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Abstract
A Hilbert space operator S € B(H) is left m-invertible by T' € B(H) if

> o (=nm ( j )TJ'SJ' =0,

Jj=0

S is m-isometric if .
> o (=nm ( i ) 5757 =0
j=0 J

and S is (m, C')-isometric for some conjugation C of H if

Sy ( " ) SICSIC = 0.
§=0

If a power bounded operator S is left invertible by a power bounded operator T, then
S (also, T™) is similar to an isometry. Translated to m-isometric and (m, C')-isometric
operators S this implies that S is 1-isometric, equivalently isometric, and (respectively)
(1, C)-isometric.

1. Introduction

Given a complex infinite dimensional Hilbert space H, let B(H) denote the algebra of
bounded linear transformations, equivalently operators, on H into itself. Given operators

S,T € B(H), let

Pn(S,T) = zm(:)(—mmj ( ’7 >Tij.

We say that T is a left m-inverse of S (equivalently, S is left m-invertible by T') for some
integer m > 0 if

P,.(S,T)=0
[2, 11, 13]. Left m-invertible operators occur quite naturally, and the class of m-isometric
operators, i.e., operators S € B(H) such that

P,.(S,5*%) = zmjo (—1)m3 ( m > 5983 =0,

J
J
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of Agler and Stankus [1] is an important widely studied example of operators left m-
invertible by their adjoint. A generalization of m-isometric operators, which has been
considered in the recent past [7], is that of (m,C)-isometric operators. Here an operator
S € B(H) is (m, C)-isometric for some conjugation C' of H if

P,.(CSC,S*) = —ym=i [ ™ ) sricsic =o.
©sc.s) =3 ()

=0

(Recall that a conjugation C of H is an antilinear operator such that C2? = I and (Cz,Cy) =
(y,z) for all z,y € H.)

An operator S € B(H) is power bounded if there exists a scalar M > 0 such that

sup ||S™|| < M.
neN

It is immediate from the definition that if S € B(H) is power bounded, then the spectral
radius

1
w =1

r(S) = lim ||S™

and the spectrum o(S) of S satisfies 0(S) C D (= {A € C: |A] < 1}). Recall from [12,
Theorem 2.4] that an m-isometric operator is power bounded if and only if it isometric.

Given a positive operator A € B(H), A > 0, let ||.||4 denote the semi-norm
2[4 = (z,2)4 = (Az,2), z€N.

(Then ||.||4 is @ norm on H if and only if A is injective.) An operator A € B(H) is said to
be A-isometric if S*AS = A [5] and S is an (A, m)-isometry [12] if

P,.(A: S, S*) = —)ym=i ™ ) s%iA87 =0,
(5,59 =3 (- ()

=0

This paper considers left m-invertible operators such that both the operator S € B(H)
and its left m-inverse T' € B(H) are power bounded. It is proved that there exist positive
invertible operators P;, P, > 0 (i = 1,2), such that S = P]V']Pf] and T* = PQVQPEI for
some isometries V;, ¢ = 1,2. Translated to m-isometric and (m, C)-isometric S this means
that: a power bounded m-isometric operator is isometric and a power bounded (m,C)-
isometric operator is (1,C)-isometric.

2. Results

Given an operator A € B(H), we write A — X for A — A, A € C. A has SVEP, the single-
valued extension property, at A\g € C if for every open disc Dy, centered at Ag the only
analytic function f: Dy, — H satisfying (A —X)f(A) = 0 is the function f =0 [3, 16]. Every
operator A has SVEP at points in its resolvent set p(4) = C\ 0(A) and on the bound-
ary do(A) of the spectrum o(A). We say that A has SVEP on a set Z if it has SVEP
at every A € E. The ascent of A, asc(A), is the least non-negative integer n such that
A7"(0) = A~(+1(0): If no such integer exists, then asc(A) = oco. It is well known that
asc(A) < oo implies A has SVEP at 0 [3, 16].
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For A,B € B(H), let Aa,p € B(B(H)) denote the elementary operator Ay p(X) =
AXB—X = (LaRp—1I)(X), where L4 and Rp € B(B(H)) are the operators L4 (X) = AX
and Rp(X) = X B (of left multiplication by A and, respectively, right multiplication by
B). Tt is known, see for example [18], that if A, B are normal operators, then (AZ}B (0) C

AZJK’B*(O), consequently) asc(Aa,g) < 1.

A € B(H) is a Cg_, respectively Cy,, operator if

lim ||A"z||=0 forall z€H,
n—0o0
respectively, in{\I ||[A"z|| >0 forall 0#x¢€H,;
ne

A e Cp (resp.,, A € C;) if A* € Cy. (resp., A* € Cy)) and A € Cop if A € Co. NCp
(a, 8 =0,1). Tt is well known [14] that every power bounded operator A € B(H) has an
upper triangular matrix representation

A A
A:( b A;J>GB(H1@H2)

for some decomposition H — H; & Hs of H such that Ay € Cy, and As € Cq.. Recall that
every isometry V' € B(H) has a direct sum decomposition

VZVCEBVUEB(HCEBHU), VeoeCig and V, € Cqy

into its completely non-unitary (i.e., unilateral shift) and unitary parts.

Let 04,5 € B(B(H)) denote the generalized derivation d4 g(X) = AX — XB. Recall
from [10] that A € B(H) satisfies (the Putnam-Fuglede) property PF(A) (resp., PF(9)),
A € PF(A) (resp., A € PF(9)), if (either A is trivially unitary, or) for every isometry
V € B(H) for which Ay yv+(X) = 0 (resp. da+v(X) = 0) has a non-trivial solution
X € B(H), X is also a solution of A4~y (X) = 0 (resp., 04+, (X) = 0). The following
theorem is in [10, Corollary 2.5] (see also [17]). Let d4,p denote either of A4 p and d4 g,
and, correspondingly, let PF(d) denote either of PF(A) and PF(d). (Recall from [10,
Theorem 2.1] that A € PF(A) if and only if A € PF(J).)

Theorem 2.1 A power bounded operator satisfies property PF(d) if and only if it is the
direct sum of a unitary with a C g operator.

The PF(d) property implies range-kernel orthogonality (i.e., if d;\}v*(O) - d;\lﬁv(O),
then d;x,lv* (0) L da,v+(B(H)) in the sense of G. Birkhoff [6]), hence d4, v« has finite ascent
[9, Proposition 2.6].

Theorem 2.2 If d;‘}w(O) C dgl’V(O), then asc(da,v+) < 1.

The following result from [8] will be used in some of our argument below.

Theorem 2.3 If A, B € B(H), then the following statements are pairwise equivalent.
(i) ran(A) C ran(B).

(ii) There is a p > 0 such that AA* < w>BB*.

(iii) There is an operator C € B(H) such that A = BC.

Furthermore, if these conditions hold, then the operator C may be chosen so that
(a) ||C]2=inf{\: AA* < ABB*}; (b) ker(A) = ker(C); (c) ran(C) C ker(B)*.
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We note for future reference that P,,,(S,T) = 0 implies P, (S™,T") =0, i.e., S € B(H)
left m-invertible by T € B(H) implies S™ left m-invertible by T", for all n € N [11].

Our main result considers left m-invertible operators S such that both S and its left

m-inverse 1" are power bounded to prove that such operators are A isometric for some
A>0.

Theorem 2.4 If S € B(H) is left m-invertible by a power bounded operator T € B(H),
then the following statements are mutually equivalent.
(i) S is power bounded.

(ii) There exists a positive invertible operator P € B(H) and an isometry V € B(H) such
that S = PV P~

(iii) There ezists a positive invertible operator A € B(H) such that T = A~ 'S*A is a power
bounded left m-inverse of S.

Furthermore, if either of the statements (i), (ii) and (iii) above holds, and S* has SVEP at
0 (or, S has a dense range), then S and T are (respectively) similar to some unitaries Uy
and Uy such that Uy = PUs P! for some invertible operator P.

Proof. (i) = (ii). Let P,,(S,T) = 0. The hypothesis S and T" are power bounded implies
the existence of a scalar M; > 0 such that

sup{[[S™[[, [[T"[|} < M.

neN

The left m-invertibility of S by T implies the left invertibility of S™ by 7™ for all n € N,
i.e.,

P,o(S,T)=0 = P,(S",T")=0,neN
[11]. Define Z, by m
Zp = (1) (—ymd () ragnlD,
g (7)
7=0
Then
Pn(8",T") =0 < Z,S" =1

for all n € N and this, since

m m 2 m 2

an{1+< ; >+---+( o )}M1 <omM? =M

for some scalar M > 0, implies

||| = [|ZnS™ || < M|[S™x||
for all x € ‘H. Already

157 ]] < [[S™[|[=]| < M |la]];
hence

1 n
a7 1l < 11572ll < M=l

for all z € H and integers n > 1. Thus, see for example [15], S is similar to an isometry V;.
Let
S=EVE ' <= Vi=E'SE

for some (invertible operator E € B(H) and) isometry V;. Then
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S*ET'?S = |E7'? <= S*P?’S=P% P=|E|"",
implies (by Theorem 2.3) the existence of an isometry V' € B(H) such that
S*P=PV* < S=P7'VP.
(i) = (iii). If S = P~V P, P and V as above, then S*"P2S™ = P? for all n € N. Hence

m

> (1) ( m >(P2S*P2)J'Sj =3 (-1ym ( mn )I: 0,
- j - J

7=0 7=0

i.e., P725*P2 =T is a power bounded left m-inverse of S.

(iii) = (i). If T = A~1S*A is a power bounded left m-inverse of S, the
157 = [IS*"| = [[AT™ AT < || A A=Y [|IT™]
implies S is power bonded.

Assume next that (i) is satisfied, and hence that S = P,U P; ! for some isometry Uy and
Py > 0. If S* has SVEP (or, S has a dense range), then the left invertibility of S implies
S is invertible [3], and this in turn implies that the isometry Uy is indeed a unitary. Since

P(S5,T)=0 < P,(T"S*) = P,(S,T)" =0,

and the operators T* and S* are power bounded, the equivalence (i) <= (iii) implies the
existence of a positive invertible operator P, and an isometry U; such that 7™ = P{l UsP.
Evidently, T* is (m-left invertible, hence) left invertible. We prove that 7% hence Us, is
invertible. Clearly,

[

<
Il
o

P, (T*,5%) = 0 <—

hW”(?)EWwwﬂzo

!
-

<
Il
o

()™ ( Zl )Ul*jPIT*j =0

[

<
Il
o

— <4Wj<?)WHW=0

The operator T™* being power bounded has an upper triangular matrix representation

«_ (17 T
T —( 0 Ték)EB(H]EBHQ),

where Ty € Cy. and Ty € Cy, [14]. Clearly, Uy = Uy @ U3, € B(H. & H,) for some
decomposition H = H, & H, of H such that Uy, = Uj|x. is the backward unilateral
shift and U3, = Us|y, is unitary; let Q = P> € B(H. ® Huy, H1 © H2) have the matrix

representation QQ = ( gil 812 ) Then since T* = P{]UQ*PQ.
12 22

Q11T =U3Q1a,  Quly + Qu2Ty = UyQi2, QuiTy =U3Q11.

Since Q1,17 = UyQ7, implies Q1,17 = U3 Q74 for all n € N, since Uy, is unitary and
T]* G C(]_,

Q|| = lim |[|Uss'Q1a]l

n—-:ao0

= Jim [|QpT7"x|| < [|Q7o]| Jim |[T7™z]| = 0
n—oo n—oo
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for all x € H.. Thus Q12 = 0, and then Q1, Q22 are invertible positive operators and
Qulg + Q1215 = Us Q12 implies Tif = 0. Considering now the equation Q1117 = U3 Q11,
we have

T x| = [|QuuUsy Qi || < ||Qu | U7, Q7 |

for alln € Nand z € H.. Since Usy € Cp., we conclude that Ty € Cy.NC g = Coo. Hence T is
a power bounded operator which is the direct sum of a Cyg operator with Th = Q;Q] UspQa0
(where Usg is unitary and Qo2 is positive invertible).

Define the operator A € B(H.®H,), X € B(H1®&Ha, H.®H,) and E € B(H, H.®H.,)
by
A=T1&Usp, X=16Qy» and E=XP.

Then

I

i
<

(—1)™ ( ’;‘ )TjPlU]j — 0

J

!
s

i
<

(—1)m= ( 7 )X‘lAjXPlU]j =0

J

NE

(—1)m= ( 7 )AJ’EU{ =0

[}

—
J
<= (LaRy, —1)"(E) = A} ¢, (E) = 0.

Since the operator A = XT X! is a power bounded operator which is the direct sum of a
unitary with a C ¢ operator and the operator U; is unitary, it follows from an application
of Theorems 2.1 and 2.2 that

Aau, (E)=0.

Equivalently,
AEU, —E=0 < TPU — P, =0 < T =PUP "
This implies T is invertible, hence (Us is unitary and)
P 'ULP, = RUs Py ' <= Uy = PIRUsPy ' P

Now define (the invertible operator) P by P = PQPf] to complete the proof. O

It is immediate from the theorem that if a power bounded operator S; € B(H) is left
m-invertible by a power bounded operator S5 € B(H), then there exist invertible operators
A; > 0 in B(H) such that S; is an (A;, m)-isometry; i = 1,2.

Recall that an operator A € B(H) is said to be supercyclic if there exists a vector z € H
such that the projective orbit of x under A,

Oa(span{z}) = {ad"z € H: a €C, n >0},

is dense in ‘H. Similarities preserve supercyclicity, and power bounded operators of class
C4. can not be supercyclic [4, Theorem 2.1]. Since isometries are C;. operators:

Corollary 2.5 If a power bounded operator S € B(H) is left m-invertible by a power
bounded operator T' € B(H), then neither of S and T is supercyclic.



Duggal, Kubrusly, Power bounded m-left invertible operators 7

Theorem 2.4 is a generalization of the result: m-isometric power bounded operators
are isometric [12]. That Theorem 2.4 does indeed imply this result is the content of the
following proposition. (We remark here that the argument proving the proposition below
differs radically from the argument used in [12].)

Proposition 2.6 Power bounded m-isometric operators S € B(H) are isometric.

Proof. 1f S € m-isometric is power bounded, then (as seen above) S = P~V P for some
isometry V and P > 0. We prove that [P,S] = PS — SP = 0 (and this would then
imply that S = V). Evidently, S = P~'V P implies S*P = PV*. Decompose V into its
completely non-unitary (i.e., unilateral shift) and unitary parts by

V=V.®V, € B(H.® Hy).

The operator S being power bounded has an upper triangular matrix representation

S, S
S:( 01 Sg)gB(Hl@Hz),

where Sy € Cy. and Sy € C, [14]. Let P € B(H. ® Hy, H1 @ Hz) have the representation
re(m )
Then S*P = PV* implies
SiPy = PV = V,Pf = PiS, = V''P} = P;ST
for all n € N. Hence
[Psa|l = ||V Pl = || Ps St|| < ||P5]|[|ST@]| — 0 as n — oo

for all z € Hy. Thus P; =0 and P;, P» > 0. Since S*P = PV* now implies SgP; = 0, we
must have Sg = 0. Hence

S=5®S, Sy=P;'V,P, and S € Cy.
Evidently, S € m-isometric implies
(LsyRs,— I)™(I) =0 <= (Ly;Ry,— )™(P;?) =0
Applying Theorems 2.1 and 2.2 it follows that

(Ls;Rs,—I)™(I)=0 <= (Ly:Ry,— N™(Py%) =0
< (Lv:Ry,— I)(P;?)=0 (ie, asc(Ly+Ry,— 1) <1)
— [V, Py% =0 < [V,,P,']=0
= Sy =V,

Conclusion: S* is the direct sum of a C g and a unitary operator. Applying Theorem 2.1
to S*P = PV™*, V isometric, it follows that SP = PV. Hence

PS*P=PV* < [V P’ =0 < [V,P]=0 < [S,P]| =0,

and the proof is complete. O
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The following corollary is immediate from Proposition 2.6, since either of the hypotheses
S has a dense range and S* has SVEP at 0 for an m-isometric operator S implies the
invertibility of S.

Corollary 2.7 If a power bounded m-isometric operator is such that either S* has SVEP
at 0 or S has a dense range, then S is unitary.

M. Cho et al [7, Theorem 3.15] prove that “if S € B(H) is a power bounded (m,C)-
isometric operator such that P;(CSC,S*) is normaloid (i.e., its norm equals its spectral
radius), then S is (1,C)-isometric. The following proposition shows that the hypothesis
Py (CSC,S*) is normaloid is redundant, and that the power boundedness of S is sufficient
to guarantee that S is (1, C)-isometric.

Proposition 2.8 Power bounded (m,C)-isometric operators are (1,C)-isometric.

Proof. By definition,

S is (m,C)-isometric <= P, (CSC,8%) =Y (- ( 7;‘ >s*ﬂ'csjc =0
7=0
s P,(8,CS*C ) esHicsi =o.
- ()

Arguing as in the proof of Proposition 2.6, it follows from the left m-invertibility and the
power boundedness of S (consequently, also that of S* and CS*C) that there exists a
decomposition

SZS]EBSQGB(H]EBHQ), S1€Co. and Sy € Cq,
of S and a positive invertible operator Q = Q1 ® Q2 € B(H. ® H,, H1 & Hs) such that

S1=Qr'VeQ and S =Q;'VuQa
for some unilateral shift V. € B(H,) and unitary V,, € B(H,,). Set
Evidently,
S is (m, C)-isometric <= Z(—],)mfj < 7;1 )S*jCSj = (Ls+Rs —I)™(C) =0.
j=0

We prove that C': Hi &Ha — Hy @ Hs has a decomposition C' = Cy1 & Cos. Let C: Hi & Hs
into itself have the matrix representation

Cy C
C = ( c; CZ ) € B(H; ® Ha).
Since
(Ls+Rs —1)™(C) =0 <= Q{(Lv+Ry —D)™(Q'CQ™")}Q =0
< (Ly~Ry —D)™Q~'CcQ™ ") =

(Ls-Rs—I)™(C) =0

. ( (LvsRy,— D)™(@Q7'CniQy")  (LvsRy, — D™(Q 'C12Q3 ") ):0
(Lv+Ry,— )™(Q5'Cn@Qy")  (Lv:Rv,— I)™(Qy'C22Q5 ") '

Set
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(Lvs Ry, — D)™ 1 (Q7 ' C12Q3 ") = Zm 1.
Then, V,, (V) being unitary (resp. Cy.),

(Lvs Ry, — 1)™(Q7'C12Q3 ") = 0
<~ (LVC*RVu)(mel) = VC*Zm,]Vu — Zm,] =0
= Zm1 =V " Z AV = || Zm—12|| = ||V 21V, x| = 0 as n — oo

for all z € H;. Hence Z,,—1 = 0. Repeating this argument, considering next (Ly+ Ry, — I)
(Zm—2) = 0, a finite number of times it follows that

Q1_1012Q2_1 =0 Clg =0.
A similar argument applied to
(Lv; Ry, — I)™(T) =0 <= (Ly:Ry,— ™(T*) =0, T=0Q;'CaQi",
implies that
T= Q2_1021Q1_1 =0 < (Cy =0.
Hence
C =Cn @ Coaa.

Considering next the equality (Ly: Ry, — DN™(Qy'Co2Q5 ") = 0. Set Q;'CQ;' = H.
Then (Lv: Ry, — I1)™(HC2) = 0. Since C32V,,Ca2 and V,; are unitary and HCay € B(Haz),
(Lvs R ¢4y v, 00, — I)™(HC32) = 0 if and only if (Ly» R ¢y,v, 000 — 1)(HC32) = 0. Hence

(Lvs Ry, — I)™(Qy ' C22Qy ') = 0
= (Lv;Rv,— D(Qy'CnQy") =0
= ViQy'CnQ3 'V = Q3 ' 00y
= (VS Q7")Cn(Qr'VuQ2)Co =1
i S;CQQSQCQQ —1=0.
To complete the proof, we prove next that SyC;1151C11 — I = 0: This would then imply
that
0= (5 &82)"(Ci1 & C2)(S1 @ S2)(C11 ® Cy2) — I =S*CSC —1.

Set 1
(Ls:Rs, —I)™ 7 (C11) = X1

Then, since S} is power bounded and S; € Cy,

(Ls;Rsy — I)(Xm-1) = (Ls; Rs, — 1) (C11) = 0
= ([ X1z = [|S7" X1 ST2]| < IST [ Xm1|l|ST2] = 0 as n — o0

for all x € H;. Hence X,,_1 = 0. Repeating the argument, see above, it follows eventually
that X1 = S]*C]]S] — C71 = 0. Hence S]*C]]S]C]] —I=0. O

Remark 2.9 As an immediate consequence of Corollary 2.5, we remark that (just as for
m-isometries) the similarity of power bounded (m,C)-isometric B(H) operators implies
that such operators can not be supercyclic.

The authors are grateful to a referee for his remarks on the original draft of the paper;
in particular, they are thankful to the referee for saving them from committing a very silly
mistake.
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