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SINGULAR-CONTINUOUS UNITARIES AND WEAK DYNAMICS

CARLOS S. KUBRUSLY

ABSTRACT. Weak supercyclicity is linked to weak stability. This paper answers
a pair of open questions along this line. It is shown the existence of singular-
continuous unitary operators that are weakly stable, and also of singular-con-
tinuous unitary operators that are weakly unstable. The main result shows that
every weakly l-sequentially supercyclic unitary operator is singular-continuous.
A condition for weak l-sequential supercyclicity to imply weak stability is given.

1. INTRODUCTION

The purpose of this paper is to investigate weak stability and weak supercyclicity
for unitary operators on Hilbert spaces. First it is answered a question on weak
stability for unitary operators: is every weakly stable unitary operator absolutely
continuous? Equivalently, is every singular-continuous unitary operator weakly un-
stable? It is shown the existence of singular-continuous unitary operators that are
(i) weakly unstable, and also that are (ii) weakly stable (Propositions 3.2 and 3.3).
Then it is shown when every weakly supercyclic unitary operator is singular-con-
tinuous (Theorem 4.2 and Question 5.1). Is every weakly supercyclic unitary op-
erator weakly stable? It is given a sufficient condition for a weakly l-sequentially
supercyclic unitary operator to be weakly stable (Theorem 5.1).

2. NOTATION AND TERMINOLOGY

Throughout this paper H will denote an infinite-dimensional complex Hilbert
space. By an operator on H we mean a linear bounded (i.e., continuous) transfor-
mation of H into itself. Let B[H] denote the Banach algebra of all operators on
H, and let T* € B[H] stand for the adjoint of T' € B[H]. An operator U € B[H] is
unitary if UU*= U*U= I, where I stands for the identity in B[H]. An operator
T € B[H] is weakly stable (notation: 7™ =~ O) if the H-valued power sequence
{T™x},>0 converges weakly to zero for every « € H. In other words, if

Tz 250,
which means that (T"x;y) — 0 for every z,y € H; equivalently (since H is com-
plex), (T™xz;x) — 0 for every x € H. Let

OT(y) - n>OTny

be the orbit of a vector y € H under an operator T' € B[H] (i.e., Or(y) is the set
{T"y € H: n € Ng}, Ny denoting the nonnegative integers). The orbit Or(A) of a
set A C H under T is likewise defined: Or(A) = 50 T"(4) = Uyea Or(y). Let
span A stand for the linear span of a set A C H, and consider the projective orbit
of a vector y € H under an operator T' € B[H],

Or(spanfy}) =, _ 7" (span{y})

(i.e., Or(span{y}) is the set {oT™y € H: a € C, n € Np}). Let A~ and A~ stand
for the closure and the weak closure of a set A C H: the closure of A in the norm
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topology and in the weak topology. A nonzero vector y € H is a weakly supercyclic
vector for an operator T' € B[H] if

Or(span{y})™ = H.

A set A CH is weakly sequentially closed if every A-valued weakly convergent
sequence has its limit in A, and the weak sequential closure A% of A is the smallest
weakly sequentially closed subset of H including A, and A is weakly sequentially
dense if A=5* = H. The weak limit set A~ of a set A C H is the set of all weak
limits of weakly convergent A-valued sequences, and a set A is weakly l-sequentially
dense if A= = H. In general the inclusions A~!* C A=5* C A~" may be proper.
A nonzero vector y € H is a weakly sequentially supercyclic or a weakly l-sequentially
supercyclic for an operator T € B[H] if

Or(span{y})™*¥ =H or OT(span{y})_lw =H,

respectively. An operator T € B[H] is weakly supercyclic, or weakly sequentially
supercyclic, or weakly I-sequentially supercyclic if it has a weakly supercyclic, or
a weakly sequentially supercyclic, or a weakly l-sequentially supercyclic vector,
respectively, so that (see, e.g., [19, pp.38,39], [3, pp-259,260])

weak l-sequential _—  weak sequential _ weak
supercyclicity supercyclicity supercyclicity

Thus a vector y € H is weakly l-sequentially supercyclic for an operator T € B[H)
(i.e., Or(span{y})~" = H) if and only if for every = € H there exists a C-valued
sequence {a; }i>o (that depends on x and y, and consists of nonzero numbers) such
that, for some subsequence {T™};>¢ of {T"},>0,

a; Ty — .

Weak l-sequential supercyclicity was introduced [4], implicitly explored [2], and
detailedly examined in [19], form which we have borrowed the terminology.

It is worth noticing that if T has a weakly supercyclic vector, then H is separable
(so that separability is not an assumption, but a consequence of cyclicity). Indeed,
the orbit Or(y) is a countable set, and so if it spans H, that is, if (span (’)T(y))f =
(span U, T"y)” =V, {T"y} = H, then H is separable. In this case y is said to be

a cyclic vector for T, and T is a cyclic operator. If (span(’)T(y))_w = H, then y is
said to be a weakly cyclic vector for T, and T is a weakly cyclic operator. If a set A
is convex, then A~ = A™% (see, e.g., [6, Theorem V.1.4]), and so cyclicity coincides
with weak cyclicity as span is convex. Outcome: weak supercyclicity implies weak
cyclicity, which is equivalent to (plain) cyclicity, which implies that H is separable.

3. SINGULAR-CONTINUOUS UNITARIES AND WEAK STABILITY

Let A be a o-finite measure on the o-algebra At of Borel subsets of the unit circle
T (about the origin in the complex plane). If u is a o-finite measure on Ar, then it
has a unique decomposition p = p, + pts and a unique decomposition p = e + pa,
where the o-finite measures p,, s, e, and g are absolutely continuous, singular,
continuous, and discrete, respectively, with respect to A\. Thus pus = pse + tsd,
where ps. and pgq are singular-continuous and singular-discrete, respectively, with
respect to A. Therefore,

H = Ha +,LLsc +Msd~
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Since discrete implies singular, singular-discrete coincides with discrete (i.e., pg =
tsq). This is the well-known Lebesgue Decomposition Theorem. A measure p is
pure if either p = pg, or g = fise, Or pt = fisq-

A unitary operator is absolutely continuous, singular, continuous, discrete, sin-
gular-continuous, or singular-discrete if its scalar spectral measure is absolutely
continuous, singular, continuous, discrete, singular-continuous, or singular-discrete,
respectively, with respect to the normalized Lebesgue measure on A7 (i.e., with re-
spect to the Lebesgue measure on At such that A(T) = 1). Thus by the Lebesgue
Decomposition Theorem and by the Spectral Theorem every unitary operator Uon a
Hilbert space H = H, & Hs is uniquely decomposed as the direct sum U= U, & U
of an absolutely continuous unitary U, on H, and a singular unitary U; on Hs,
which is also uniquely decomposed as the direct sum U = U. ® U; (on the same
Hilbert space, now decomposed as H = H. @ Hqy) of a continuous unitary U, on
‘H. and a discrete unitary U; on Hy. Thus U; = Use @ Usg on Hy = Hee ® Hsd,s
where Us. on Hg. is a singular-continuous unitary and U;q on Hgq is a singular-
discrete unitary. Therefore, a unitary operator U is the direct sum of an absolutely
continuous unitary U, a singular-continuous unitary Us., and a singular-discrete
unitary Usq (where any direct summand may be missing),

U:UIEB%CEB([Sd?

with respect to the decomposition of the Hilbert space H into H = Hy ® Hse ® Hsq-
Again, since discrete implies singular, a singular-discrete unitary coincides with a
discrete unitary (i.e., Uy = Usq on Hg = Hsq). A unitary operator U is pure if either
U=U,, or U= U, or U= Uy. On a finite-dimensional space unitaries are discrete
(i.e., singular-discrete — reason: on a finite-dimensional space spectra are finite).

Consider a bilateral shift (of any multiplicity) or a direct summand of a bilateral
shift, acting on any Hilbert space. A unitary operator is absolutely continuous if
and only if it is a bilateral shift or a direct summand of a bilateral shift (see, e.g., [8,
pp-55,56]). It can be readily verified that a bilateral shift is a weakly stable unitary
operator, and so is any direct summand of it. Hence U, is weakly stable:

ur - 0.

Another way to see this goes as follows. An absolutely continuous unitary operator is
similar to a completely nonunitary C11-contraction [12, Lemma 2]|. Thus every direct
summand of a bilateral shift (itself included) is similar to a completely nonunitary
contraction and hence weakly stable (reason: similarity preserves stability, and a
completely nonunitary contraction is weakly stable by the Foguel decomposition;
see, e.g., [14, Corollary 7.4]). On the other hand, a singular-discrete unitary operator
is weakly unstable. Indeed, if the scalar spectral measure of a unitary U is discrete,
then it has a countable support, and so U has a countable spectrum, and hence (by
the Spectral Theorem) U is unitarily equivalent to a unitary diagonal, and therefore
it has eigenvalues (in the unit circle) which ensures that U is not weakly stable:

s 0.
Thus a weakly stable unitary operator is either absolutely continuous or singular-
continuous (or a direct sum of them). This is summarized in the next proposition.

Proposition 3.1. If a unitary operator is weakly stable, then it is continuous.
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Remark 3.1. Every unitary operator U can be decomposed as U= S @& W, where
S is a bilateral shift and Wis a reductive unitary operator (see, e.g., [8, p.18] — an
operator is reducible if it has a nontrivial reducing subspace, and reductive if all its
invariant subspaces are reducing). Since a bilateral shift is nonreductive, a unitary
operator is nonreductive if and only if it has a bilateral shift as a direct summand.
(Equivalently, a unitary U is nonreductive if and only if there exist an orthonormal
family {ex} indexed by the integers Z which is shifted by U — i.e., Ueg, = eg41 for
every k € Z — see, e.g., [7, Theorem 13.14].) Outcome: if a unitary U is nonreduc-
tive, then its spectrum is the unit circle: o(U) =T (since T = o(S) C o(U) C T).
The converse however does not hold: there exist reductive unitary operators whose
spectra are the whole unit circle T. The classical example comprises a unitary diag-
onal on (2. Set W = diag({~;},>0) in B[(%], where v; = €?™®i for each j and {o;}
is a distinct enumeration of all rationals in (0, 1], so that (W) =T (since {a;} is
dense in [0, 1]) but the unitary W is reductive [7, Example 13.5]. This also gives an
example of a singular-discrete unitary whose spectrum is the whole unit circle T.

Let L?(T, u) = L?(T, u; C) denote the Hilbert space of all (equivalence classes of)
scalar-valued functions f: T — C on the unit circle that are square-integrable with
respect to a measure p on Ag. Suppose p is singular-discrete (i.e., discrete) with
respect to the Lebesgue measure on At so that u is concentrated on a countable set,
and therefore on a set of Lebesgue measure zero. In this case, L?(T, u) is identified
with (i.e., it is unitarily equivalent to) (2 = L?(N,u') = L*(N,u/;C), where y/
is the counting measure on the power set £(N) and (2 is the Hilbert space of all
square-summable scalar-valued sequences z: N — C (denoted by {z,}n>1).

Proposition 3.2. There ezist weakly unstable singular-continuous unitary operators.

Proof. Let A be the normalized Lebesgue measure on Ay and take the unitary
operator U on the Hilbert space L?(T, )\) given by

(Uf)(z) = 2%f(yz) Mae. for zeT

for every f € L%(T, \), where ¢ is a sufficiently small nonzero rational (for instance,
0 < |g| < 1/12) and v is an irrational in T (i.e., v = €2™*® with a € (0, 1] irrational).
It has been verified in [5] that U is not singular-discrete and that {U™} has a
subsequence, say {U™ }, such that 0 < infy, [(U™1;1)|. Thus Uis not weakly stable,
and so U is not absolutely continuous as well. Nevertheless, the spectral measure of
U is pure (see, e.g., [10]), so that U must be a singular-continuous unitary. |

Take the unit circle T, an arbitrary z € T, and an arbitrary integer k € Z, so
that zF = e = €27 for § € (0,2n] and t € (0,1]. Let u be a (positive) measure
on the o-algebra At of Borel subsets of T, and consider the Hilbert space L?(T, p).
Let U, : L*(T, ) — L?(T, u) be the multiplication operator induced by the identity
function, also called the position operator,

(Uuf)(2) = z2f(2) p-ae for z€T,
for every f € L*(T,u), which is unitary (in fact, UF: L*(T, u) — L*(T, p) is such
that (U; f)(2) =Zf(2), and hence U;U, = U, Uy = I, the identity operator on
L?(T,u)), and henceforward refereed to as the multiplication operator. If the mea-

sure p is finite, then it is a spectral measure for U, (see, e.g., [15, Remark to the
proof of Lemma 4.7]) and so, in this case, the unitary U, is absolutely continuous,
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singular-continuous, or singular-discrete if and only if the finite measure p is ab-
solutely continuous, singular-continuous, or singular-discrete (with respect to the
Lebesgue measure on Art). Let A be any absolutely continuous finite measure on Ar,
so that the multiplication operator Uy: L?(T,\) — L?(T, \) is (purely) absolutely
continuous, thus a bilateral shift or a direct summand of it. If A\ is the normalized
Lebesgue measure on At (so that A(T) = 1, and hence ) is a probability measure
on Ar), then the Hilbert space L?(T, \) is separable and {2*} ¢z is an orthonormal
basis for it, and Uy shifts the orthonormal basis {2*}rez.

In light of Proposition 3.2 it is reasonable to ask whether the absolutely contin-
uous unitaries (i.e., bilateral shifts and their direct summands) are the only weakly
stable unitary operators. This has been raised in [13] and leads to the question: is
every singular-continuous unitary operator weakly unstable? In other words, are the
weakly stable unitary operators precisely the absolutely continuous ones? Equiva-
lently, is a unitary operator weakly stable if and only if it is a bilateral shift or a
direct summand of a bilateral shift? The answer is ‘no’, as we will see in Propo-
sition 3.3 below, and it seems to have been folklore for a long time. Observe that
questions about unitary operators can be reduced to questions about multiplication
operators (after the Spectral Theorem), which in turn boils down to the behavior
of coefficients of the Fourier transform of functions in L!.

Proposition 3.3. There exist weakly stable singular-continuous unitary operators.

Proof. Let absolutely continuous, singular, singular-continuous and singular-dis-
crete mean with respect to the Lebesgue measure on At. Consider the above setup
where U, is the multiplication operator on L2(T, i), and suppose the measure y is
finite (so that it is a spectral measure for U,). A measure p on Ar is a Rajchman
measure if and only if 7i(k) = [ 2" dp — 0 as |k| — oo.

(a) Every absolutely continuous measure is Rajchman, and the converse fails.
(b) Every Rajchman measure is continuous, and the converse also fails.
(See, e.g., [17, Section 1].) Thus there are Rajchman measures that are not abso-
lutely continuous, and so (this is Menshov’s Theorem — see, e.g., [17, Section 3]):

(¢) There exist singular Rajchman measures.

w

Also, it is readily verified that u is Rajchman if and only if Uy — 0 (see, e.g., [1]).

(In fact, (i) (UM f; f) = Jp 2" (2)Pdp, (i) (U f3 ) = (00 F) = [p 27" (2)]dp,
(ili) U, and Uy are weakly stable together, and (iv) L>(T,u)~ = L*(T, 1)). Hence,

(d) p is a Rajchman measure if and only if U — 0.
Then there is no singular-discrete Rajchman measure (cf. Proposition 3.1):
(e) Every singular Rajchman measure is singular-continuous.

Thus if a finite measure p is a singular Rajchman measure (so that it is singular-
continuous), then the multiplication operator U, on L%(T,pu) is a weakly stable
singular-continuous unitary operator. O

Summing up: an absolutely continuous unitary is always weakly stable, a singu-
lar-discrete unitary is never weakly stable, and there exist singular-continuous uni-
taries that are either weakly stable or weakly unstable.
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4. SINGULAR-CONTINUOUS UNITARIES AND WEAK SUPERCYCLICITY

A closed set I' C T is a Kronecker set if for every continuous function f: T — T
and every € > 0 there is an integer k € Z such that sup,cp |f(2) — 2¥| < . A set
I" C T is independent if for every positive integer n € N, every finite sequence of
integers {k;}7_, C Z, and every finite sequence {z;}7_, C T, the identity [/, 2&*
1 implies k; = 0 for every i = 1,...,n. Every finite independent subset of T is a
Kronecker set, there exist perfect Kronecker sets, and perfect Kronecker sets are
topologically homeomorphic to a Cantor discontinuum (i.e., to a perfect nowhere
dense set; equivalently, to a closed set with no isolated points and with empty inte-
rior; see, e.g., [11, Section VI.9.4], [18, Section 5.2]). The next lemmas were proved
in [2]. Lemma 4.1 shows the existence of weakly supercyclic unitary operators.

Lemma 4.1. If p is a continuous probability measure on At whose support is a
perfect Kronecker set, then the multiplication operator U, on L*(T,u) is weakly
supercyclic.

Proof. [2, p.10, Corollary to Example 3.6]. O

Lemma 4.2. Let p be a probability measure on Ar. If the multiplication operator
U, on L*(T, ) is weakly supercyclic, then u is singular.

Proof. This is an immediate consequence of [2, Example 3.10]. |

Lemmas 4.1 and 4.2 show that a continuous probability measure on At whose
support is a perfect Kronecker set is singular-continuous. Theorem 4.1 below is com-
plementary to Lemma 4.2 and can be viewed as a sort of converse to Lemma, 4.1.

The next proposition says that every discrete unitary multiplication operator U,,
on L*(T, pg) is not weakly l-sequentially supercyclic.

Proposition 4.1. Let u be a finite measure on Ar. If p is discrete, then the mul-
tiplication operator U, on L2(T, i) is not weakly l-sequentially supercyclic.

Proof. Let u be a finite discrete measure on At and take the multiplication operator
U, on L?(T, u), so that U, is a discrete unitary:

(Uuf)(2) = 2f(2) p-ae for zeT

for every f € L?(T,u). If U, is weakly l-sequentially supercyclic, then L?(T, u) is
separable. Since the measure p is discrete (i.e., singular-discrete), it is concentrated
on a countable set (and so on a set of Lebesgue measure zero). Thus the multipli-
cation operator U, is identified with (i.e., it is unitarily equivalent to) a diagonal
operator U on 63_:

(Uz)g = zpx, for z, €T

for every = = {zy}i>1 € (3. Write U= diag({zx}), so that

U™ = diag({z;})
for every integer n > 0. If U, on L?(T, p1) is weakly l-sequentially supercyclic, then
so is U on Ki. Let y = {yx}tr>1 € @r be a weakly l-sequentially supercyclic vector

for U. Fix an arbitrary nonzero = {zx}r>1 € 63_. Then there exists a scalar-valued
sequence {a;};>o of nonzero numbers (which depends on z and y) such that

o; UMy “5 1
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for some subsequence {U™ };>¢ of {U"},>0, which means that
ai(U™y;w) — (z;w)

for every w € Ki; equivalently,

Uz —_— —_—
051'2 ok YRk = g L TE W

for every w = {wg}r>1 € 2. Let {e;};>1 be the canonical orthonormal basis for
E%r. Take an arbitrary positive integer j and set w = e; so that

Q2 Y = T

Note that y; # 0 for every j > 1 because y = {y;};>1 € £% is a weakly supercyclic

(thus cyclic) vector for U= diag({zx}). Therefore, since z; € T for every j > 1,
|ai| \y_j|

for all 7 > 1, implying that % is a constant for every j > 1, which is a contradic-

tion, since = was taken to be an arbitrary nonzero vector in ¢ (clearly independent

of the vector y € Ei) Thus U, cannot be weakly l-sequentially supercyclic. O

Theorem 4.1. Let p be a finite measure on Ar. If the multiplication operator U,
on L2(T, p) is weakly l-sequentially supercyclic, then u is continuous.

Proof. Take a multiplication operator U, on L?(T,p) for a finite measure p on
Ar (so that p is a scalar spectral measure for the unitary operator U,). Consider
the decomposition = . + pg, where p. and pg are the continuous and discrete
(with respect to the normalized Lebesgue measure on At) components of the finite
measure y, which are again finite measures on Ar. Consider the decomposition

Up = Us.® Uny,

where the unitary operators U, and U,, are the continuous and discrete direct
summands of the multiplication operator U, on L?(T, u) = L*(T, u.) ® L*(T, pa),
which are again multiplication operators on L?(T, u.) and L?(T, u14), respectively.
Suppose the discrete measure g is nonzero. This means that the discrete direct
summand U,, on L2(T, ug) is not missing in the decomposition of the unitary Us,.
If U, on L*(T, ) is weakly l-sequentially supercyclic, then so are U, on L?(T, )
and U,, on L?(T, jiq). However, Proposition 4.1 says that U,, cannot be weakly
l-sequentially supercyclic, which leads to a contradiction. Then the discrete direct
summand U, on L%(T, 4) is missing in the decomposition of the unitary U,, which
means that the discrete measure pg must be zero, and so i = pi.; that is, the measure
1 is continuous. O

Theorem 4.2. Fvery weakly I-sequentially supercyclic unitary operator is singular-
continuous.

Proof. Let U be a unitary operator on a Hilbert space H. Suppose U is weakly I-se-
quentially supercyclic, so that Uis cyclic (and so it is star-cyclic — i.e., there exists a
vector y € H such that \/{U"U*"y} = H — since it is normal). Thus H is separable
and, by the Spectral Theorem, U is identified with (i.e., it is unitarily equivalent to)
a unitary multiplication operator (induced by the identity function) U, on L?(T, u),
where the measure p on At (supported on o(U)) is finite, and so it coincides with a
scalar spectral measure for U (see, e.g., [15, part (a), proof of Theorem 3.11, and the
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Remark following the proof of Lemma 4.7]). Since U on H is weakly l-sequentially
supercyclic, then so is U, on L?(T,u), and hence U, is continuous according to
Theorem 4.1, and singular according to Lemma 4.2 (since a finite measure is a
positive multiple of a probability measure, and since weak l-sequential supercyclic-
ty implies weak supercyclicity). Thus the multiplication operator U, on L*(T, u)
is singular-continuous, and so the unitary U on H is singular-continuous since it is
unitarily equivalent to U,. O

5. CONCLUDING REMARKS

Question 5.1. Is it true that if a discrete unitary operator is weakly supercyclic,
then it is weakly 1-sequentially supercyclic?

An affirmative answer to Question 5.1 ensures that Proposition 4.1 and Theorems
4.1 and 4.2 still hold if weakly l-sequentially supercyclic is replaced with weakly
supercyclic (thus leading to the nonexistence of weakly supercyclic discrete unitary
operators). Along the same line, it was asked in [2, Question 3.11] whether

there exists a Rajchman probability measure p on Ar for which the
multiplication operator U, on L?(T, x) is weakly supercyclic.

Recall that p is Rajchman if and only if U, is weakly stable (cf. part (d), proof of
Proposition 3.3). Thus the above question is equivalently stated as follows.

Does there exist a weakly stable multiplication operator U, on L*(T, 1)
that is weakly supercyclic?

The affirmative answer was given in [19, Proposition 1.1 and Theorem 2.1]:

there exists a Rajchman probability measure p on At for which the
(unitary) multiplication operator U, on L?(T,u) is weakly supercyclic
but not weakly sequentially supercyclic

and, consequently,

there exists a weakly supercyclic continuous unitary operator that is not
weakly l-sequentially supercyclic.

(Being a continuous unitary, it is not singular, and therefore not singular-discrete,
which means that it is not a discrete unitary, as asked in Question 5.1). As stated
in Lemma 4.1, the existence of a weakly supercyclic (a weakly l-sequentially super-
cyclic, actually) unitary operator was shown in [2, Example 3.6, pp.10,12] (see [19,
Question 1]), and therefore what has also been shown in [19, Proposition 1.1 and
Theorem 1.2] was the first instance of a weakly supercyclic unitary operator that
is not weakly l-sequentially supercyclic. In view of such an affirmative answer, it
seems sensible to enquire in the opposite direction.

Does there exist a weakly stable multiplication operator U, on L2(T, )
that is not weakly supercyclic?

In this case the answer is again in the affirmative, since

if 14 is a finite absolutely continuous measure on Ar, then y is Rajchman
and the multiplication operator U, on L*(T, p1) is not weakly supercyclic.

Indeed, let p be a finite (or a probability) measure. According to Lemma 4.2,
if U, is weakly supercyclic, then p is singular. Therefore, since every absolutely
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continuous measure is Rajchman, it follows that an absolutely continuous measure is
a Rajchman measure that is not singular, and therefore U, is not weakly supercyclic.
However, the reverse question remains unanswered.

Question 5.2. Is every weakly supercyclic unitary operator weakly stable?

This is a particular case of a more general question which has, in its most general
case, a negative answer: is every weakly supercyclic Hilbert-space operator weakly
stable? No, since weak hypercyclicity implies weak supercyclicity, since there exist
Hilbert-space weakly hypercyclic operators (see, e.g., [9, Exercise 12.2.1]), and since
a weakly hypercyclic operator cannot be weakly stable. However, the question seems
to remain answered when restricted to power bounded operators even for weak I-
sequential supercyclicity: is every weakly l-sequentially supercyclic power bounded
operator weakly stable?

The next result gives a condition for a weakly unstable unitary operator not
to be weakly l-sequentially supercyclic, which brings to mind the so-called Angle
Criterion for supercyclicity (see, e.g., [3, Theorem 9.1]).

Theorem 5.1. If a unitary operator U on a Hilbert space H is not weakly stable,
and if for every x € H for which U™z -~ 0 there is a nonzero x’' € H such that

(U252 — [l 2]l
then U is not weakly [-sequentially supercyclic.

Proof. We begin with a definition. A normed space X is said to be of type 1 if strong
convergence (i.e., convergence in the norm topology) for an arbitrary X-valued se-
quence {zy } coincides with weak convergence plus convergence of the norm sequence
{H:ckH} (i,e,’ T — T <— {l'k 2, rand ||ggk|| — ||m||} — also called Radon—Riesz
space and the Radon—Riesz property, respectively). Every Hilbert space is a Banach
space of type 1. Now suppose U is a unitary operator on a Hilbert space H, so that
dual pairs amount to inner products (after the Riesz Representation Theorem).
Moreover, suppose U is not weakly stable. Since U is a power bounded operator on
a Banach space of type 1, which is not weakly stable, it follows by [16, Theorem
6.2] that if U is weakly l-sequentially supercyclic, then the set My =

{y € H: y is a weakly l-sequentially supercyclic vector for U such that U™y -~ O}

is nonempty, and if y is any vector in My, then for every nonzero vector ¢ in H
such that (U™y;y') # 0 either

(1) liminf, |(U™y;y')|=0, or
(2) limsupy [(U™y;y)| < [[y'[| Timsupy, [[U™y|
for some subsequence {U™} of {U™}. Since U is an isometry this means
(2) limsupy, (U™ y;y")| < |ly|l |y’|| for some subsequence {U™} of {U™}.

Therefore, if for every vector z in H for which Uz -~ 0 there exists a nonzero
vector ' in H such that
Uz 2"y — ||z|| |||,
- (s - lall ')
(2") limsup, (U™ x;2’)| = ||z|| ||«'|] for every subsequence {U™} of {U"},
and this implies that
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(1) liminf, |(U™z;2")| > 0,

which contradict (1) and (2), and so U is not weakly l-sequentially supercyclic. O
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