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Abstract

Given Hilbert space operators A, S € B(H) such that 0 ¢ W (S) (= the closure of
the numerical range of S), the similarities ASA* = S for invertible A and AS = SA*
have been considered by a number of authors over past few decades. A classical
result of C.R. De Prima (resp., I.H. Sheth) says that if A and A~1 are normaloid
or convexoid (resp., A is hyponormal), then ASA* = S implies A is unitary (resp.,
AS = SA* implies A is self-adjoint). This paper uses (Putnam-Fuglede theorem type)
commutativity results to obtain generalizations of existing results on similarities of the
above type. Amongst other results, it is proved that if ASA* = S with A invertible
and 0 ¢ W(S), then: (i) A normaloid implies either A is unitary or o,(A) = 0; (ii)
operators A satisfying the positivity condition |A?|?> — 2|A|*> + I > 0 are unitary. If
the operator A in ASA* = S (resp., AS = SA") is w-hyponormal or class A(1,1)
with A71(0) € A*'(0), then a sufficient condition for A to be unitary (resp., A
to be self-adjoint) is that 0 ¢ W(X); furthermore, one may drop the hypothesis
A71(0) € A*71(0) in the case in which 0 ¢ W (X).

1. Introduction

Given a complex infinite dimensional Hilbert space H with inner product (.,.), let B(H)
denote the algebra of bounded linear transformations, equivalently operators, on H into
itself. For A, B € B(H), let 64,5 and A 4,5 € B(B(H)) denote, respectively, the generalized
derivation d4,5(X) = AX — X B and the elementary operator A4 p(X) = AXB — X. Let

W (A) denote the closure of the numerical range

W(A)={A € C: = (Ax,x),x € H,||z|| =1}

of A. Given S € B(H) such that 0 ¢ W (S), the problem of determining the properties of
an operator A € B(H) such that d4,4+(S) =0, or A, 4+(S) =0, has been considered over
the past decades by a number of authors. Although, with A and S as above, §4,4+(5) =0
implies A is similar to A* (indeed, with similarity implemented by a positive operator) and
A4 4+(S) =0 implies A* is similar to an isometry, the equation §4, 4+(S) = 0 does not in
general imply A is self-adjoint (even, normal: consider for example a non-normal operator
A such that AP is self-adjoint for some P > 0) and the equation A4, 4+(S) = 0 does not in
general imply A is unitary (even, invertible: consider for example P = I the identity oper-
ator and A* =V, the forward unilateral shift). Additional hypotheses on A are required.
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A well known result of I.H. Sheth [22], see also [28], says that if A is a hyponormal Hilbert
space operator such that d4,.4+(S) =0, 0 ¢ W(S), then A = A*. Hyponormal operators
are normaloid (also, convexoid), with the property that the inverse operator (whenever it
exists) is again hyponormal. Hyponormal operators have SVEP (the single-valued extension
property) and satisfy the property that if A 4+(S) =0, 0 ¢ W(S), then A is unitary: This
follows from a corrected version of a result of Singh and Mangla [23] by DePrima [5, Theo-
rem 1], which states that if A, 4+(S) =0, 0 ¢ W(S), for an invertible operator A such that
A, A=! are normaloid or convexoid (all combinations allowed), then A is unitary. Sheth’s
result has recently been extended to classes of Hilbert space operators more general than
the class of hyponormal operators. Thus Jeon et al [19, Theorem 6] prove that if A € B(H)
is a quasi class A operator (i.e., if A*(|4%] —|A|?>)A > 0), §4,4+(S) =0, where S € B(H)
and 0 ¢ W(S), then A is self-adjoint. Dehimi and Mortad [4, Theorem 8| extend Sheth’s
result to unbounded hyponormal operators to prove that if S € B(H) satisfies 0 ¢ W (S)
and SA* C AS for an unbounded closed densely defined (on H) hyponormal operator A,
then A is self-adjoint.

If A,B € B(H) are hyponormal operators, and d4,5+(X) = 0 (resp., A4,p+(X) = 0)
for a quasi-affinity X € B(H), then the (Putnam-Fuglede) commutativity theorem for
hyponormal operators says that 04+ g(X) = 0 (resp., Aa+ 5(X) = 0), see [25], [10], [13],
and hence that A, B* (resp., A, B*fl) are unitarily equivalent normal operators. If it so
happens that X can be chosen to be an injective positive operator, then A = B* (resp.,
A = B*™"). The particular choice of B = A and X such that 0 ¢ W (X) guarantees the
existence of a positive invertible operator P such that 64 4+(P) =0 (resp., A4, 4+(P) =0).
Thus the (loc.cit.) result of Sheth [22] is a straightforward consequence of the commutativity
theorem for hyponormal operators; that a similar application of the commutativity theorem
results in the unitarily of A in the case in which A4 4+(X) = 0 and both A and A~! are
normaloid (or, convexoid) is consequent from a result of Stampfli [24] (which, as we shall see,
implies that such an operator A is normal). Our aim in this paper is to use commutativity
theorems to obtain generalizations of extant results on the similarities d4,4+(X) = 0 and

Aaa+(X) =0, where 0 ¢ W(X). We prove, amongst other results, that if A4, 4+(X) =0,
0 ¢ W(X), then: (a) invertible operators A such that | A% —2|A|>+1 > 0 are unitary; (b) A
invertible and normaloid implies either o,(A) = 0, or, A is unitary. (Most of our notation is
standard; however, all our currently undefined notation is defined in the following section.)
If the operator A in Aa, 4+(X) =0 (resp., 4,4+ (X) = 0) is w-hyponormal or class A(1,1)
with A=1(0) € A*~*(0), then a sufficient condition for A to be unitary (resp., 4 to be self-
adjoint) is that 0 ¢ W (X); furthermore, one may drop the hypothesis A=1(0) C A*~'(0)
in the case in which 0 ¢ W(X). For densely defined closed operators A we prove that

if A has SVEP, 6(_27)\)_1’(#7)\)_1(0) - 6(;\17)\)*—1,(,4*7)\)*—1(0) for a A in the resolvent set

p(A) = C\ o(A) and SA* C AS for an operator S € B(H) with 0 ¢ W(S), then A is
self-adjoint.

2. Some notation and terminology

We start by introducing further notation and explaining some of our terminology. An
operator A € B(H) is normaloid if || A|| equals 7(A) (= the spectral radius of A), A is con-
vexoid if W(A) = cono(A) (= the convex hull of the spectrum of A) and A is spectraloid
if r(A) = w(A) (= the numerical radius of A). Tt is well known that the classes consist-
ing of normaloid and convexoid operators are independent of each other, but that both

these classes are contained in the class of spectraloid operators. We shall denote the point
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spectrum of A by o,(A), the peripheral spectrum {\ € o(A) : |\| = r(A)} by o,(A), the
boundary of the unit disc in the complex plane C by dD and the commutator AB — AB of
A,B € B(H) by [A, B]. Recall that every contraction A € B(H), i.e., operators A € B(H)
such that ||A]| < 1, has a direct sum decomposition A = A, & A., where A,, is unitary and
A, is completely non-unitary (henceforth abbreviated to cnut — thus A, is the cnut-part
of A). An operator A € B(H) is of the class Cy, (resp., Cy.) if the sequence {||A™iz||}
converges to 0 for all € H (resp., the sequence {||A™iz||} does not converges to 0 for all
non-zero x € H); A is of class Cg (resp., C.1) if A* € Cy. (resp., A* € Cy.). All combina-
tions are possible, leading to classes C11, Cgg, C19 and Cpy.

An operator A € B(H) has SVEP, the single-valued extension property, at a point Ag € C
if for every open disc D, centered at A\g the only analytic function f : D), — H satisfying
(A —X)f(\) =0 is the function f = 0. (Here, and in the sequel, we have shortened A — \I
to A — A.) Evidently, every A has SVEP at points in the resolvent set p(4) = C\ o(A4)
and the boundary do(A) of the spectrum o(A). We say that A has SVEP on a set S if
it has SVEP at every A € S. The ascent of A at A € C, asc(A — A), is the least non-
negative integer n such that (A — \)~"(0) = (A — X)~(»+1(0); if no such lambda exists,
then asc(A — A) = oco. It is well known [1] that finite ascent at a point implies SVEP at the
point. The deficiency indices of A € B(H) at a point A € C are the non-negative integers
a(A—X) =dim(A — X\)710) and B(A — A) = dim(H \ (A — A\)H).

Given (not necessarily bounded) linear transformations A and B of H into itself with
domains dom(A) and dom(B), and an operator X € B(H), the relation A C B means B
is an extension of A (Thus: dom(A) C dom(B) and Bz = Az for all x € dom(A)), and
the relation XA C BX means X maps dom(A) into dom(B) and XAx = BXx for all
x € dom(A). The linear transformation A is boundedly invertible if there is a bounded
linear operator A~ € B(H) such that AA~! =1 and A"'A C I. Tt is easily seen that if
A, B are boundedly invertible linear transformations such that X A C BX for an operator
X € B(H), then B7'X = XA~

The following result from [8] is essential to some of our argument below.
Theorem 2.1. If A, B € B(H), then the following statements are pairwise equivalent.
(i) ran(A4) C ran(B).
(ii) There is a u > 0 such that AA* < u?BB*.
(iii) There is an operator C € B(H) such that A = BC.
Furthermore, if these conditions hold, then the operator C may be chosen so that (a) ||C|? =
inf{\ : AA* < ABB*}; (b) ker(A) = ker(C); (c) ran(C) C ker(B)=*.

We shall also require the following well known lemma (see, for example, [11]).

Lemma 2.2. Let A,B,X € B(H). If:
(i) X € 62}3(0) C 521’3*(0), then [A,|X*|] = 0, ran(X) reduces A, ker(X)" reduces B,

and A\m and Blye,(x)+ are unitarily equivalent normal operators.

(i) X € AZ}B(O) C AZ}’B*(O), then [A,|X*|] = 0, ran(X) reduces A, ker(X)" reduces B,

and A\m and (B‘ker(X)L)7] are unitarily equivalent normal operators.
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3. Results

We start by considering the equation A4 4«(S) = 0, where 0 ¢ W(S). Along with
proving some well known results (albeit using a somewhat different argument), we prove
that the only way an invertible normaloid A can fail to be unitary is if it has an empty
point spectrum.

Let A,S € B(H) be such that A4 4+(S) =0, A has SVEP at 0 and 0 ¢ W(S). Then,
the operator S being invertible, A4, 4+(S) = 0 implies the right invertibility of A, and this
since A has SVEP at 0 implies that A is invertible [1, Corollary 2.24]. Since W(S) is a
convex set, the hypothesis 0 ¢ W (S) implies, upon replacing S by €S if need be, that we
may separate 0 from W (S) by a half plane Rez > € for some € > 0. Then P = % > 0,
and

Aaa(S)=0 <= ASA* —S=0=—= APA* - P =0
— (AP1/2)(AP1/2)* _ (aPl/Q)(aPUQ)*

for every scalar « such that |a| = 1. This, see Theorem 2.1, implies the existence of an
isometry V', indeed a unitary since A is invertible, such that

AP'Y? = PV2(aV*) <= daav+(P'/?) =0
for every choice of a such that |a| = 1. Consequently, the operator A satisfies
|A™|| < [|PV2[[[[P712]

for all integers n, and hence is a power bounded C; operator. Evidently, a necessary and
sufficient condition for A to be unitary is that [4, P'/2] = 0. Equivalently, a necessary and
sufficient condition for A to be unitary is that da v+ (PY?) = 0 = da+ gv(PY?) = 0.
The following theorem gives some further necessary and sufficient conditions for A to be
unitary. (We remark here that condition (i) appears in [5] and condition (ii) appears in [4].)

Theorem 3.1. If A, S are operators in B(H) such that A has SVEP at 0, 0 ¢ W(S) and
A4 a+(S) =0, then either of the following conditions is both necessary and sufficient for A
to be unitary.

(i) A and A~ are normaloid or convexoid or spectraloid (all combinations allowed).
(i) [A, S]] = 0.
(iii) A satisfies the positivity condition 0 < |A2|2 — 2|A|?> + 1. (Operators A satisfying this

positivity condition have been described in the literature, [14], as class Q operators.)

Proof. (i) As seen above, the hypotheses imply the existence of a positive invertible operator
P and a unitary operator V such that AP'/?2 = P'/2(aV*). Evidently, o(A) and o(A™")
lie in the unit circle D. Since either of the hypotheses A (resp., A™!) is normaloid or
convexoid or spectraloid implies 7(A) = w(A4) =1 (resp., r(A™') = w(A™') = 1), it follows
that if (any of the combinations of hypothesis) (i) holds then

W(A*!) C cono(AT).

This, see [24], implies that A is normal, and hence it follows from an application of the
Putnam-Fuglede commutativity theorem [16] for normal operators that

AP'/? = P'2(aV*) «= A*P'/? = P'2(aV*)".



Duggal, Kim, Kubrusly, Operators satisfying a similarity condition 5

(ii) Assume now that [A,|S|] = 0. Then [4, 5*S] =0 = [A*,5*S], and
ASA* =S = A*STASA* = A*S*S = S*SA" <= A*S*A=5" <= A*SA=6S.

But then
ASA* =8 and A*SA=85=— APA* =P = A*PA,

and hence
A*P? = A*PAPA* = P?A* « [A*,P] =0 < [A, P'/?] = 0.
Once again, A is unitary.

(iii) Recall the (easily proved) fact that an operator A € B(H) is unitary if and only if A
and A~ ! are contractions: We prove in the following that if the operator A (of the statement
of the theorem) is a class Q operator, then A and A~! are contractions. Start by recalling
from [14] that an operator A € Q if and only if A~! € Q (whenever A~! exists). It is
clear from AP'/2 = PY/2V* that ||A"|| < ||P/2||||P~"/2|| for all integers n, i.e., A is power
bounded. Assume that there exists an = € ‘H such that 0 < a < ||Az|? — ||z||?, i.e., A is
not a contraction. Then, since A € Q,

2 2 2112 2
0 <a <|[Az][” = ||l2|]° < [[A%[|" — [[Az]".

We use induction to prove the hypothesis A is not a contraction leads to a contradiction.
Assume then that 0 < a < [|[A™z||2 — ||[A™ 'z||? for some integer m > 2. Then

AcQ = 0<|A?P2 24P +1=0< |A™]2 2142 4 |A™ '
= 0<a<[A%z]]? — A" 2| < (AT a|? — ||A™a| 2.

Thus
O<a< HA”ZQZHQ - HA”*]:cH2

for all integers n > 1. But then
0 < na < [|A%iz||? — [la],

which implies that A is not power bounded — a contradiction. Hence A is a contraction.
Evidently, A~! € Q is power bounded, and the preceding argument applies equally to A~".
Hence A~! also is a contraction. O

The hypothesis A is normaloid on its own is not enough to guarantee the unitarily of
A (as observed by DePrima — see [5], also [7], for an example demonstrating this). The
following theorem goes some way towards explaining why.

Theorem 3.2. Suppose that A4, 4+(S) = 0 for operators A, S € B(H), where 0 ¢ W(S). If
A is normaloid and has SVEP at 0, then either X\ ¢ o,(A) for all X € o(A) (i.e., op(A4) = 0),
or, A is unitary.

Proof. Assume that A has SVEP at 0 and is normaloid. Then, as seen above, the hypotheses
Aaa-(S) =0,0 ¢ W(S) and A has SVEP at 0 imply (A is invertible and that) there
exist a positive invertible operator P and a unitary V' such that AP'/? = PY/2(aV*) for all
complex « such that |a| = 1. (Thus A is similar to a unitary operator.) Since the peripheral
spectrum o, (A) of A equals the spectrum o(A4) C 9D, it follows from an application of [17,
Proposition 54.3] that

asc(A—A) <1 and B(A—X)=dim(H\(A—NH) >0
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for all A € o(A). Again, since
a(A=N)"=dim(H\ (A—NH) <B4 -N),

we have one of two possibilities:

Either a(A —\)* = a(A* =X) =0, or, a(A* —X)>0.
Since the hypothesis A is normaloid implies ||A|| = 1, if z € (4 — A\)71(0), then
1(A" = Nz|? = ||A%2|* — (A*2, Az) — Az, A"2) + [[Az]* < 0.

Thus
z€(A-N"H0) <=z € (4" —X)"H0).

Hence A has normal eigenvalues (i.e., the eigenspaces corresponding to the eigenvalues of
the operator reduce the operator), and

a(A=XN) =0 a(A"—X)=0.

Consequently, a(A* —X) = 0 implies (A ¢ o(A), in particular) A ¢ o,(A). Consider thus
the case in which a(A* — X) > 0. Then

Az = Az = P2 (aV* )P/ 2g
— (@) P Vr=vP /%
— VP V2 =Qa)P7V%z

for every « such that |o| = 1. But then
Xa € a,(V) for every o € D,

and hence
€ op(A) forall peo(A).

Consequently, A (also A=) is a normal operator such that

AP'/? = P'2(aV*) <= A*P'/? = P12 (@V)
— [A,P]=0=[A%P?, P71 24=p /24

i.e., A is unitary. O

Remark 3.3. (i) An important class of operators, which subsumes the class of hyponormal
operators, for which both the operator and its inverse (whenever it exists) are normaloid is
that of paranormal operators (i.e., operators A € B(H) for which ||Az|? < ||A2%z]|| for all
unit vectors x € H). Thus: If a paranormal operator A € B(H) satisfies N4, 4+(S) for an
operator S € B(H) such that 0 ¢ W(S), then A is unitary. Paranormal operators are class
Q operators. However, there exist class Q operators which are not normaloid [14]. As we
have observed above, a necessary and sufficient condition for the operator A of Theorem
3.1 to be unitary is that 4 qv+(P"?) = 0 = 64+ zv(P'/?) = 0. Indeed, if an operator
A € B(H) is such that 62}3(0) - 623’3*(0) for isometries B € B(H), then A4 4+(S) =0,

0 ¢ W (S), implies

6A,aV*(P%) =0= 6A*,EV(P%) =0 = A is unitary.
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Example of non-normaloid operators A € B(H) which satisfy the property that 5;}3 (0) C

5;3’ g+ (0) for normal B* € B(H) (indeed, hyponormal, even M-hyponormal, B*) are pro-
vided by

e M-hyponormal operators: there exists a scalar M > 0 such that [(A — \)*|> <
M| A — \|? for all complex A;

e dominant operators: there exists a scalar M()\) > 0 such that [(A—X)*|? < M(\)|A—
A% for every complex \;

e class Y = Ua21 Y. operators: A € ), if there exists a scalar M, > 0 such that
|A*A — AA*|* < M2]|A — A2 for every complex A [11, 18, 19, 27].

Letting Dy denote the operators belonging to these classes, we note that operators A € Dy
have SVEP and A4 4+(S) =0, S € B(H) such that 0 ¢ W (S), for M-hyponormal or class
V) operators A € Dy implies A is unitary .

(ii) Invertible operators A € B(H) such that A4 4+(S) = 0 for an operator S € B(H),
0 ¢ W(S), of Theorem 3.2 being power bounded are generalized scalar [20, Theorem 1.5.13].
Letting L4 and R4 € B(B(H)) denote the operators La(X) = AX and Ra(X) = XA (of
left and right multiplication by A, respectively), it is seen that the operator LaRa+ is a
doubly bounded invertible operator with spectrum in the unit circle. Evidently, L4 R+ is
a generalized scalar operator with spectrum in the unit circle such that 1 € op(LaRa~).
It is clear that if the invertible operator A and its inverse A~' are normaloid, then the
Banach space operators LaRa+ and (LaRa+)™' = Ly-1R 4.1 are normaloid, hence in-
vertible contractions. Consequently, the operator L4 R+ is (then) an invertible Banach
space isometry.

Every part of a contraction A € B(H) (i.e., every restriction of A to a closed invariant
subspace) is a contraction. If such a contraction is similar to a unitary operator (hence
a Cyq-contraction), then every of its parts is normaloid, i.e., (in the terminology of [12,
Proposition 1]) A is hereditarily normaloid, or, A € (HN) . An operator A € B(H) is
totally hereditarily normaloid, or A € (THN), if, along with A € HN/, every invertible
part of A is normaloid [12]. The following corollary says that if a normaloid operators A
satisfying A4, 4+(S) = 0 for some operator S with 0 ¢ W(S) fails to be unitary, then it is
an operator in (HN) \ (THN) (¢f. [12, Corollary 1]).

Corollary 3.4. If an invertible normaloid operator A € B(H) satisfying AN a, a+(S) =0 for

an operator S € B(H) with 0 ¢ W(S) is not unitary, then A € (HN')\ (THN).

Proof. The hypotheses imply the existence of an operator P > 0 and a unitary V such
that AP'/2 = P'/2V* hence A is a power bounded C;;-operator (with spectrum in D).
Consequently, if A is normaloid, then A is a Cyi-contraction with o(A4) C dD. This, by
[12, Proposition 1], implies A € (HN). Assume now that A is not unitary, and that there
exists a closed invariant subspace M (# {0}) of A such that A; is an invertible ecnu Cj -
contraction. We assert that A7 is not normaloid. For suppose A7 is normaloid. Then,
since APA* = P is equivalent to A*P~'A = P~ it follows upon letting P~'|5; = P]_1
that AfP;'A; = P!, Equivalently, AP, A} = Py, P, > 0, where both A; and A;"' are
normaloid. This, by Theorem 3.1, implies that A; is unitary — a contradiction. Hence

A¢ (THN). O

Recall from [5, Theorem 4] that if an A € B(H) is an invertible normal operator which
satisfies Aa 4+(S) = 0 for an invertible operator S € B(H) such that 0 ¢ W(S), then
A is unitary. (Observe the weakened condition 0 ¢ W (S). We remark here that the
hypothesis A is invertible is superfluous: The invertibility of S implies the left invertibility
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of A*, hence A is surjective, and normal operators have SVEP, hence A is invertible.) This
result is the normal operators version of a more general result. Consider operators A, B
and S € B(H) such that S is a quasi-affinity (i.e., S is injective with a dense range) and
A5'p+(0) € ALY 5(0). Then

Aap(S)=ASB*—5=0= A*SB-S =0,

and it follows from Lemma 2.2 that if S has the polar decomposition S = U|S|, U unitary,
then
AUB*U* =1 =UB*U"*A,[A,|S*|] =0=[B,|5]]

and A, B*~! are unitarily equivalent normal operator. Thus if we let B = A, let S be
an invertible operator and set ASA™'S™' = T, then AS — SA* ' =0 = A*S — SA™!
implies T' = A(SA 1S~ ! = A(A*S)S~ 1 = AA* = A*A is a normal operator which satis-
fies [T, A] = 0. Hence, see [6, Theorem 1], that either [A4,S] = 0 (which then implies A is
unitary) or 0 € W(9).

The inclusion AZ}B*(O) - A;‘}’B(O) is satisfied by a number of classes of operators
more general than the class of normal operators. Let & denote the class of operators
A =U|A| € B('H) which are either

e hyponormal: |A*|? < |AJ?, or,

e p-hyponormal, 0 < p < 1: |A*[?P < | AJ?P;
let & denote operators A = U|A| € B(H) which are either

e w-hyponormal: (JA|ZU|A|U*|A|2)2 < |A| < (JA|2U*|A|U|A|Z)z, or,

o A(s,1), 0<s,t<1: [AF[2 < (|A*[H| A2 A*|1) =5
It is well known [18] that A(s,t) operators, indeed operators in & U &1, are A(1,1) op-
erators, A € A(1,1) implies A? is w-hyponormal, A(1,1) operators are paranormal and

Ae A(1,1) = A™! € A(1,1) (whenever A™! exists). Let Dy denote operators A € Dy
such that A2 € D,.

Theorem 3.5. Given operators A, B and S € B(H) such that S is invertible and A\ 4, g+ (S)
= 0, either of the conditions (i), (ii) and (iii) below implies (A 4+ g(S) = 0, hence) A and
B*~! are unitarily equivalent normal operators.

(i) A,B € &U&.

(i) A € Dy and B € &y, or B is w-hyponormal,or B is M-hyponormal.

(iii) A € D1 and B € A(1,1).

Furthermore:

(a) If, in the above, S > 0, then A and B are normal operators such that AB* = B*A =1;
(b) if Aa,a+(S) =0, where A € & U &1 (or A is M -hyponormal) and S is invertible with
0 ¢ W(S), then A is unitary.

Proof. The hypotheses S is invertible and A4 pg«(S) = 0 imply B is surjective. Since B
has SVEP, B is invertible (and this then implies that A is also invertible). Hence

AAB*(S) =0 6A,B*—1(S) =0.

Recall now that B~1 € & U &; for operators B € & U &; [15], B~! is M-hyponormal for
M-hyponormal B and M-hyponormal operators are s operators. Hence [11, Proposition
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2.5] and [27, Theorems 1 and 2] apply, and we have
6A,B*—1(S) =0= 6A*,B—1(S) =0 AA*’B(S) =0.

This implies A and B*~' are unitarily equivalent normal operators. Suppose now that
S > 0. Define the normal operator T'= A & B and the (self-adjoint) invertible operator @
by

T:A@B,Q:<g 05)

Then

TQT* =Q«=T*QT =Q, [T,Q°] =0 =>[A4,5]=0=[B,S].
Consequently, A and B are normal operators such that AB* = B*A = I. To complete
the proof consider now the case A4, 4+(S) = 0and 0 ¢ W(S). If A € EU &, orif A
is M-hyponormal, then (Aa4+(S) = 0 <= 04,4:-1(F) = 0 = 04+, 4-1(5) = 0 <)
Aa+,4(S) = 0 and the normal operator T = ASA™1S™1 satisfies [T, A] = 0. Since 0 ¢
W(S), A is unitary. O

Similarities. The similarity analogue “if §4 g+ (S) = 0 for an invertible operator S, with
A, B satisfying one of the conditions (i) to (iii) of Theorem 3.5, implies d 4+ 5(S) = 0”
holds under the additional hypothesis that 71 (0) € 7%~ '(0) for operators T which are w-
hyponormal or A(1,1) (see [11, Theorem 2.6] and [27, Theorems 1 and 2]). Assuming S > 0
this then implies that A and B are normal operators which satisfy A = B*. In the following
we prove a more general version of the result that if §4,4+(S) = 0, where A € A(1,1) and S
is invertible, then either of the hypotheses A=1(0) € A*~'(0) and 0 ¢ W (A), or 0 ¢ W (A),
implies A is self adjoint. We start with some complementary results.

Lemma 3.6. Operators A € A(1,1) N B(H) with o(A) C R are self-adjoint.

Proof. Given an A € A(1,1), |[A|A is a $-hyponormal operator (i.e., (|A||A*|?|A|)"/2? <
(A*|A2A)"/2) such that o (|A|A) = {\ : A = r2e? re? € 5(A)} [3]. Hence, since 0(A) C R,
the Putnam Lebesgue area measure inequality for p-hyponormal operators implies that

A AP A — |AJJAPIA]| < m(o(]A]A) =

(Here m(.) denotes the Lebesgue area measure.) Thus A*|A|?A = |A||A*?|A|. Since
A€ A(1,1) if and only if |A*2 < (|A*||AJ?|A*])Y/2, and since [18]

A" < (|A%||AP|A*)Y? = (JAl|A*PlADY? < |AP,
AP < A% = (JA[|[A*PIAD'Y? < [AP = |AP = |A?] <= A*(A"A - AA™)A =
But then A is a quasihyponormal operator such that m(o(A4)) = 0. Consequently, A is
normal [2], hence self-adjoint. O

An operator A € B(H) is k-quasi A(1,1), A € kK — A(1,1), for some positive integer
E>1,if A**(|A2| — |A]?)AF > 0. Every A € k — A(1,1) has an upper triangular matrix
representation

—_— -1
A=A ) parmy e a7 0)),
0 N
where A; € A(1,1) and N is a k-nilpotent operator. The following lemma proves that if
the operator A; (in the above representation of A) is normal, then A is the direct sum of
an injective normal operator and a (k + 1)-nilpotent operator.
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Lemma 3.7. Given an operator A € k — A(1,1) such that A, = A\m is normal, A is

the direct sum of an injective normal operator and a (k + 1)-nilpotent operator.

Proof. Letting E denote the orthogonal projection of H onto A*(H),
412 &0 = B|APE < BIA%|E < (EA”A?E)* = |A}|&0 = |A[* &0,
which implies that |A|? has a representation
AP = ( Ail >2: ( 412 +0C* |A1|C+OD >
D C*|A1|+ DC* C*C+ D

Comparing this with

‘A‘Q _ ‘A1|2 ATAQ
A5A; A2+ NP2

we conclude that (C*C =0 <= C =0, hence) A 45 =0 (= A1 43) and |A| = |41|@&D. Let

A=A, 80 BA(0)F @ A71(0)) = B(A¥(H)). Then A and |A| have representations

Ann 0 Ay |A11] 0 0
A= 0 0 Ay |= (A(l)l gl > and [A[ = 0 0 0 |= ( |A61‘ (l)) )
0 0 N ! 0 0D !
- 1L 1 wk—1 0 As
(in B(A; (0)a(4A ' (0)eA (0)))), where we have set (0, A21) = By, 0N =N
and 8 % = D;. Comparing (A* A with |A|?) we have now that A%, B; = 0. Hence

Bi=0and A=A, & N;. O

Part (b) of the following theorem generalizes a result of [19] to k — A(1,1) operators,
using an argument which is simpler (than the one used in [19] to prove the result for
1 — A(1,1) operators).

Theorem 3.8. Given operators A, S € B(H) such that A € k—A(1,1), S is invertible and
6A,A* (S) = 0, ’Lf
(a) A=1(0) € A*7Y(0), then a sufficient condition for A = A* is that 0 ¢ W(S).

(b) 0 ¢ W (S), then A is the direct sum of a self-adjoint operator with a k-nilpotent operator.
In particular, if k = 1, then A is self-adjoint.

Proof. (a) Tf A='(0) € A*7*(0), then A € B(A~'(0)* @ A~'(0)) has a representation
A= A1 &0, where A1 = Als-10)r € k — A(1,1) is injective. If d4,4+(S) = 0 and
S € B(A_l(O)l @ A~1(0)) has a representation S = ( gi g; ), then A1S5 = 0 =
S4 A7 implies S3 = Sy = 0 (and, hence, both S; and Sy are invertible). Again, since
A1S1 — 5147 = 0, Ay is injective with a dense range, hence (an A(1,1) operator which
satisfies A7S; — S14; = 0 and therefore is) normal. There exists a real number A € p(A),
the resolvent set of A, such that A — X is a normal invertible operator. Define the operator
Tby T =(A-XN)S(A-X)"1S71 Since (A—N)S—S(A-N)*=0=(A-N)*S—-S5(4-)N),
T=(A-XN(A-XN*=(A-)N)(A" —)) is a normal operator which commutes with A — \.
This, since 0 ¢ W(S), implies A — X\ = A* — X [6].

(b) Letting A € B(A*(H) & A*k_l(O)) have the representation of the proof of Lemma 3.7,
51 53

and letting S have the corresponding representation S = ( 3, S
4 92

), it is seen that the
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A(1,1) operator A; satisfies 64,,4:(S1) = 0, where 0 ¢ W(S;). Hence o(4;) C R [28],
and it follows from Lemma 3.6 that A; is self-adjoint. By Lemma 3.7 this implies that

A = A; & Ny, where (using the notation of the proof of Lemma 3.7) N1 = < 8 ]f\lfm ), N

is k-nilpotent, N1 Sy = So N and 0 ¢ W(S,). Now if let Sy = < gm 223 ) 0 ¢ W (Sy0),
24 22
then
leSQ = SQNl*k — AQQNki]SQQ =0 AQQNki] =0= le =0.

Thus A = A; & N; is the direct sum of a self-adjoint operator and a k-nilpotent operator.
In particular, if £ = 1, then A is self-adjoint. O

Remark 3.9. The argument of the proof of Theorem 3.8 applies to operators A € k —
A(1,1) satisfying Aa,4+(S) = 0. Operators A € k — A(1,1) have SVEP: This follows
from the fact that A(1, 1) operators are paranormal, paranormal operators have SVEP and
%1 ﬁg ) € B(AR(H) & A"+ (0))
with 41 € A(1,1) and N a k-nilpotent. Thus A4 4+(S) = 0, with 0 ¢ W (S), implies (A
is an invertible A(1,1) operator, indeed an invertible normal operator since m(c(A)) = 0,
which satisfies A4 4+(S) =0, 0 ¢ W(S), hence) A is unitary. Again, if S is invertible with
0 ¢ W(S), then Ay a+(S) =0 <= 64 4.-1(S) = 0, where both A and A~" are A(1,1)
operators; hence A is unitary.

operators A € k — A(1,1) have a triangulation A = (

If an A € B(H) is a paranormal operator, then both A and A~! (whenever it exists) are
normaloid; hence, given a paranormal operator A € B(H), A4, 4+(S) = 0 for an operator

S € B(H) with 0 ¢ W(S) implies A is unitary. Does d4 4+(S) = 0 imply A is self-adjoint
(for paranormal A and 0 ¢ W (S))? Paranormal operators do not satisfy the property that
52,114* (0) C 5;3,14(0) [21]; additional hypotheses are required for the operator A above to be
self-adjoint. One such hypothesis is given by the following theorem. Paranormal operators
being normaloid, it is clear that if §4 4+(S) = 0 then (upon diving by || A4|| if need be) one
may assume that A is a contraction. Recall from [9] that paranormal contractions operators
have a C g cnu part.

Theorem 3.10. Let A € B(H) be a paranormal contraction with o Hilbert-Schmidt class
defect operator Dy = (1 — A*A)Y/? such that the normal subspaces of A reduce A. If
04,4+(S) =0 for an operator S € B(H) with 0 ¢ W (S), then A is self-adjoint.

Proof. Assume (without loss of generality) that d4 4+(P) = 0 for some P > 0. If the
paranormal contraction A satisfies the properties that (1 — A*A)]/ 2 is Hilbert-Schmidt
class and the normal subspaces of A reduce A, then A = A, & A9 € B(H; & Hs) for
a normal contraction A4, and a Cig cnu contraction Aig with a Hilbert-Schmidt defect
operator D4,, = (1 — A%qA10)"/? (see [12, Theoreml]). Letting P have a corresponding
P P

representation P = P P,

), it is then seen (from d4, 4+(P) = 0) that

AnPs = PsAYy, A1oPy = PyAj,.

Since the contraction Aiq has a Hilbert-Schmidt defect operator and is of the class Cig,
there exists a unilateral shift U and a quasi-affinity Z such that ZAg = UZ [26]. Hence

A,P37* = P3Z*U*, A, normal and U hyponormal.

The commutativity theorem for hyponormal operators applies and we conclude that (the
restriction of U to the closure of the range of ZP; is normal, implies ZP5 = 0, hence)
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P3; = 0. The operator P, being invertible, it follows that for all z € Hs,

AoPyx = PQATOSC — A?OPQ.T = PQA){On.’L'
= [|AloPz]| < ||P[|[|A7g"%|] — 0 as n — oo.

This implies that the part Ajo is missing. Hence A is normal, indeed self-adjoint. O

Unbounded operators. A version of Theorem 3.8(b) holds for (unbounded) closed
densely defined (Hilbert space) operators. Recall that a densely defined closed operator
A is said to be hyponormal if the domain of A is a subset of the domain of the adjoint A*,
dom(A) C dom(A*), and |[A*z|| < ||Az|| for all z € dom(A). Hyponormal operators A
have SVEP, and satisfy the property that their translates A — XA = A — A\ are also (densely
defined closed) hyponormal operators. The following theorem generalises Theorems 8 and
9 of [4].

Theorem 3.11. Let A be a densely defined closed operator with SVEP such that

671

(A=X)=1,(4° =)

(A=)~ 1A =2y

for some X in the resolvent set p(A) = C\ o(A). If SA* C AS for an operator S € B(H)
with 0 ¢ W(S), then A is self-adjoint.

(Recall here that SA* C AS means SA*x = ASz for all z € dom(A*).)

Proof. We may assume without loss of generality that S+TS* = P >0, and (then SA* C AS
implies) PA* C AP. Since A has SVEP, 0(A*) = 0,(A*) (i.e., the spectrum of A* consists
of the approximate point spectrum of A*). Choose a A € 0,(A4*), and let {x,,} C dom(A*)
be a sequence of unit vectors such that ||(A* — X)zp|| — 0 as n — oo. Then

X=X (Prp, )|l = {(PAPTT = X) = (A= A}(Pag,zn)]]
< IP((A" = Nan, zn)|| + [[P(zn, (AT = Xz,
implies _ )
(A= X[[PZ2n[[? < 2/|PI[[[(A* = M)zn|| — 0 as n — oo.

Since P > 0, A = . Hence o(A) C R. There exists A € C\ ¢(A) such that (4 — \)~!
is a bounded operator which (since PA* C AP) satisfies §4_)-1,(4+_)-1(P) = 0. Since

-1 -1
5(147)\)_1,(14*7)\)_1(0) g 6(A7)\)*_17(A*7)\)*_1 (0)3 we haVe

Sa—n)-1,(ar—n)-1(P) =0 =084 \ye=1 (4 ny»-1(P) = 0.
But then [(A—X)~!, P] = 0, and (consequently) (A—X)"! = (A*—X)~!. Hence A= A*. O

Theorem 3.11 applies to densely defined closed M-hyponormal operators, where we say
that a densely defined closed (Hilbert space) operator is M-hyponormal if there exists an
M > 0 such that D(A) C D(A*) and |[(A — X)*z||? < M||(A — X)z||? for all complex A and
x € dom(A).
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