective if and only if its kernel
N(L) = L71({0}) is null (i.e., if and only if V(L) = {0}). If X is a normed space,
then let B[X] stand for the normed algebra of all operators on X (i.e., of all bounded
linear transformations of X into itself). If 7' € B[X], then N'(T') is a subspace of X,
which means a closed linear manifold of X'. The range R(T) = T(X) of T € B[X] is
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a (not necessarily closed) linear manifold of X'. An operator T on a normed space X
has a bounded inverse on its range if and only if it is bounded below. An operator
T on a Banach space X is bounded below if and only if it is injective with a closed
range (i.e., N(T) = {0} and R(T) = R(T)~ where the upper bar denotes closure).

Let X be a normed space. An operator T' € B[X] is an isometry if ||Tz| = ||z| for
every € X (a unitary operator is an invertible isometry on a Hilbert space). It is a
contraction if | Tz|| <||z| for every z € X (i.e., || T]| <1), and it is power bounded
if sup,, |T™] <oo. In this case set 5 =sup,, ||T™||. Thus T" is power bounded if
there is a constant 3> 0 such that ||[T"z|| < §||z|| for all integers n>1 and every
x € X, which implies sup,, ||T"z|| < oo for every x € X'. The converse holds if X is a
Banach space by the Banach—Steinhaus Theorem. Every isometry is a contraction
and every contraction is power bounded. An operator T € B[X] is power bounded
below if there is a constant o > 0 such that «||z| < ||T™z|| for all integers n > 1 and
every z € X. A B[X]-valued sequence {S,} converges uniformly (or in the operator
norm topology) to an operator S € B[X] if ||(S,— S)|| — 0 (notation: S,, =~ S). It
converges strongly to S if the X-valued sequence {S,z} converges to Sz in the norm
topology (i.e., ||(Sn,— S)z| — 0) for every z € X (notation: S,, =~ S). The sequence
{S,} converges weakly to S € B[X] if f((S,— S)x) — 0 for every f in the dual X* of
X and every z in X (notation: S, = S — if X is a Hilbert space with inner product
(-;-), weak convergence means ((S,— S)z;y) — 0 for every xz,y € X by the Riesz
Representation Theorem, which is equivalent to ((S, — S)z ;x) — 0 for every x € X
if the Hilbert space is complex by the Polarization Identity). Uniform convergence
clearly implies strong convergence, which in turn implies weak convergence. An
operator T € B[X] is of class Cy. if the power sequence {T"} converges strongly to
the null operator, T"z — 0 for every z € X (i.e., if T is strongly stable — notation:
T™ -5 0), and it is of Class Cy. if T"z -4 0 for every 0 £z € X.

Suppose X is an inner product space with inner product (- ;- ). The norm induced
by the inner product will be denoted by || - ||. If X is a Hilbert space and T' € B[X],
then T € B[X] denotes its (Hilbert-space) adjoint. A self-adjoint operator A (i.e.,
one for which A*= A) is nonnegative or positive if, respectively, 0 < (Ax;x) for
every z € X or 0 < (Az;x) for every nonzero z € X (notation: A > O or A > O).
A (self-adjoint) operator A is positive if and only if it is nonnegative and injective:

A>0 <= A>0 and N(A) = {0}.

Injective self-adjoint operators have dense range (i.e., R(A)~ = X whenever N (A) =
{0} if A* = A). Thus positive operators are injective with dense range. Hence a
positive operator A on a Hilbert space X is bounded below if and only if its has
a bounded inverse on its closed dense image, which in turn is equivalent to saying
that it is injective and surjective, which means invertible (with a bounded inverse).
Invertible positive operators are called strictly positive and denoted by A > O:

A >0 <= A > O has a bounded inverse on X.
A nonnegative operator A has a unique nonnegative square root A% which is positive
or strictly positive whenever A is (indeed, N'(A4%) = NV(A) and R(A2)~ = R(A)").
3. GENERATING A NEW INNER PrODUCT

Take a linear space X, let (-;-) be an inner product on X, suppose (X, {-;-)) is
a Hilbert space, and let A be a nonnegative operator (i.e., A > O) on this Hilbert
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space. As is readily verified, the nonnegative operator A generates a new semi-inner
product (-;-)4 on X defined for every z,y € X by

(x;9)a = (Az3y),

which induces a seminorm || - |4 on X" given by
1 1
[z]la = (Az;2)% = [|AZz|.

This seminorm || - ||.4 becomes a norm whenever A is injective (i.e., N'(A4) = {0} or,
equivalently, whenever the nonnegative A is positive). Consider the inner product
space (X, (-;-)a). As defined in Section 2, B[X] is the Banach algebra of all linear
operators on the Hilbert space (X, (-;-)) which are bounded (i.e., continuous) with
respect to the norm || - || induced by the inner product (-;-). If A is positive, then
let B[X], denote the normed algebra of all linear operators on the inner product
space (X, (-;-)a) which are bounded (i.e., continuous) with respect to the new
norm || - ||4. In this case (i.e., if A > O or, equivalently, if || - || 4.is a norm), the
following elementary result represents an appropriate starting point.

Proposition 3.1. Let A > O be an arbitrary positive operator on a Hilbert space
(X,(-;-)) and consider the norm | -||a induced by the inner product (-;-)a =
(A-;-). The following assertions are equivalent.

(a) A is invertible (i.e., has bounded inverse on X; equivalently, A > O).

(b) The norms || - ||a and || - || on X are equivalent.

Proof. Take the Hilbert space (X, (-;-)) and let A be a positive operator on it. So
1Az < [ A= [Pl A2 ]? = Al |2l% = [All[{Az;2)] < [[A]l [ Az] ] < [|A]]|=]?

for every x in X. Since A is positive, it is injective, and so A is bounded below if and
only if it has a closed range. Since A is an injective self-adjoint, then R(A4)™ = X.
Thus the positive operator A is invertible (i.e., A > O has a bounded inverse on
X or, equivalently, A is bounded below and surjective) if and only if A is bounded
below, which means o?||z||? < ||Az|? for every z € X and some « > 0. Therefore

A0 <= ”‘)‘Tﬁ”HxHQ < |z} < ||All||z||? for every z € X, for some a > 0. O

Perhaps the first result along this line is one ensuring that for every new inner
product there is a positive operator generating it. This is a classical result from [33].

Lemma 3.1. Let (X,(-;-)) be a Hilbert space, and let [-;-] be a semi-inner prod-
uct in X. Then there ezists a unique nonnegative operator A € B[X] for which

[z5y] = (z;y)a = (Az3y) for every z,y € X.
If this unique A € B[X] is positive, then [-;-] becomes an inner product in X.

Proof. This is a particular case of a fundamental result for densely defined bounded
sesquilinear forms [-;-] in a Hilbert-space setting [33, Theorem 2.28, p.63]. In par-
ticular, if (X, (-;-)) is a Hilbert space, then the result holds for every Hermitian
symmetric sesquilinear form inducing either a nonnegative or a positive quadratic
form (i.e., it holds for every semi-inner or inner product [-;-] on X x X) according
to whether A is nonnegative or positive, respectively. O
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The inner product space (X,[-;-]) may not be a Hilbert space if the positive
A is not strictly positive. However, if A is invertible (i.e., if A > O), then the new
norm generated by A is equivalent to the original one (by Proposition 3.1), and so
(X,(-;-)a) becomes a Hilbert space.

4. SIMILARITY TO AN ISOMETRY AND THE EQUATION T#AT = A

Let the seminorm (norm) ||-|| 4 be the one induced by the new semi-inner product
(inner product) (-;-)4 = (A-;-) as discussed in the previous section.

Proposition 4.1. Let X be a Hilbert space. Take an arbitrary operator T in B[X]
and an arbitrary nonnegative operator A in B[X].
(a) Since A > O, then ||Tx||a = ||z||a for every x € X if and only if T*AT = A.
(b) If A> O, then T is an isometry in B[X], if and only if T*AT = A.
(¢) If A= O and T*AT = A, then T is similar to an isometry.
(d) If T is similar to an isometry, then T*A'T = A’ for some O < A’ € B[X].

Proof. (a) If A > O, then ||| 4 is a semi-norm on X. Since T*AT — A is self-adjoint,
((T*AT — A)z,x) = 0 for every z € X if and only if T*AT = A. Therefore, since

1Tz = A*Ta|? =(AT2; Ta)=(T"ATz,2) and (Az,z)=||A2z|?=]||z|3
for every z € X, we get the result in (a).

(b) If A > O, then || -||4 is a norm on X and therefore the identity ||Tz||a = ||z| 4
for every x € X means the operator T is an isometry in B[X],. Now apply (a).

(¢) f A> O and T*AT = A, then for every z € X

|AZTz|? = (AT ; A3Tz) = (T*ATxz;2) = (Az;z) = |A2z|>.
If A> O, then ||[A2T A 2z|| = ||z for every z € X. So T is similar to an isometry.
(d) If T € B[X] is similar to an isometry, then there exists an invertible transfor-
mation W in B[X,))] (with a bounded inverse W~ in B[Y, X] for some Hilbert
space ) unitarily equivalent to X by the Inverse Mapping Theorem since X is
Banach) for which WTW ~! is an isometry in B[))]. Since W is invertible, the po-
lar decomposition of W is given by W = U|W| where U € B[X, )] is unitary and
|W| = (W*W)z e BX] is strictly positive. Thus O < [W| = U*W. Since WTW !
is an isometry on ), then U*WTW ~'U is an isometry on X. Thus

(WPz,;2) = [[[W]e|® = |[UWTW U |W |z|?

= [[IWITW = Wal* = || [W|Tz|* = (T*|W[*Tz; z)

for every z € X, and hence T*A’ T = A’ with O < A’ = |[W |2 O

Let T € B[X] and A € B[X] be arbitrary operators on a Hilbert space X. In ac-
cordance with Proposition 4.1(a), T' was called an A-isometry in [35] if T*AT = A
for some A > O. Similarly, T was called an A-contraction in [35] if T*AT < A for
some A > O (see also [36, 37]). Actually, T is similar to a contraction if and only
if T*AT < A some A > O (see e.g., [22, Corollary 1.8]). Still along these lines, if
an operator A (not necessarily nonnegative) is such that T*AT = r(T)2A for some
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T € B[X], where r(T) stands for the spectral radius of T, then A was called T-
Toeplitz in [20] (recall: if T is power bounded and ||[T™| + 0, then r(T") = 1). For
further applications of the new semi-inner product space (X, (-;-)4) along different
lines from those discussed here see, e.g., [1] and the references therein.

Similarity to an isometry is equivalent to the equation T*AT = A for some A >~ O
(Proposition 4.1 (c,d)). This is still equivalent to some forms of power boundedness
and power boundedness below (including Cesaro means forms). These are brought
together in the next proposition.

Proposition 4.2. Let T be an operator on a Hilbert space X. The following as-
sertions are pairwise equivalent.

(a) T is similar to an isometry.
(b) T is power bounded and power bounded below: there exist o, 3>0 such that
allz|| < ||T*z|| < B||z| for allk > 0 and every z € X.

(¢) There exist o, 3> 0 and an invertible R € B[X] for which

allz)? < lz:;;HRTkaQ < Bllz||* for alln > 1 and every x € X.
(d) There exist o, 3 > 0 for which

aljz|? < lZZ;SHT’“xH? < Bllz||? for alln > 1 and everyx € X.

(e) There exist a, 8 > 0 and an invertible R € B[X] for which
allz| < |[RT*z| < B|z|| for allk >0 and everyz € X.

n n k _k n —k

HIBT Y oy = 232, IRT T el < 3350 BITnal
n

= 2lpy  IRTRT | <287 R |,

Proof. Suppose (c) holds. Since #L]HRT”:C\P < %HZZZO |RTkz||? < B||x|/? then

and therefore sup,, H (% > ro kLH)% RT”:UH2 < oo for every z € X. By the Banach—
Steinhaus Theorem sup,, + 1o =5 ||RT"H2 < oo which implies Z[|[RT™(|?2—0
(as > p—o T4 — o°)- Thus since |[T*"R*RT"|| = [|[RT"|]?,

LIT*"R*RT"|| — 0.
Now for each n > 1 consider the Cesaro mean

n—I1
_ 1 xk % k
Qu=3>, J"RRT"

Since [|Qn ¥ |2 = (Qua ;@) = 13150 | RT*2 | then all2]|* < | Qn? x| < §lle|% and
hence {Qn%} is a bounded sequence of strictly positive operators (and so is {Q,}).

(i) First suppose the Hilbert space X is separable. In this case the bounded sequence
{Qn} has a weakly convergent subsequence (see, e.g., [24, Theorem 5.70]). But the
cone of nonnegative operators is weakly closed in B[X] and so the weak limit of any
weakly convergent subsequence of {Q,} is again a nonnegative operator in B[X].
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Let the nonnegative Q € B[X] be the weak limit of a weakly convergent subsequence
of {Qn}. Actually, Q is strictly positive because {@Q,} is bounded below. Since

T*QnT = Qn + L (R*R—T*"R*RT™)
for each n > 1, and since 2||T*"R*RT™| — 0, we get (again) the equation

T°QT = Q.
So T is similar to an isometry (i.e., (a) holds) by Proposition 4.1(c). In other words,
with O < A = @Q the equation T*AT = A implies T is similar to an isometry.

(ii) Next suppose the Hilbert space X’ is not separable. Since (c) holds, 7" is nonzero.
Take an arbitrary 0# z € X and set M, = span ( UmnsotI™ T "z} U {T"T*™2})
which is a separable nontrivial (closed) subspace of the (nonseparable) Hilbert space
X including = and reducing 7. Then both T|a¢, and (T|am,)* = T*|m, act on
the separable Hilbert space M. Thus since T'| s, satisfies (¢) — because T' does
— then according to (i) T|a, is similar to an isometry. Consider the collection
S = {Pp M, : zcX} of all orthogonal direct sums of these subspaces, which is
partially ordered (in the inclusion ordering) and is not empty (if 0 # y € ML, then
My € ML because M L reduces T and so M, L M,). Moreover, every chain in
S has an upper bound in & (the union of all orthogonal direct sums in a chain of
orthogonal direct sums in § is again an orthogonal direct sum in ). Thus Zorn’s
Lemma ensures that & has a maximal element, say M = @ M, which coincides
with X' (otherwise it would not be maximal since M & M+ =X). As T|p,z = Tz,
then T'= @ T|am, on X = @ M, is similar to an isometry since each T'|pq, on M,
is similar to an isometry according to item (i) above. Thus again (a) holds. Hence

() = (a).
Now if (a) holds, then (as in the proof of (d) in Proposition 4.1) there exists an
invertible transformation W € B[X,))] for which |[WT*W~1y| = |y|| for every
y € Y, equivalently, |WT*z| = |[Wz| for every z € X, for all k> 0. Therefore

1T ]| = W=t Wk < |[WH|[[WTr|| = |[W =1 [Wa| < W] |[W]||l«] and
|| = ([ =" War]| < W[ Wl = ([ [WT ]| < [[W=H W] | T2 so that
W= WYz < | TRz < W |W]| ||| for all & for every z. Hence

(@) = (b).
This concludes the proof since (b) = (d) = (c¢) <= (e) <= (b) holds trivially. O

The positive numbers « and 3 are constant with respect to x but of course they
may depend on T. Parts of Proposition 4.2 have appeared in [21, Theorem 2], [31,
Proposition 6.3], [15, Theorem 2], [22, Proposition 1.15], [2, Theorem 1], and [27,
Corollary 4.2] (and parts of it —e.g., (a) <= (b) — may survive in a normed-space
setting). For further conditions on similarity to isometries along these lines see, e.g.,
[4, Proposition 2.6], [38, Theorem 2.1].

5. CONTRACTIONS AND THE EQUATION THAT = A

The next proposition is a classical result on Hilbert-space contractions dating
back to the early 1950s (see, e.g., [22, Chapter 3] and the references therein). Tt
is based on a well-known result which says: every monotone bounded sequence of
Hilbert-space self-adjoint operators converges strongly. If T is a Hilbert-space con-
traction, then {T*"T"} is a bounded monotone sequence of self-adjoint operators
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(in fact a nonincreasing sequence of nonnegative operators) and so it converges
strongly to a nonnegative contraction A:

lim T**T™ = A strongly

(i.e., lim,, ||(T**T™— A)z|| = 0 for every x). Such a nonnegative contraction A is
usually refereed to as the asymptotic limit of the contraction 7. So if T is a con-
traction, then the strong limit A > O of {T*"T"} (i.e., the asymptotic limit of T')
defines a new semi-inner product (-;-)4 on X which becomes an inner product if
A > O, and in this case T acts as an isometry on (X, (-;-)4) by Proposition 4.1(b).

Proposition 5.1. For every contraction T on a Hilbert space X there exists a
unique nonnegative operator A on X for which

(a) T ™ =5 A,
and so
(@;y)a =limp (T T2 y) = limy (T2 T™y) = (Az3y)
for every xz,y € X or, equivalently,
|T"z| — HA%SL’” for every x € X,
where |A2z|| = ||z||a = ||[T92|| 4 for every x € X and every j>0.
Moreover:
(b) O<ALI (i.e., A is a nonnegative contraction on X).
(c) T*"AT = A. Equivalently,
|A2Tmz| = ||A2z|| for every x €X and every n>1.
(d) A£0 = |[A] =T = 1.
() AT=0 <= TA=0 <= A=0.
f) AT=TA < A= A%
g) (I—A)Tr = and so (I — AZ)T™ -

(
(8)
(h) ||AT”:1:H — |AZz|| for every z € X.

(i) N(A)={zeX: Tz -0} (so T"—> 0 <= A=0).
() ( A)={zeX: [T z||=|z]] Yn>1} (soT is anisometry <= A=1).
Furthermore,

A is invertible <= T is similar to an isometry.
Proof. See, e.g., [22, Propositions 3.1, 3.2 and 3.8] — see also [8], [30], [6], [28]. O

Remark 5.1. According to Proposition 5.1(i) the strong limit A of {T*"T™} for a
Hilbert-space contraction T is positive if and only if T  is a contraction of class Cj.:

(a) T is a Cy.-contraction <= N(4)={0} < A>O.
Since A%2= A > O implies A= I, the above equivalence and Proposition 5.1(j) ensures

b T is a Cy.-contraction with A = A2 <= T is an isometry.
Yy
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For a collection of properties of asymptotic limits for Hilbert-space contractions
see, for instance, [40, Section 1.10], [9, Section 6], [22, Chapter 3], [10], [25]. For the
new inner product (-;-) 4 generated by the asymptotic limit A of a Cj.-contraction
T (i.e., for a positive A or, in particular, for a strictly positive A as in Propositions
4.1(c) and 4.2) see, for instance, [16], [22, Remark 3.9] and [23].

6. POWER BOUNDED OPERATORS AND THE EQUATION T*AT = A

The existence of Banach limits was established by Banach himself [3, p.21] as a
consequence of the Hahn-Banach Theorem. Let (5° denote the Banach space of all
complex-valued bounded sequences equipped with its usual sup-norm. A Banach
limit is any bounded linear functional ¢: (P — C (i.e., p € £*, where (3" is the
dual of £5°) assigning a complex number to each complex-valued bounded sequence
which satisfies the following properties. Take {£,} € (5°.

(o) ¢islinear (i.e., additive and homogenous),
(i)
(ii) ¢ is positive (i.e., 0 < p({&n}) whenever 0 < &, for every n),

11

pisreal (i.e., o({&,}) € R whenever {,} is real-valued),
 is order-preserving (i.e., o({&,}) < o({vn}) if & < v, in R for every n),
¥

(iif)

(vi) ¢ is backward-shift-invariant  (i.e., p({&nt1}) = e({&n})),

v) liminf, &, < o({&,}) <limsup,, &, for every real-valued sequence {&,},
)

 assigns to a convergent sequence its limit (i.e., &, — £ = o({&}) = &)
(in particular, ({1,1,1,...}) = 1),

(vii) [lel] = 1.

For existence of Banach limits see, e.g., [5, Section I11.7] or [24, Problem 4.66]).
Moreover, for every Banach limit ¢ there exist Banach limits ¢ and ¢_ such that

(vi

n—1

limainf; 237 s = o (1)) < e({€}) < 04 ({60)) = limnsup, 237 6

for an arbitrary real-valued sequence {&,} € (5°, where p_({{,}) and ¢, ({§,}) are
the minimum and maximum values of Banach limits at {&,}, respectively [34, The-
orem (3,7)]; and for every & € [p—_({&n}), o+ ({€n})] there exists a Banach limit ¢’
for which ¢’'({&,}) = € (see also [32, (1.1)]). Actually, all Banach limits coincide on
a real-valued sequence if and only if their shifted Cesaro means converge uniformly
in the shifted parameter. In other words, if {£,} is a real-valued sequence, then

n—1
©({&n}) =& for all Banach limits ¢ < limn%zkiogkﬂ- = £ uniformly in j.

[29, Theorem 1] (see also [34, Theorem (0)]). We will refer to the above displayed
results as Lorentz characterizations. Also, and consequently, since ¢_ and ¢ are
Banach limits, then for every real-valued sequence {&,},

n—1 n—1
liminf,&, < hmnmfj%Zk:ngH < llmnsupj%Zk:0§k+j < limsup,&,.

The Banach limit technique for power bounded operators discussed here is well-
known and has been applied quite often (see, e.g., [17, 18, 19] for applications along
the lines considered here).
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SupposeT’ € B[X] is a power bounded operator (i.e., sup,, |7"]| < co) acting on a
Hilbert space (X, (-;-)). Let || - ||: X — R be the norm induced by the inner product
(;-): XxX— C. Let ¢: {3 — C be an arbitrary Banach limit. Since 7" is power
bounded, {(T"x;T™y)} € (5° for each z,y in X. Thus set

(@;9)e=e({(T"z;T"y)}) = p({{T™"T"z;y)})

for z,y in X. Since every Banach limit is linear (which implies ¢({&,}) = 2({&x}))
and positive (i.e., 0 < p({£,}) whenever 0 < &, for every n), and since T is linear,
then it is readily verified that (-;-),: X xX — C is a semi-inner product on X'. Hence

lzllZ = e({IT"]*})
for every x € X defines the seminorm || -|,: X — R induced by the semi-inner
product (-;-),. (Even in this case of a sequence of norms of powers of a power
bounded operator, the squares in the above identity cannot be omitted due to the
nonmultiplicativity of Banach limits). Since a Banach limit is order-preserving for
real-valued bounded sequences (i.e., o({&,}) < p({vn}) if & < v, in R for every
n), and since ({1,1,1,...}) =1, then as T is power bounded,

]l < sup,[|T7|[||

for every z € X. Since Banach limits are backward-shift-invariant,

|1Tz|3 = (T 12) 7)) = e({I(T2)|*}) = ||
for every € X. The above setup leads to a generalization of Proposition 5.1 from
contractions to power bounded operators as in the forthcoming Theorem 6.1.

Remark 6.1. An important particular case. If a power bounded operator T is
of class Cy. (i.e., T"x 40 for every 0#x € X), then 0 <liminf, [|[T"x| for every
x#0 (see, e.g., proof of Theorem 6.1(i) below). Any Banach limit ¢ is such that
liminf, &, <¢({&,}) < limsup,, &, for a real-valued bounded sequence {&,}. Then
0<e{|IT"z||}) =||z||, whenever = # 0. So the seminorm | - ||, becomes a norm and
consequently the semi-inner product (-;-), becomes an inner product. Conversely,
if T is not of class C4., then there is a nonzero z € X for which 7"z — 0 and
so limsup,, ||[T"z|| — 0 which implies ¢({||T"z||?|}) =0 so that ||z|,=0, and the
seminorm | - ||, is not a norm. Thus if || - || is a norm, then T is of class C;.. Hence

(3 ) is an inner product <= T is a power bounded of class C;..

Thus if T is a power bounded operator of class Cq. (with respect to the original
norm || - ||), then (since ||Tz|/, = ||z||, for every z € X as we saw above) the norm
|| - ||, makes T" into an isometry when acting on the inner product space (X, (-;-),).

Proposition 5.1 can be extended from contractions to power bounded operators
(in particular, to power bounded operators of class Cj.). Given a power bounded op-
erator T' and a Banach limit ¢, there is a unique nonnegative operator A, referred
to as the -asymptotic limit of T, such that (-;-), = (A-;-) by Lemma 3.1. So

e({T*"1T"}) = A, weakly

(i.e., o({(T""T"x;y)}) = (Apx;y) for every z,y). The next theorem rounds up a
collection of properties (either well-known or not) of the p-asymptotic limit A, for
a power bounded operator T into a unified statement. Each assertion in Theorem
6.1 is written so as to establish an injection from the items in Proposition 5.1 into
homonymous items in Theorem 6.1.
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Theorem 6.1. Let T # O be a power bounded operator on a Hilbert space (X, {-;-))
and let ¢: £° — C be an arbitrary Banach limit. Consider the semi-inner product

< .

i )e=e{(T"-;T™-)}) in X generated by T and ¢. Then there exists a unique

nonnegative operator A, on X (which depends on T and ) such that (-;-), =
(Ag-; ) and so

(a) (@:9)p = o({{T"z; Tmy)}) = o({{T*"T"x;y)}) = (Apz ;1Y)
for every xz,y € X or, equivalently,
e{IT"z]*}) = A2 2||* for every x€ X,

where | A2 z| = ||zllp = |T72||, for every x € X and every j>O0.

Moreover:

(b) O < A, < 321 with 3= sup,|T"| # 0.

Thus ||Ag| < 3% and the identity || Ayl = 5% may hold.

(¢c) T*A,T = Ay, Equivalently,
|AZT x| = A2 || for every x € X and every n > 0.

@) A, #0 — 1< A, and 1< 7]

() Ay,T=0 <= TA,=0 <= A,=0.

(f) A,T=TA, = A, =AS7.

Conversely, if A, = A2, then

(f1) (A T —TrAL)z|? < (B2 —1)||Ayz||? for all n and every z € X,
in particular, ||(A,T —TAy)z|> < (|T)|?—1)||Apz||? for every z € X,
(f2) @({||(A,T™ —T"A,)z||?}) =0 for every z€ X,

(f3) |[[Ayll =1 whenever O # A,.

(8) 0<@{IItI = Ap)T|?}) < (|4, |2 - 1) | A2 2> and
0<p({[(I-Ax2)T"al?}) < [ (I+A2) P (1AG 17-1) | A2 2||? for any z € X,
which are both null if ||Ay| =1 (in particular if O # A, = A2) or A, = O.

(h) e({A,Tm2|?}) = [ Ag2 2l|* + o ({[[(I - Ap)T"2|*}) for every xe X.

(i) N(Ay) ={z e X: Tz — 0} = {z € X: o({|T"=|?}) = 0}.

Hence @({||T"z|?}) =0 for everyz € X < T" = 0 < A,=O.

() {= e X:lim, |T7] = B|l=(|}

CN(BI - Ay) = {z € X:p({|IT"=[*}) = B°||[|*}
C {w € X: |lz] < liminf, | T"z]] < limsup, |T"z] = Glal }.

Hence o({|T"z||?}) = ?||z||? for every z € X <= lim, |T"z| = B|z| for
everyr € X < A, = (21 <= A, =1 <= T is anisometry on (X,(-;-)).

Also,

(-3 )¢ is an inner product <= T is of class Cy. <= A, is positive.

In this case (i.e., if A, > O),
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(k) A,T=TA, < A,=A2 < A, =1 <= T is an isometry on (X,(-;-)).
Furthermore, the following assertions are pairwise equivalent.
(1) Ay is invertible (i.e., A, > O).
(2

)
(3) T on (X,(-;-)) is similar to an isometry.
)

(4

Proof. Let T be a power bounded operator on a Hilbert space (X, (-;-)). Thus the
sequence {(T"x;T"y)} is bounded for every z,y € X. Then consider the semi-inner
product (-;-)y = @({(T™-;T™-)}) in X generated by T and a Banach limit ¢.

(a) As (X, (-;-)) is a Hilbert space, an application of Lemma 3.1 ensures the exist-
ence of a unique nonnegative operator A, on X for each power bounded operator
T and each Banach limit ¢, the p-asymptotic limit of 7', such that

e({(T""T"x y)}) = (T;Y)e = (T;y)a, = (Apz;y) forevery z,y € X.

The nontrivial part of the next equivalence follows by the polarization identity. The
last identity is a consequence of the shift invariance property for Banach limits:

2% = [ Ag72|* = o({IT"2|*}) = p({IT"T72|*}) = | A2 T|* = | T'z|
for every z € X and every j >0.
(b) Now set S=sup,, |T"||. Since || A2 2> =({|T"z|}) <sup,, |T"z|* < 52|
for every z € X (because ||| = 1) we get
14g] = 14,7 |1* < 6°.

Also ((Ag — 1)z ;5z) = | Agr |2 = 32|z < (|| Agl| — 52)|z]* < O for every = € X
by the above inequality. Thus the inequalities in (b) hold (since A, is self-adjoint):
O <A, < B3I
(If T = shift{3,1,1,1,... }, then A, = diag{#%1,1,1,...} =T*"T™ for all n > 1.)

(c) By definition, ||z[|a, = |z|, and so ||Tz||a, = ||[Tz|,. Since |Tz|,= ||z|, ac-
cording to (a), then by (b) and Proposition 4.1(a)

T*A,T = A,.

The norms || - ||, and || - || on X are equivalent.

T on (X,{-;-)) is power bounded below.

Equivalently, T*"A,T™ = A, for every n > 1 by induction, which means
A2 Ta||? = (T*"A, Tw s a) = (Aga ;) = || A2 z|?
for every x € X since A, is nonnegative.
(d) Then At = [AF T2 < A 2T = | A, | T2 So (for a con-
stant sequence) || A2 z[|? = o({[ 4.2 z|?}) < |44 o({IT"2(2}) = [[Ag|l[|Ag? =]
for every x € X by (a). Hence if there is zg € X for which Aﬁ z0#0, then 1 < |[|Ag||:
1 <||Ag|| whenever A,# O.
Since A, = T*A, T, then ||Ay| < ||Ay| | T]|?. Hence A, # O implies 1 < ||T|.
(e) If A, = O, then A, T =TA, = O trivially. By (c), A,T = O implies A, = O.

Finally, if TA, = O, then o({||T™A,z||}) =0, and so || A2 z|| =0, for every z € X,
by (a). Thus A, = O (by the Spectral Theorem since by (b) A, is nonnegative).
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(f) Take z,y € X. Since T*"A,T" = Ay, then p({{(T*"A,T"x;y)}) = p({{(Asz;9)})
= (A,z;y) (constant sequence). Also by (a) o({(T*"T" A,z ;y)}) = (ALlx;y). So

A, T=TA, = A, = A2
Conversely, (A,T"z; T Ayz) = |A2 T z|? = || A, 2|2 by (c). If A, = A2, then
A(,,% = A, by uniqueness of the nonnegative square root, and hence
(AT = T A )z|® = [|AT 2| + | T Ape||* - 2] A2 |

= | T"Apz|® — [ Apz|* < (6% = 1) Apzl®

for all n and every = € X. In particular, for n = 1 we get for every x € X
I(ApT — TAp)z|* < (T = 1) Agal.

Asymptotically, if A, = A2, then A(P% = A,. So we get by (a) and the above identity
P{lI(AT = T"Ap)z]*}) = e({IT"Apz|*}) — [ Ape||* = | A2 z]* — [ Apz]” = 0

for every x € X. Moreover, if A, = A<p2, then A, is an orthogonal projection (since
it is self-adjoint) and so ||A,| = 1 whenever A, # O.

(g) Take an arbitrary z € X. Again, by (c) we get (T"x; A, T"z) = || A2 T x| =
| A,z z||? for all n >0, and @({||T"z||?}) = || A 2 z||? according to (a). Thus
0 < e({lII = A)T"z]*}) = e({IT"2[1*}) + P ({[| AT 2|*}) — 20({]| 4.7 z|*})
= o({I14,T"2l}) = At 2> < (|4, ]* = 1) Ag# 2.

Since I — A, = (I + Aﬁ) (I—- Aﬁ ), and since I + Aq,% is invertible with a bound-
ed inverse (because A, > O), then I — Aq,% =+ Aq,% )1 (I — A,) and so

0 < ({1 = A2)T"2|*}) < (I + Ag?) ' IPe({II(1 = A)T"|}).
(h) This was proved above: p({||(I — A,)T"z|?}) = o({|| A, T"x|?}) — ||Av,%xH2.
(i) Part of assertion (i) follows at once from (a) since N'(Ay,) = /\/(Aﬁ ). Indeed,
Tz — 0= o({|T"z|}) = 0= |A,7z|? = 0 <= z e N (A7) <= z e N(A,).

Conversely, suppose 5 > 1. (Otherwise T"x — 0 for every = € X since sup,,|T"|| =
G < 1implies [|[T"|| < |IT||™ < g™ — 0.) If o({||T"||}) = 0 for some Banach limit ¢,
then liminf,||T™z|| =0 (recall: 0 < liminf,&, < ¢({&,}) < limsup,&, for &, >0).
However, if liminf, ||T"z| = 0, then for every € >0 there is an integer n. such that
|77 z|| < e, which implies |T™z|| < 8||T™ x| < B¢ for all n > n,. Thus ||T™z| — 0.

(j) Take any 0z € X (nonzero to avoid trivialities). Since ¢ is a Banach limit,
1Tzl = Bllall = e({IT"]?}) = B2||=]*.
According to (a),
({IT"z|*}) = Bzl <= A2 2|® = Blall® <= ((8°] - Ay)z;a) =0,
and according to (b), since N'((B2I — A,)?) = N(B2I — A,),
(BT — Ay)z;a) =0 = (BT — Ay)z| =0 <« z e N(B*I — A,).

Conversely, since o({[|T"z|*}) = 32[|=(|* means o({532||z|* - |T"z[?}) = 0, and
since 0 < 32|z — ||[T™z||? for every n because sup,,||T"z|| < ||z||, then we get

e({IT"2|*}) = FPll2l* = liminf {6?]|z|* - | T"z|*} = 0.
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However, recalling again that 0 < ||T"z|| < §||z| for every n,
liminf,, {5%[z|* — | T"2|*} = 0 <= limsup, |T"z| = 5]z|.
Moreover, for x #0 and since 5 >0 (as T # O),
limsup,,[|T"z|| = S|zl = 8>1
(indeed, if 3 <1, then 8 = lim supn”:ﬂ;ﬁ” < limsup,,sup,_o ”:ﬂ;ﬁ”” =limsup, || T"|| <
lim sup,, ||| < lim sup,, 8" = lim,, 3™ = 0). Also, since || T ™z|| < g||T™z|| for each
m,n > 0, then limsup,,||T"z| = limsup,,||T""™z| < Bliminf,,|7™z||, and so

limsup,, [ T"a]| = Blle| = [2]| < liminf,, |T™].

Finally, by the above implications and equivalences, if lim,, || T"z|| = 8||z|| for every
z € X, then p({|T"z|]?}) = B%||z|? for every x € X, which means A, = 3. But
this implies T*T = I by (c) (since 8 # 0 whenever T # O), which in turn implies
Ay,=1 by (a) (e, (Apz;y) = o({{(T*"T"x;y)}) for every z,y € X). However, if
A, =1, then |Tz| = ||z| for every x € X by (c), which means T is an isometry on
(X,(-;-)), and we are back to lim, ||T™z| = §||z| for every x € X with g = 1.

As we saw in Remark 6.1, (-;-), is an inner product if and only if T" is a power
bounded of class C;., and the semi-inner product (-;-), = (A, -;-) is an inner
product (i.e., the seminorm || - ||, = || 4,7 - || is a norm) if and only if M'(A,) = {0},
which means the nonnegative A, is positive. Thus from now on suppose A, > O.

(k) If A,T=TA, then A, = A2 by (f) and so A, is an orthogonal projection
(since it is a seif-adjoint idempotent) which implies A, = I (because A, > O), and
hence A, T =T A, trivially. Therefore if A, > O,

A, T=TA, = A,=A2 = A,=1 = A,T=TA,.
But A, = I if and only if T" is an isometry, as we saw in the proof of item (j).
Since T is power bounded, to prove assertions (1) to (4) proceed as follows.
(1) <= (2, (B) <= (1), and (1) = (3)

by Proposition 3.1, Proposition 4.2(a,b), and Proposition 4.1(c), respectively. Con-
versely, as T is power bounded, if (4) holds, then «|z| < [|[T"z| < g||z|| for all
n >0, and so a|z| < p({||T"z|}) < B||z||, for every x € X. Since ¢({||T"z||*}) =
[z(|2 by (a), then o?||z]|* < [|z[|2 < 8%||z||* for every 2 € X and so (2) holds. Thus

(4) = (2). O

Remark 6.2. If T is a contraction (equivalently, if 3 <1), then Theorem 6.1 is re-
duced to Proposition 5.1, and {T*"T™} converges strongly (thus weakly) to A, = A
for every Banach limit ¢, with ||| =1 or ||A|| = 0. For a C.-contraction, ||A| = 1.

Such a combined procedure (of using Lemma 3.1 together with an inner product
generated by a power bounded operator and a Banach limit) seems to have been
originated in the celebrated Nagy’s 1947 paper [39] (see also [40, Section TI.5]).
Subsequent applications of it appear, for instance, in [16, 17, 18] and, recently, in
[11, 12, 27]. Proposition 4.2(a,b), however, supplies an elementary and straightfor-
ward proof of Nagy’s result as follows.
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Corollary 6.1. [39] On a Hilbert space, an invertible power bounded operator with
a power bounded inverse is similar to a unitary operator — the converse is trivial.

Proof. Let T € B[X] and T~! € B[X] be power bounded. Thus there exist real con-
stants 0 < a < 1 and 1 < 3 for which ||T"|| < B and [|T ™| < ™! for all n > 0. So
allz|| < [T Yz| < |T"z| < B||z| for all n and every z. Hence T is similar to
an isometry by Proposition 4.2(a,b). Since T is invertible, then so is the isometry
similar to it: an invertible Hilbert-space isometry means a unitary operator. O

7. CESARO MEANS AND THE EQUATION T*AT = A

A word on terminology. An X-valued sequence in an arbitrary normed space
X is called Cesdro convergent if its sequence of arithmetic means (referred to as
Ceséro means) converges in X', whose limit is called Cesaro limit.

Banach limits have been related to Cesaro means since the very beginning [29],
and Cesaro means are naturally linked to the Ergodic Theorem for power bounded
operators. If a sequence {@,} of Cesaro means Q,, = %ZZ;(])T*’“T’“ for an operator
T converges (either weakly, strongly, or uniformly), then its limit @ (if it exists) has
been refereed to as the Cesdro asymptotic limit of T (see [11]). As is well-known,
the strong limit @ always exists for contractions and coincides with the asymptotic
limit A: for a contraction T the sequence of Cesaro means {Q, } converges strongly
to @ = A. An elementary quick proof is readily obtained as follows.

Proposition 7.1. For a Hilbert-space contraction the sequence of Cesaro means con-
verges strongly and the Cesaro asymptotic limit coincides with the asymptotic limit:

n—1
ITI<t = Qu=%)  THT" Q=4

~n
Proof. Tf T is a contraction, then the sequence {T*"T"} converges strongly to A by

Proposition 5.1. Since x,, — x implies % > r_q xx — x for any normed-space-valued
sequence {z,}, then T*"T™ =5 A implies Q, —— Q = A. O

As before, the next theorem brings together scattered properties (again, either
well-known — e.g., [11, Theorems 2.5, 2.6 and Proposition 5.1] — or not) of Cesaro
asymptotic limits @ into a unified statement. Some parts in the proof behave simi-
larly to their equivalent in the proof of Theorem 6.1, as expected; some other parts
require an independent and different approach. Each assertion in Theorem 7.1 be-
low is written so as to establish a bijection with the items in Theorem 6.1 and so,
by transitivity, it establishes an injection from the items in Proposition 5.1 into
homonymous items in Theorems 6.1 and 7.1.

Theorem 7.1. Let O # T € B[X] be a Hilbert-space operator. For each positive in-
teger n consider the Cesdaro mean

n—1
_ 1 xk ik
Qu=1y  TT
in B[X]. Suppose the sequence {Qn} converges weakly to Q € B[X]. That is, suppose
(a) Qn > Q. Equivalently,
||Qn%:c|| — HQ%QZ” for every z e X.
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Then in this case:

(b) O <Q and, if sup,, ||T"|| = 3 (so that 3 #0), then Q < 32
If T is power bounded, then ||Q| < 5% and the identity ||Q|| = 3 may hold.

(¢) T*"QT = Q. Equivalently,
|Qz T z| = ||Q2 x| for every x € X and every n>0.  Therefore
1Qn2Tiz|2= LS olIT |2 — |Q32|? for every x € X and every j > 0.

() Q#0 = 1<Q|l and 1<|T.

() QT =0 <= TQ=0 <= Q=0.

() QT =7TQ = Q=Q>.

Conversely, if Q= Q?, then

(f1) [[(QT™ —T"Q)x||*> < (sup,, |T™||>—1)||Qz||? for all n and every x € X,
in particular, ||(QT —TQ)z|?> < (|T||?—1)|Qz|? for every x€ X,

(fa) (QT™ —=T™Q)x|| — 0 for every x € X,

(fs) ||Q|l =1 whenever O # Q.

(8) (1= Q)Qn7[2 < (IQI* — 1) [QnZ=[> = (IQI? 1) [Q*z|? and
17 = Q@5)Qu*al” < (T + Q)M PUIQIP — 1) |1Qn*al for every z€ X,
which are both null if ||Q|| =1 or asymptotically null if Q = O.

(h) 1QQn>=[? = [2Q — N2 Qu7 x|l + | — Q) Qn>z|? for every z € X,

(i) If T is power bounded, then
N@Q) ={zeX: Tre — 0} ={zecx: L7 7 ||ITFz|| — 0}.

Hence T"—=- O <= Q = O and T is power bounded.

(G) If sup, |T™|| =B (so that B #0) then

{z € X:lim, |[T"z| = 3|z }
CN(PL = Q) = { € X:Timy, 157350 Th|* = 3| }
C{z € X:|z| <liminf,||T"z| < limsup, |T"z| = B z|}.
Hence lim, L3717 ||Tksc||2 = B2||z|| for every x € X < lim,, |T"z| = B|z||
for every z € X<:> Q = 3?1 —= Q = [ <= T is anisometry on (X, (-;-)).
Also if T is power bounded, then
(+;+)q is an inner product <= T is of class C1. <= Q is positive.
In the case of Q > O we get
k) QT =TQ < Q=Q* < Q=1 < T is an isometry on (X,(-;)).
Furthermore, the following assertions are pairwise equivalent.
(1) Q is invertible (i.e., Q > O).
(2) The norms || - |lg and || - || on X are equivalent.
(3) T on (X,(-;-)) is similar to an isometry.
(4)

4) T on (X,(-;-)) is power bounded below.
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Proof. Let T € B[X] be an operator acting on a Hilbert space X, take the sequence
{T*™T™} of nonnegative operators in B[X], and consider the Cesaro mean
~n

n—1
Qn=1 ZkZOT*ka for every n > 1

associated with {T*™T™}. Suppose the B[X]-valued sequence {Q,} of nonnegative
operators converges weakly to the Cesaro asymptotic limit Q € B[X] of T

(a) Since the class of nonnegative operators is weakly closed in B[X], then the weak
limit @ is nonnegative, and hence Q, — Q is equivalent to

1Qn2 2| = (Quz 2) — (Qz 2) = [|Q¥x|? for every = € X,

(b) By (a), 0 < Q. If sup,, |77 = 3, then Q, < 17+ L33! 821 — G827 (and if
T = shift{3,1,1,1,...}, then Q = T*"T™ = diag{3? 1,1,1,...}) for every n>1.

(c) Since Q,, = %ZZ;(]]T*’“T’“, then (compare with the proof of Proposition 4.2)
T*QnT = Qn+1 + %(QTH*] - I)
for each n > 1. If (Qnz ;) — (Qx; x) for every x € X, then {@,} is bounded and so
T*QT = Q.

By induction, T*"QT™ = @ for all n > 0. As O < @Q and O < Q,, for n > 1, then (i)
1 3 n mn *T n 1
1Q*T"z|* = (QT™x; T x) = (T™"QT"z;z) = (Qu;z) = | Q7 x|

for every x € X and every n >0, and (i) T%Q,T? -~ Q for every j >0, and so

S ig|? — dpTigy — LS kit gy — LN k)2

1Qu* Toal* = (QuT a; Toa) = 53 (T H Ty = 1% Tz
for every n > 1 and every j > 0. Thus, since [|Q, 2 T9z||> — [|Q*T7x|2 by (a), then
n—1 . 3 .
%ZkZOHTkJ”xW — |Qzx|?, for every x € X and every j > 0.
(d)According to (¢), Q% z|*= | Q3T z |2 < (| Q|| | T*x|[* for any k > 1 and || Q%=
n— 1 n— 1
I SolQF P <RI RS0 IT ]2 — Q[ |Q7 2 #0 for every z € X\N/(Q). So
1<|Q] whenever Q# O.

Since Q = T*QT, then ||Q| < ||Q||T||?. Hence Q # O implies 1 < ||T|.

(e) @ =0 trivially implies QT =TQ =0, and QT =0 implies Q=0 by (c). If
TQ=0,then0 = ||Qn%TQ:c|| — || Q3 z|| for every z € X by (c) again, and so Q = O.

(f) Since O < Q, then QT = TQ if and only if Q2T = TQz. If Q= T = TQ?, then
according to (c) it follows that
1 n—I1 1 n—1 1
Quiz) = [QFelP= 13" Qta|? = 13 QiTHe|?
n—1 1

=13 TR — Qa|? = (Q%x; )
for every z € X. So Q = Q2. Conversely, (QT"z:T"Qx) = |Q*T"z|? = ||Q x|
according to (c). Since Q = Q? if and only if Q% = @, then we get in this case

IQT™ = T"Q)x|* = |QT"x|* + | T"Qx|* - 2| Q2 x||?
= IT"Quz|* — | Qu|l* < (sup, [T"]* — 1)[|Q|?
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for all n and every = € X. In particular, for n = 1 we get for every x € X
QT —TQ)z|* < (ITI* - )| Q|
Thus, asymptotically (with the assumption Q = Q? still in force), we get by (c)
limy, [(QT" —T"Q)z|* = lim, | T"Q*x|* — || Q*|* = 0

for every z € X (and so {QT™—T"Q} is a bounded the sequence of operators disre-
garding whether T is power bounded or not). Again, as in the proof of Theorem 6.1,
O < Q = Q? # O implies Q is an nonzero orthogonal projection, and so ||Q|| = 1.

(g) The inequality is readily verified and the limit comes from (c): for any = € X,
I~ @)Qu¥all* = [Qnz|* +QQn* x| — 20|Q* Qu 72|/
< 1Qn¥all” + QI IQn*2]* — 211 QI Qa2
= (IR = 12Qn 7] = (IQ — 1?[Q% x|,

and since I —Q = (I +Q2)(I — Q%) and I 4+ Q% is invertible, then we get the
second inequality form the above one.

(8) As we saw sbove, Q@ L = (I - Q) @t +21QFQ. 32? ~ [Quta,
but 2(Q2Q,%z|? — | Qn2z|? = ||(2Q — )2 Q, % z|?, for every z € X. So we get (h).

(i) As in the proof of Proposition 7.1, if ||T"z| — 0, then %ZZ;& |T*z| — 0, which
means ||Q2z|| =0 by (c) or, equivalently, z € N'(Q?) (i.e., z € N(Q)). The con-
verse requires power boundedness. If %ZZ;& |T*z| — 0 (i.e., if z € N(Q)), then

. . . 1 n—1 ks . 1 n—1 k
0 <liminfy, ||T"z|| < lim,inf;- k:0||T | < hmnzzk:OHT x| =0

(as we saw in Section 6). But if T' power bounded, then liminf, || 7™z|| = 0 implies
lim, ||T™z| = 0 (as we saw in the proof of Theorem 6.1(i)).

(j) Suppose sup,, ||T"]] < 8. Again, as in the proof of Proposition 7.1,
n—1
n 1 k.2 2
T2l = Bllz] = £, IT*z]? — 5||].
According to ( ),
1

hmnnz k|2 = Blall < [Qia]? = Be]? — (Q - B )a;a),

and according to (b),
(Q-8Nz;z) «= [(Q-BN)?z| =0 <= z e N(Q - 5I)
since N'(Q — 321)% = N(Q — 82I). Conversely,
hmnnz HTkﬂJHQ = |z = limsup,|T"z|| = 5|

Indeed, since sup,, HT”H < [, then as we saw in Section 6

B2||z|? = llmnnz \Tka:||2 <limsup, || T"z||? < sup,,||T"z|? < B%||z|*.
Thus, as in the proof of Theorem 6.1(j), for = # 0 and since 3 > 0,

limsup, ||T"z|| = B)|lz|| = £ >1 and ||z|| < liminf,||T"].

If lim,, ||[T"z|| = B|z| for every x € X, then lim, 237"~ HTkIHQ B2||z|| for every
x € X as we saw above, meaning Q = 321, which imphes T*T =1 by (c), and so
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Q. =1=Q. Conversely, if @ = I, then ||T"z| = ||z| for every z € X by (c) again
(i.e., T is an isometry), and so limy, [|T"z| = B||x| for every z € X with 8 = 1.

Suppose T is power bounded. If T'is of class Cy. (i.e.,if ||T"z| 4 0if  # 0), then
as we saw in the proof of Theorem 6.1(i) 0 < liminf, ||7"x|| for z # 0. The converse
is trivial. Since liminf,, |[T"z||? < limn%zz;éHTka? (as we saw in Section 6) and
lim, L3773 T2 = [ Que® — [1Qa]2 = [l2]3 by (c), then 0 < liminf, |77z
implies 0 < ||z||g for x # 0, which means @ > O. Thus if T is power bounded, then

(-;-)o is an inner product <= T is of class Cy. <= (@ is positive.

(k) This follows as in the proof of Theorem 6.1(k) with A, replaced by Q.

Moreover, the equivalences among the assertions (1) to (4), depend on the new
inner product (- ; -)g generated by the positive @, and so they follow by Propositions
4.1 and 4.2 by using the same argument of Theorem 6.1, with p({||T"z|?}) = Hx||2<p

. 1 . _
replaced by limy, [|Qn?z(|? = lim, 2 Y"1 70| T%2|1? — ||Qu[|* = ||=|%,. O

Remark 7.1. Even a power unbounded operator may have a Cesaro asymptotic
limit (see, e.g., [11, Example 3]), while there is no @-asymptotic limit for power
unbounded operators. From now on suppose 1" is power bounded.

(a) Thus for every Banach limit ¢ there exists a @-asymptotic limit A, for T'. Even
in this case of a power bounded operator, the Cesaro asymptotic limit @ may not
exist (even in the weak sense; see [11, Example 2]).

(b) Moreover, even when @ exists it may not coincide with A,. Indeed, it was
exhibited in [11, Example 1] a power bounded unilateral weighted shift T' such that
|T™|| = 8 = V2 for all n and || T"e;]||? is either 32 or 1 depending on n, with Cesaro
asymptotic limit @ = I, which does not coincide with an arbitrary @-asymptotic
limit A, (i.e., Q # A, for a specific Banach limit ¢ — actually, there exist Banach
limits ¢ for which ||A<p% e1]? lies anywhere in the interval [1, 3%]).

(c) As we have seen in Theorems 6.1(d) and 7.1(d), if the asymptotic limits are
not null, then for every Banach limit ¢ we get 1 <[|A |, 1<(|Q|, and 1 <||T].
These norms, however, are not related. For instance, if T' = shift{3,1,1,1,...} is
the unilateral weighted shift with 8 > 1 as in the proofs of Theorems 6.1(b) and
7.1(b), then ||A,| =|Q| =% and ||T|| = 3. On the other hand, if T = (8 g) @1,
then T" = O &I for all n > 2 and A, = Q = O @ [ for all Banach limits ¢ and so
|T|| = B with || Ay|| = ||Q|| =1. Actually, as we saw in item (b) above, it was exhib-
ited in [11, Example 1] a power bounded unilateral weighted shift T" such that there
is a maximum Banach limit ¢ for which || A, || > 2, while |T|| = v2 and ||Q|| = 1.

(d) The inclusions in Theorems 6.1(j) and 7.1(j) may also be proper (e.g., for the
unilateral weighted shift T' form [11, Example 1], as in item (b) above, 3% = 2 and
Q = I so that V(821 — Q) = {0} while |T™e;|| oscillates between 1 and 3).

For a power bounded operator on a finite-dimensional space, the Cesaro asymp-
totic limit @ exists and coincides with the p-asymptotic limit A, for every Banach
limit ¢ [11, Theorem 2.1]. The next theorem gives a condition for @ = A, on an
infinite-dimensional space. As we saw in the proof of Theorem 7.1(c), if the sequence
{Q,,} of Cesaro means converges weakly to, say @, then the sequence {T*7Q,, T}
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of Cesaro means converges weakly (again to Q) for every positive integer j. If such
weak convergence holds uniformly in j, then @ = A, for all Banach limits ¢.

Theorem 7.2. If T is a Hilbert-space power bounded operator for which the se-
quence {T*Q,T7} of Cesaro means converges weakly and uniformly in j,

. i1 n—1 ktimk4i w . . .
T9Q,T) = ;ZkZOT* ITFT 25 Q  uniformly in j,
then the Cesaro asymptotic limit coincides with the p-asymptotic limit,

QZZ.A¢,
for all Banach limits ¢: {° — C.

Proof. By Theorem 7.1(c), Q, = @ if and only if T*/Q,, T7 -~ @Q which means
%Z:;;HT’“H:BHQ — HQ%SL’”2 for every z € X and every j > 0,

as Q > O. If the weak convergence of {1*/Q,, 77} holds uniformly in j, then so does
the above convergence. But the real-valued sequence {%ZZ;& |TFHiz|?} of Cesaro
means converges uniformly in j if and only if all Banach limits ¢ € X'* coincide at
the sequence {||T"x||2} and are equal to ||Q2 |2 [29, Theorem 1] (also [34]); that is,

n 1
e{lIIT"2|?}) = |Q2=|?
for all Banach limits ¢: £5° — C. In particular, this holds for the arbitrary Banach
limit ¢ of Theorem 6.1 since 1" is power bounded. For that Banach limit we got
n 1
e({IIT"2]?) = Az 2l

where A, > O is the p-asymptotic limit of T (associated with ¢). Thus |Qzz|? =
HAﬁa:HQ or, equivalently, ((Q — Ay)z,;x) =0, for every € X. This means

Q = A<p
(either because the Hilbert space is complex or because Q — A, is self-adjoint). O

Remark 7.2. (a) A class of operators that satisfies the assumption of Theorem 7.2
is the class of quasinormal operators. A Hilbert-space operator T is quasinormal if
it commutes with T*T'. If T € B[X] is quasinormal on a Hilbert space X, then by
two trivial inductions we get T*T T* = T*T*T for every k > 1, and consequently
T**T* = (T*T)* for every k > 1. This in fact is equivalent to quasinormality —
see, e.g., [14, Proposition 13] and [13, Theorem 3.6]. Therefore

there is an operator S for which T**T* = S* for every k> 1 if and only if T
is quasinormal, and such an operator is unique and given by S = |T|>=T*T.

In this case, T*FHITk+i — (T*T)k+7 = Sk for every nonnegative integers j, k. If
T is power bounded, then so is S, and the Mean Ergodic Theorem for power
bounded operators (which holds in reflexive Banach spaces — see, e.g., [7, Corollary
VII1.5.4]) ensures strong convergence for the sequence of Cesaro means {%ZZ;& S k}
whose strong limit @ lies in B[X] by the Banach—Steinhaus Theorem. Thus

n—I1 n—I1
_ 1 *krpk 1 k s
Qu=3 JTHTF=1%" " sF=qQ
where Q > O is the Cesaro asymptotic limit of T' (cf. proof Theorem 7.1). Hence
n—1 . n—1 . . . . . . . .
1 kty _ 1 rk+jpk+j _ g Jj _S *TOTI =0 = §I0 = J
nZkZOS _nZkZOT TH = T%Q,T7 =5 TYQT = Q = 57Q = QS
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for every j according to Theorem 7.1 (as strong convergence implies weak conver-
gence). Take an arbitrary z € X. By the above strong convergence

(320t —@)a] = sl (5321, 5" - @)
n—1
(%ZkZOSk - Q)IH =0

—1 ; ; : . .
Then 1Y 77 T*k+iTk+5 =, @ uniformly in j. Hence (again, since strong conver-

sup; sup;

IN

sup, |57 |

gence implies weak cqnvergence) LS T tiTk s 2 g uniformly in j. (Indeed,
sup; |{(% Zpmg T TR —Q)ar; )| < sup; || (1075 T HTH Q)| [lz]).) So

n—1 ; 1 . .
IS ITE )2 Q) wniformly in j.

Thus, according to Theorem 7.2, Q = A, for all Banach limits ¢, where A, is the
p-asymptotic limit for the power bounded operator 71" as in Theorem 6.1.

(b) A normed-space operator 7" is normaloid if || 7| = ||T'||™ for every integer n > 0.
By the Gelfand—Beurling formula, on a complex Banach-space a normaloid is an
operator T for which spectral radius coincides with norm: r(7") = || T||. Since power
boundedness implies r(T') < 1, then it follows at once that

a power bounded operator is normaloid if and only if it is a normaloid
contraction.

(In fact, if a normaloid operator is similar to a power bounded operator, then it is a
contraction [26, Proposition 1].) Quasinormal is a class of operators including the
normal operators and the isometries, and it is included in the class of subnormal
operators, which is included in the class of hyponormal operators, which in turn is
included in the class of paranormal operators, which are all normaloid. So all these
Hilbert-space normaloid operators, when power bounded, are contractions and so
they naturally fit to Proposition 7.1 (and consequently they trivially fit to Theorem
7.2 — see Remark 6.2).

Corollary 7.1. Let T be a Hilbert-space power bounded operator. If the sequence
{Qn} of Cesdro means converges uniformly,

AN ko
Qn - EZk:OT* T° — Qa
then the Cesaro asymptotic limit coincides with the @-asymptotic limit,

Q = Agaa
for all Banach limits ¢: (5 — C.

Proof. Consider the setup of Theorem 7.1. Recall that Q = T*/QT7 for every j > 1.
If Qn=13720T**T* 5 Q, then
n—I1 . . . n—I1
1 skt jpk+ 21| 1 sk
IS TR Q| < sup, |1 P L30T T - gl 0.

Thus %ZZ;&T*’“HT’“H — @ (and so %ZZ;&T*’““T’“H ~ @) uniformly in j.
If T is power bounded, then Q = A, for all ¢ by Theorem 7.2. O

sup,

For instance, let T' is a uniformly stable noncontraction (i.e., 7(T) < 1 < ||T||)
acting on any Hilbert space X. Then T™ - O (so that T is power bounded) or,
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equivalently, T*"T™ - O, and so Q,, = %ZZ;(]]T*'“T’“ 4 Q =0 = A, for all
Banach limits ¢: £5°— C (in accordance with Corollary 7.1).

Remark 7.3. If T'is a power bounded operator on a finite-dimensional space, then
Q = A, for all Banach limits ¢: (3° — C. Indeed, for power bounded operators on a
finite-dimensional space (where weak, strong, and uniform convergences coincide),
the Cesaro asymptotic limit exists [11, Theorem 2.1]. Thus Q = A, for all Banach
limits ¢ by Corollary 7.1.
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