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A NOTE ON RANGE-KERNEL UNCOMPLEMENTATION

C.S. KUBRUSLY AND B.P. DUGGAL

ABSTRACT. This note exhibits a Banach-space operator such that neither the
range nor the kernel is complemented both for the operator and its adjoint.

1. INTRODUCTION

By a subspace we mean a closed linear manifold of a normed space. Every linear
manifold of a normed space has an algebraic complement which is a linear manifold
not necessarily closed. A subspace is complemented if it has a subspace as an alge-
braic complement. Every subspace of a Hilbert space is complemented. This is not
the case in a Banach space. Banach-space operators with complemented range and
kernel play a crucial role in many aspects of operator theory, especially in Fredholm
theory, being the main feature behind the difference between Hilbert-space and
Banach-space approaches for dealing with Fredholm operators [11, 10].

It is known that compact perturbations of left or right semi-Fredholm (in particu-
lar, of invertible) operators, as well as continuous projections, acting on an arbitrary
Banach space have complemented kernel and complemented closed range, and also
that the class of all operators with complemented kernel and complemented clo-
sure of range is algebraically and topologically large. This is summarized in Lemma
3.2. The main result of this note exhibits a Banach-space operator whose closed
range and kernel are not complemented, both for the operator itself as well as for
its normed-space adjoint — Theorem 4.1.

The paper is organized as follows. Section 2 deals with notation and terminology,
including the concepts of upper-lower and left-right semi-Fredholmness. Section 3
considers the classes I'[X] and A[X] of operators T' on a Banach space X (i.e., op-
erators in B[X]) for which closure of range, R(T)~, and kernel, N'(T'), are both
complemented, or are both uncomplemented, respectively. It is shown in Lemma
3.1 that the collection ©(B[X]) of all classes of operators in B[X] for which R(T)~ is
complemented if and only if N'(T') is complemented coincides (as expected) with the
power set of the union I'[X] U A[X]. Lemma 3.2 and Corollary 3.1 (on range-kernel
complementation for normed-space adjoints) close the section. Section 4 focuses on
range-kernel uncomplementation, where Lemma 4.1 deals with complemented sub-
spaces and their direct sum with the null space, and the main result appears in
Theorem 4.1. All Propositions in Sections 2, 3, 4 are well-known results, which are
applied throughout the text. Since these are used quite frequently, those proposi-
tions are stated in full (whose proofs are always addressed to current literature).

2. NOTATION AND TERMINOLOGY

Our notation and terminology are quite standard. Throughout the paper X will
stand for a normed space (or a Banach space, when completeness is necessary). A

Date: June 19, 2017.
2010 Mathematics Subject Classification. Primary 47A05; Secondary 47A53.
Keywords. Banach-space operators, complementation, closed range, Fredholm operators.

1
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closed linear manifold of X' (closed in the norm topology of X') will be referred to
as a subspace of X. Let M~ denote the closure of a linear manifold M of X', which
is a subspace of X, and let B[X] denote the normed algebra of all operators on
X; that is, of all bounded linear (i.e., continuous linear) transformations of X into
itself. For any operator T' € B[X], let N(T) = T—1({0}) denote its kernel, which is
a subspace (i.e., a closed linear manifold) of X, and let R(T) = T(X) denote its
range, which is a linear manifold of X.

For every linear manifold M of any normed space X there exists another linear
manifold N such that X = M + N and M NN = {0}, where A/ and M are referred
to as algebraic complements of each other. The codimension of M is the (invariant)
dimension of any algebraic complement of it: codim M = dim A. A subspace M of
a normed space X is complemented if it has a subspace as an algebraic complement.
In other words, a closed linear manifold M of a normed space X is complemented
if there is a closed linear manifold N of X such that M and A are algebraic
complements (i.e., such that M + N = X and M NN = {0}). In this case M and
N are complementary subspaces. Equivalently, a subspace is complemented if and
only if it is the range of a continuous projection (see e.g. [11, Remark 1.1]). A normed
space is complemented if every subspace of it is complemented. If a Banach space
is complemented, then it is isomorphic (i.e., topologically isomorphic) to a Hilbert
space [12] (see also [7]). Thus complemented Banach spaces are identified with
Hilbert spaces — only Hilbert spaces (up to an isomorphism) are complemented.
However, an uncomplemented subspace of an uncomplemented Banach space may
be isomorphic to a Hilbert space [1]. For a thorough presentation of results along
this line see [15].

Definition 2.1. (See e.g. [14, Definition 16.1]). Let X be a Banach space and
consider the following classes of operators on X.

P, [X] = {T € B[X]: R(T) is closed and dim N'(T') < oo}
is the class of upper semi-Fredholm operators from B[X], and
®_[X] = {T € B[X]: R(T) is closed and codim R(T) < oo}
is the class of lower semi-Fredholm operators from B[X]. Set
O[A] = oy [X] N D[],

which is the class of Fredholm operators from B[X].

Definition 2.2. (See e.g. [9, Section 5.1]). Let X be a Banach space and consider
the following classes of operators on X.

FolX] ={T €B[X]: T is left essentially invertible}
={TeB[X]: ST =I + K for some S € B[X] and some compact K € B[X]}
is the class of left semi-Fredholm operators from B[X], and
Fo[X] ={T €B[X]: T is right essentially invertible }
={TeB[X]: TS =1+ K for some S € B[X] and some compact K € B[X]}
is the class of right semi-Fredholm operators from B[X]. Set
F[X] = Fo[X] N Fp[X] = {T € B[X]: T is essentially invertible},
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which is the class of Fredholm operators from B[X], and
SF[X] = FelX]U F,[X],

which is the class of semi-Fredholm operators from B[X].

For a collection of relations among ®[X], ®_[X], F¢[X], and F,.[X] see e.g.
[11, Section 3]. In particular, the well-known identity

O[X] = F|X].
The classes ®4[X] and ®_[X] are open in B[X] (see e.g. [14, Proposition 16.11]),
and so are the classes Fy[X] and F,.[X] (see e.g. [3, Proposition XI.2.6]). For a

collection of standard results involving F[X], F,[X], F[X] and SF[X] see e.g. [9,
Section 5.1] (also [5, Problem 181]).

Definition 2.3. Let X' be any normed space and define the following classes of
operators on X.

Ir[X] = {T € B[X]: R(T)" is a complemented subspace of X'},
In[X] = {T € B[X]: N(T) is a complemented subspace of X}.

Left and upper, as well as right and lower, semi-Fredholm operators are linked
by range and kernel complementation, respectively, as follows.

Proposition 2.1. Let X be a Banach space.
FilA] = ©,[X] NTR[X]
= {T € ®,[X]: R(T) is a complemented subspace of X }.
Frl&] = @[] NTn[¥]
= {T € ®_[X]: N(T) is a complemented subspace of X'}.
Proof. [14, Theorems 16.14, 16.15] (since R(T)"=R(T)if Te ®_ [X|Ud_[X]). O

That is, T € Fy[X] if and only if T € &, [X] and R(T") (which is closed by Defi-
nition 2.1 so that R(T") = R(T)~) is complemented, and T' € F,.[X] if and only if
T € &_[X] and N(T) is complemented.

3. RANGE-KERNEL COMPLEMENTATION

We will be dealing with operators for which closure of range and kernel are
either both complemented or both uncomplemented. We begin by describing these
two classes of operators. Let X be a normed space and set

P[¥] = Tp[X] (T[]
= {T € B[X]: R(T)~ and N(T) are complemented subspaces of X'},
the class of operators on X for which closure of range and kernel are complemented.
(Operators with this property are sometimes called inner regular [4, Section 0] —
see also [6, Theorem 3.8.2].) Clearly I'g[X] = I'y[X] if and only if Tg[X] =Tn[X] =
I'[X]. On the other hand consider the complement of the union I'g[X] U T x[X],
A[X] = BIX\(Tr[X]UT'N[X])
={T € B[X]: R(T)~ and N(T) are not complemented subspaces of X},

so that
TXINA[X] = 2.
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Let T[X] C B[X] be an arbitrary class of operators such that the collection of oper-
ators with complemented closure of range coincides with the collection of operators
with complemented kernel. That is, let 7[X] be a class of operators for which

TrIXINT[X]=Tn[X]NT[X].

Equivalently, 7[X] is any class of operators from B[X] such that

TrIXINT[X]=TN[X]NT[X]=T[X]NT[X].
Let ©(B[X]) stand for the collection of all these classes. In other words, let #(B[X])
stand for the power set of B[X] (the collection of all classes of operators from B[X]),
and consider the subcollection O(B[X]) C £(B[X]) of all classes 7[X] of operators
from B[X] for which Tr[X]NT[X] =TN[X]NT[X]:

O(BX)) = {T[X] € O(BIX)): Tal¥] NT[X] = Tx[¥] N T[]}
= {T[X] e 9(BX]): VT € T|X],
R(T)" is complemented if and only if N'(T) is complemented }.

Since T[X]NTx[X] = T[X]NTy[X] =T[X], and A[X]NT[X] = A[X]NTN[¥] =2,
I[X]UA[X] € O(B[X]).

Lemma 3.1. O(B[X]) = p(T[X]UA[X]).

Proof. Observe:
I'[X] U A[X] is a maximum in ©(B[X])

in the inclusion ordering of B[X]. Indeed, take any class 7[X] € ©(B[X]) so that,
for every T € T[X], R(T)~ is complemented if and only if N'(T) is complemented.
Hence either both R(T')~ and N (T') are complemented, or both R(7T")~ and N (T)
are not complemented. This means 7 [X] C T'[X] U A[X]. Since I'[X]U A[X] lies
in ©(B[X]), the above statement holds true. Equivalently, 7[X] € ©(B[X]) =
T[X] CT[X|UA[X], and so T[X] € O(B[X]) < T[X] C I'[X]U A[X]; that is,

O(B[X]) = {T[X] € 9(BX]): T[X] C T[X]UA[X]},
which means O(B[X]) = £(T'[X] U A[X]). O

The following proposition is required for proving the next lemma. It is an im-
mediate consequence of Definition 2.2 since the class of all compact operators is an
ideal in B[X].

Proposition 3.1. The class of all compact perturbations of left semi-Fredholm,
right semi-Fredholm, semi-Fredholm, and Fredholm operators coincides with the
class of all left semi-Fredholm, right semi-Fredholm, semi-Fredholm, and Fredholm
operators, respectively.

Proof. See e.g. [9, Theorem 5.6]. O

Classes of operators in ©(B[X]) restricted to subclasses of I'[X] are summarized
in Lemma 3.2 below, which contains auxiliary results that will be required in the
sequel. In particular, it shows that T'[X] is topologically and algebraically large in
the sense that it includes an open group from B[X].

Let X be a Banach space and consider the following classes of operators.
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(i) K[X]: the ideal of all compact operators from B[X].

(ii) G[X]: the group of all invertible operators in B[X] (with an inverse in B[X]).

(iii) (G + K)[X]: the essentially invertible operators in B[X] (the collection of all
operators of the form G + K where G € G[X] and K € K[X]).

(iv) F[X]: the classe of all Fredholm operators from B[X].

(v) (F+ K)[X]: the collection of all compact perturbations of Fredholm operators
in B[X] (operators of the form F' + K where F' € F[X] and K € K[X]).

(vi) SF[X]: the classe of all semi-Fredholm operators from B[X].

(vii) (SF+K)[X]: the collection of all compact perturbations of semi-Fredholm op-
erators in B[X] (operators of the form F'+ K where F € SF[X] and K € K[X]).

(viii) E[X]: the set of all projections in B[X] (the collection of all linear, continuous,
idempotent (i.e., E = E?) operators on X).

Lemma 3.2. Let X be a Banach space. The above classes of operators from B[X]
share the following properties.

(a) (G+K)X] S (F+K)X] C(SF+K)x] T[],

(b) if X is a reflexive Banach space with a Schauder basis, then K[X] C T'[X],

(c) EX] CTX] but E[X]) L (SF+ K)[X]UK[X],

(d) T[X] includes an open group in B[X].
Proof. By Proposition 3.1, (iv) and (v), and (vi) and (vii), are equivalent:

(F+K)[X]=F[X] and (SF+K)[X]=SF[X].
Since &4 [X] C T'y[X] and ®_[X] C T'g[X] (see e.g. [11, Lemma 3.1]), it follows by
Proposition 2.1 that F;[X] U F.[X] C I'y[X] N Tr[X]. That is,
SF[X] C I'[x].
Moreover, G[X] C F[X] C SF[X] trivially. Thus we get (a):
(G +K)X] € (F+K)X] € (SF+K)[X] cTx],
and so all classes in (ii) to (viii) lie in I'[X]. In fact, since the null operator O € B[X]
is compact, the above chain of inclusions trivially ensures
G1X] € FIX] C SFIX) C T[]

On the other hand, since the null operator O € K[X] is not in SF[X], that chain of
inclusions does not imply K[X] C I'[X]. But such an inclusion holds if X is a reflex-
ive Banach space with a Schauder basis [10, Corollary 5.1] (see also [11, Theorem
2.1(f)] for a partial result along this line). This is item (b). There are, however, sub-
classes of I'[X] consisting of operators that are not included in (SF + K)[X] U K[X].
For instance, let E € B[X] be a projection. Thus R(F) and N (F) are complemen-
tary subspaces of X, and conversely, if M and N are complementary subspaces
of a Banach space X, then the (unique) projection E: X — X with R(E) = M
and N(E) = N is continuous (i.e., E € B[X] — see e.g. [13, Theorem 3.2.14 and
Corollary 3.2.15] or [8, Problem 4.35]). Therefore,

E[X] CT[x].
On the other hand let M, A and M & N be infinite-dimensional Banach spaces.
FE=100=(,9)omX=MaN,then E € £[X] with R(E) = M @ {0} and
N(E) = {0} & N (and so they are complemented in M @& N). Since dim N = oo, we
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get dim M (E) = oo and codim R(E) = oo, and hence E & SF[X] (cf. Definitions 2.1
and 2.2, and Proposition 2.1). The restriction E|xqg(0} is isometrically isomorphic
to the identity operator I on M (i.e., E|pgq0y = 1: M — M). Since dim M = oo,
the identity on the infinite-dimensional space M is not compact, and so E| a0}
is not compact, which implies that F ¢ K[X]. Hence,

E[X]) € SFIX]UK[X].
Since (SF + K)[X] = SF|X] by Proposition 3.1, it follows that
E[X] € (SF + K)[x]uK[A],

completing the proof of (c). Since the group G[X] is open in B[X] (see e.g. [8, Pro-
blem 4.48(b)]), the class I'[X] is algebraically and topologically large, thus (d). O

Let X* stand for the dual of the normed space X, let T* € B[X*] denote the
normed-space adjoint of T' € B[X], and set

I[x*] = {S € B[x*]: R(S)™ and N(S) are complemented subspaces of X*},
A[X*] = {S € B[X*]: R(S)™ and N (S) are not complemented subspaces of X*}.

Proposition 3.2 gives a full account on how range-kernel complementedness trav-
els between an operator and its adjoint.

Proposition 3.2. Let X be a Banach space and take any operator T € B[X].
(a1) If R(T)~ is complemented, then N (T*) is complemented:
T elplX] = T* eyl
(ag) If X is reflexive and N (T*) is complemented, then R(T)~ is complemented:
X reflexive and T* e Ty[X*] = T eTg[X].
(b1) If X is reflexive and R(T*)™ is complemented, then N(T) is complemented:
X reflexive and T* € Tr[X*] = T eT'y[X].
(ba) If R(T) is closed and N(T') is complemented, then R(T*) complemented:
R(T) = R(T)~" and T € Dy[X] = R(T*) = R(T*)" and T* € [x[X*].
Proof. [10, Theorem 3.1] O

Corollary 3.1. Let X is a Banach space and take T € B[X].

ar) If T € (G+K)[X], then T* € (G + K)[X*].
ag) If T € (F+ K)[X], then T* € (F + K)[X*].
ag) If T € (SF + K)|X], then T* € (SF + K)[X*].

a) (G+K)X*] C(F+K)X*] C(SF+K)x*] CIx.

(b) If T € K[X] and X is a reflexive Banach space with a Schauder basis, then
T* € K[X*] CT[X™].

(¢) If T € E[X], then T* € E[X*] C T[x].

(d1) If T € T[X] and R(T) is closed, then T* € T'[X*].
(d2) If T* e T[X*] and X is reflexive, then T € T'[X].

(
(
(
(
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Proof. As it is well known, if T' € B[X] is compact, invertible, Fredholm, or semi-
Fredholm, then so is its normed-space adjoint T* € B[X*] (see e.g. [13, Theorem
3.4.15], [13, Proposition 3.2.5], [14, Theorem 16.4], and [9, Section 5.1], respec-
tively), and the normed-space adjoint of the sum is the sum of the normed-space
adjoints (see e.g. [13, Proposition 3,1,4]). Thus the results in (a;) for i = 1, 2,3 hold
true, and so (a) holds by Lemma 3.2. Since reflexivity for X is equivalent to reflex-
ivity for X* (see e.g. [3, Theorem V.4.2]), since X* has a Schauder basis whenever
X has (see e.g. [13, Theorem 4.4.1]), and since if E € B[X] is a continuous projec-
tion and so is its adjoint E* € B[X*] (reason: E*? = E** = E* — see e.g. [13,
Proposition 3.1.10]), the results in (b) and (c) follow from Lemma 3.2. The results
in (d;) and (dg) follow from Proposition 3.2. O

4. RANGE-KERNEL UNCOMPLEMENTATION

Classes of operators T such that T' € I'[X] and T* € I'[X*] where exhibited in
Lemma 3.2 and Corollary 3.1. In this section we exhibit an operator T' € B[X] for
which T' € A[X] and T* € A[X™*].

For any pair of normed spaces (X, || - ||x) and (), |- |ly) over the same scalar
field, let X & Y denote the direct sum of X’ and ) equipped with any standard norm

1
(e (@ y)ll, = (=llx + [¥l5)7, p=1, or [(z,9)llec = max{||z| x, [lylly} ), so
that if X and ) are Banach spaces, then so is X @Y (see e.g. [8, Example 4.E]).

The following lemma will be used to prove Theorem 4.1.

Lemma 4.1. If M, Y and Z are subspaces of a Banach space X such that Y and
Z include M (ie., M C YN Z), then the following assertions

(a) M is complemented in X,

(a') M & {0} is complemented in X & X,
a”) {0} & M is complemented in X & X,
(

b) M is complemented in Y,

(
(b") M & {0} is complemented in Y & Z,

(c) M is complemented in Z,
(") {0} & M is complemented in Y @ Z,

are pairwise equivalent.

Proof. Part 1. Let O denote the null operator on X (or its restriction to ) or
to Z). Suppose the subspace M is complemented in the Banach space X'. Then
there exists a continuous projection P: X — X with R(P) = P(X) = M (see e.g.
[8, Problem 4.35(b)]). Since R(P) = M CYNZ,set Py = P|ly:Y — )Y and Pz =
P|z: Z — Z, the restrictions of P to the normed spaces ) and Z, respectively.
These are continuous projections both with range equal to M. Indeed, Py is con-
tinuous (since it is the restriction of a continuous function P on the normed space X
to the normed space Y C X), and R(Py) = P()Y) C P(X) = M = P(M) C P())
(since M CY C X and P = P?), so that R(Py) = R(P) = M, and hence Py is
idempotent (since (Py)? = P|yP|y = P?|y = Py) — similarly, Pz is continuous,
idempotent, and R(Pz) = M. Thus, since M = R(Py) = R(Py) is a subspace of
the normed spaces Y and Z, it is complemented in ) and in Z as well (see e.g.
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[8, Problem 4.35(a)]). Thus (a) implies (b,c). Moreover, since P, Py and Pz are

continuous projections, then set

EX=Paoo=(",):Xex > Xx0X,
Ex=00P=(9,):X0X - XA,
E'=Pra0=(",):Yez2- Ve z,

Ez=086P;=(°, ) YeZ- VaZzZ,
to get continuous projections on the normed spaces X & X and )Y & Z with ranges
M@ {0} and {0} ® M, and so M @ {0} and {0} & M are (closed) subspaces of
the normed spaces X ® X and Y @ Z, which are complemented in X & X and in
Y @ Z (see e.g. [8, Problem 4.35(a)]). Thus (a) implies (a’,a”,b’,c¢’). Hence,

(a) = (a'), (a"), (b), (), (c), (¢/).
Since Y and Z are subspaces of the Banach space X, they are Banach spaces, and
so the same argument that shows that (a) implies (a’,a”’) also shows that

(by = (V) and (¢) = (c).

Part 2. Since X', ) and Z are Banach spaces, the direct sums XY @ X and Y & Z
are again Banach spaces. Since M is a subspace of the Banach space X (thus
a Banach space itself) it follows that M @ {0} and {0} @ M are Banach spaces,
and so (closed) subspaces of the Banach spaces X @ X and Y & Z. If M & {0} is
complemented in the Banach space Y ® Z, then there exists a continuous projection
QY: Y Z— Y Z with R(QY) = M & {0} (see e.g. [8, Problem 4.35(b)]), so
that Q¥ WO R) =M {0} if MCN CYand RC 2. Let JV: Y— Y@ {0} be
the natural embedding of ) onto ) @ {0} (which is an isometric isomorphism with
R(JY) =Y @ {0} and R((JY)~!) =Y). Set

FY _ (JY)—lQYJY: Y — y7
which is a continuous projection with range M (i.e., R(FY) = M). In fact (FY)? =
(J)TIRQYIVI)TIQYIY = (JN)TIQV I = FY, |[FY| = (7)Y = QY]
(since JY and (J¥)~!are isometries), and R(FY) = FY(Y) =(JY)"1QYJY(Y) =
JY1QY(Y e {0}) = JY 1 (Ma{0}) = M. Thus M is complemented in the
normed Y space (see e.g. [8, Problem 4.35(a)]), and therefore

b)) = (b)

Similarly, if {0} & M is complemented in the Banach space Y @ Z, then take the
continuous projection Qz: Y ® Z — Y & Z with R(Qz) = {0} & M, consider the
natural embedding Jz: Z— {0} @ Z of Z onto {0} @ Z, and set

Fy=J,'QzJz: 2 — Z,
a continuous projection with R(Fz) = M. Hence M is complemented in Z, so
@) = (o).

Replacing Y and Z with X it follows, in particular, that if M & {0} or {0} & M is
complemented in the Banach space X & X, then M is complemented in X. Thus

(a)) = (a) and (a") = (a),

which completes the proof. O
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The next result (due to H.P. Rosenthal [16, Theorem 6]) seems to have been the
first example of an injective (M (W) = {0}) Banach-space operator W € B[X] with
a closed range (R(W) = R(W)~) which is not complemented.

Proposition 4.1. For every p € (2,00) there exists a proper (closed) subspace M
of 0% which is not complemented and is the range of a topological isomorphism
W:lh — R(W) =M C 5, so that there exists an operator W € B[] for which
R(W) =R(W)~ is not complemented.

Proof. [16, Theorem 6]. |

Operators in I'[X] whose adjoints are in I'[X*] were discussed in Section 3. Now it
is exhibited an operator in A[X] whose adjoint is in A[X*]. Precisely, an operator
with uncomplemented closed range and kernel whose the adjoint has uncomple-
mented closed range and kernel. The proof uses an argument borrowed from |2,
Example 6] plus Proposition 4.1, Lemma 4.1 and Proposition 3.2.

Theorem 4.1. There exists a Banach space operator T € B[X] such that T € A[X]
and T* € A[X*].

Proof. Consider the reflexive Banach space X = (% for an arbitrary p € (2,00).
According to Proposition 4.1 there exists a (proper, closed) uncomplemented sub-
space M of X which is the range of a topological isomorphism W: X — M =
R(W) C X. Now take the null operator O € B[M], and consider the operator
T € B[X & M] (acting on the Banach space X @& M obtained by the direct sum
of the Banach spaces X and M equipped with any standard norm inherited from
the norm of X') given by

T=Wao=(", ) XoM- XaM,

and hence

R(T)=R(W)®dR(O) =M {0} C XM,

NT)=NW)sNO)={0} oM C X dM,
where R(T) = M @ {0} is a subspace of X & M, so that R(T) = R(T)".
(a) Suppose R(T) = M & {0} is complemented in X & M. Since M is a subspace
of the Banach space X, set Y = X and Z2 = M in Lemma 4.1 (b")=(b), so
that M is complemented in X, which contradicts the fact that M = R(W) is not
complemented in X. Therefore R(T') = M & {0} is not complemented in X & M.
(b) Similarly, suppose N(T') = {0} & M is complemented in X & M. The same
argument (using Lemma 4.1 (¢/)=-(c)) ensures that M is complemented in X, which
is again a contradiction. So N(T") = {0} & M is not complemented in X & M.
Outcome. Both R(T)~ and N (T) are not complemented, which means T'€ A[X].

Moreover, since X is reflexive, Proposition 3.2(ag,b1) thus ensures that both N (7*)
and R(T*)~ = R(T*) are not complemented, which means 7% € A[X*]. |
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