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QUASIAFFINITY AND INVARIANT SUBSPACES

A. MELLO AND C.S. KUBRUSLY

ABSTRACT. Special classes of intertwining transformations between Hilbert
spaces are introduced and investigated, whose purpose is to provide partial
answers to some classical questions on the existence of nontrivial invariant
subspaces for operators acting on separable Hilbert spaces. The main result
ensures that if an operator is D-intertwined to normal operator, then it has a
nontrivial invariant subspace.

1. INTRODUCTION

The motivation for this paper lies in the following well-known open question on
quasiaffinity and invariant subspaces (see, e.g., in [11, p.68] and [16, p.194]).

Question 1. Does a quasiaffine transform of a normal operator have a nontrivial
invariant subspace?

A more general version reads as follows.

Question 2. Does a quasiaffine transform of a reducible operator have a nontrivial
invariant subspace?

In order to investigate special instances of these questions we introduce two
classes of intertwining transformations which, for lack of a better name, are called
class C and class D. We show the existence of nontrivial invariant subspaces for
operators intertwined with normal operators through intertwining transformations
of classes C and D. The paper is organized as follows. Section 2 deals with notation
and terminology, and Section 3 presents the definition of class C transformations
and the auxiliary results that will be required in the sequel. Section 4 introduces
the notion of class D and proves the main result of the paper, namely, Theorem
4.1, whose principal consequence in Corollary 4.1 ensures that if an operator is D-
intertwined to normal operator, then it has a nontrivial invariant subspace. Con-
cluding remarks are considered in Section 5.

Further discussions along these lines (mainly considering quasisimilarity) can
be found, for instance, in [8, 9, 10, 12, 13, 15]. In particular, we will focus on
quasiaffine transforms of normal operators (Question 1), whose particularization
to unitary operators is a well-know classical result for Hilbert-space contractions,
namely, every Cii-contraction is quasisimilar to a unitary operator (see e.g., [19,
p.79], [4, p.104], [16, p.109], [6, p.388], and [11, p.70]) — related problems dealing
with quasisimilarity to isometries were considered in [20, 21], and restrictions of
operators to quasisimilar subspaces in, for example, [2, 3]). For wide range surveys
taking up similar questions linked to the invariant subspace problem the reader is
referred to [1, 7, 14, 17, 18].
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2 A. MELLO AND C.S. KUBRUSLY

2. NOTATION AND TERMINOLOGY

Throughout this paper H and K will stand for complex, separable, and infinite-
dimensional Hilbert spaces. Let B[H, K] be the Banach space of all bounded linear
transformations from H into K. Set B[H] = B[H, H] for short, which is the Banach
algebra of all operators on H (i.e., of all bounded linear transformation of H into
itself). By a subspace of H we mean a closed linear manifold of H. For any set
M C 'H let M+ denote the orthogonal complement of M in H (which is a subspace
of H). The closure M~ of a linear manifold M is a subspace. Let R(X) = X (H) be
the range of X € B[H, K], which is a linear manifold of K, and let N'(X) = X ~1({0})
be the kernel of X, which is a subspace of H. Let T* € B[H] stand for the adjoint
of T € B[H]. An operator T' € B[H] is normal if TT* = T*T, and unitary if it is a
normal isometry (i.e., if TT* = T*T = I, where I stands for the identity operator
in B[H)). If X € B[H, K], T € B[H], L € BIK], and XT = LX, then we say that X
intertwines T to L (and so T is intertwined to L). A transformation X € B[H, K] is
and R(X)~ = K). An operator T' € B[H] is a quasiaffine transform of an operator
L € B[K] if there exists a quasiinvertible transformation X € B[H, K| intertwining T’
to L. A subspace M of H is invariant for T' € B[H] (or T-invariant) if T(M) C M,
and M reduces T (or M is a reducing subspace for T) if both M and M* are
invariant for 7', and M is nontrivial if {0} # M # H. An operator is reducible if
it has a nontrivial reducing subspace.

3. AUXILIARY RESULTS

Before introducing the notion of transformation of class C, recall that every
normal operator (on a Hilbert space of dimension greater than 1) has a nontrivial
reducing subspace. Then Question 1 and 2 have the following partial answers.

Proposition 3.1.[11, Corollary4.4]. Take T € B[H], L€ B[K], and X€ B[H, K] such
that XT = LX. Let M C K be a nontrivial finite-dimensional reducing subspace for
L. If R(X)~ =K, then XY (M%) is a nontrivial invariant subspace for T.

In particular, this applies to quasiaffine transforms of reducible operators.

Proposition 3.2. [11, Corollary 4.5]. If an operator T € B[H] is a quasiaffine
transform of another operator L € B[K] that has a nontrivial finite-dimensional
reducing subspace, then T has a nontrivial invariant subspace.

These results are based on the following proposition.

Proposition 3.3. [11, Lemma 4.1]. Let T € B[H], L € B|K], and X € B[H, K] be
such that XT = LX. Suppose M C K is a nontrivial invariant subspace for L.
If R(X)” =K and R(X) N M # {0}, then X ~1(M) is a nontrivial invariant sub-
space for T.

Proposition 3.1, 3.2, and 3.3 motivate the definition of class C transformations.
Definition 1. A transformation X € B[H, K] is of class C if
R(X) N M # {0}

for every infinite-dimensional subspace M of K. In this case we say that X € C.
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Let T € B[H], L € B[K], and X € B[H, K] be such that X intertwines T to L (i.e.,
such that XT = LX). If in addition X € C, then we say that T is C-intertwined to
L, or that X is a transformation that C-intertwines T to L. It can be verified that
transformations of class C satisfy the following properties. (Proofs are omitted here
since we prove these results for a more general class in Section 4; cf. Remark 4.1.)

Proposition 3.4. If X €C, then dimR(X)! < o0, so that dim R(X) = oco.

Considering the definition of transformations of class C, and according to Ques-
tions 1 and 2, we pose the following further question.

Question 3. Does every operator C-intertwined to a normal operator have a non-
trivial invariant subspace?

This question will be answered in Corollary 4.1. Meanwhile, transformations of
class C yield the following result, which is naturally linked to Proposition 3.3

Proposition 3.5. If X € B[H,K] is a transformation of class C, and if N € B|K]
is a mormal operator, then there exists a montrivial infinite-dimensional reducing
subspace for N, say M, such that R(X) Z M.

Proof. Let X € B[H, K] be an arbitrary transformation of class C, and let N € B[K]
be an arbitrary normal operator. The proof goes by contradiction. That is, assume
that for every nontrivial reducing subspace M for N with dim M = co we have

R(X)C M. (*)

This will lead to a contradiction. Since N is normal and K is infinite-dimensional, it
follows that there exists a nontrivial reducing subspace M for NV with dim M; = oo
(reason: if A" and N'* are reducing and nontrivial for N, then at least one is infinite-
dimensional). Thus the inclusion in () ensures that

R(X> - M17
and hence

R(X)N M7 ={0}.

Since X € C, it follows that dim M7 = n; < co. Moreover, since M is a nontrivial
reducing subspace for N, it is clear that (N|am,)* = N*|amy: M1 — My so that
N; = N|pm,: My — My is normal, and hence there is a nontrivial reducing sub-
space My C M; for Ny (thus a nontrivial reducing subspace for N') with dim My =
00. Again by the inclusion in (x) we get

R(X) € Ma,
and therefore,

R(X)N Mz = {0}.

Since X € C, it follows that dim Mg = ny < co. Then, since My C M; if and only
if Mi{ C Mg, it also follows that ny < ny. Hence, by a trivial induction, for each
integer k > 1 there is a nontrivial reducing subspace My, for N such that

dim My, = oo,

R(X) g Mk+1 C Mk7

R(X) N My = {0},

dim/\/lkL =1k < Ngt1-

Since the sequence {ny}r>1 of positive integers ny = dim M is increasing and
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R(X) C My = My CR(X)",
it follows that dim R(X )+ = oo, which contradicts Proposition 3.4, thus completing
the proof. O

4. CLASS D AND MAIN RESULTS

Now we introduce the notion of transformations of class D, and we show how
this class provides an affirmative answer to the existence of nontrivial invariant
subspaces as in the forthcoming Question 4.

Definition 2. A transformation X € B[H, K] is of class D if
R(X)NM#{0} or R(X)NnMt£{0}
for every subspace M of K. In this case we say that X € D.

Let T € B[H], L € BIK], and X € B[H, K] be such that X intertwines T to L (i.e.,
such that XT' = LX). If in addition X € D, then we say that T' is D-intertwined to
L, or that X is a transformation that D-intertwines T to L. Since K = M + M=+
and dim KC = oo, it is clear that if X € C, then X € D; that is,

CCD.
Transformations of class D satisfy the following properties.
Proposition 4.1. If X€ D , then dimR(X)* < oo, so that dimR(X) = oco.
Proof. Let X € B[H, K] be of class D. We split the proof into two parts.
Part 1.  dimR(X) = oc.
Take an arbitrary X € B[H,K]. Suppose dimR(X) =n < oco. This implies that

there exists a finite orthonormal basis {e;}?_; for R(X) so that
R(X) = span{e; } ;.
Since R(X) is finite-dimensional, it is closed, and so K = R(X) + R(X)L. Since K is
infinite-dimensional and separable, then there exists a countably infinite orthonor-
mal basis {f;}32, for R(X)*. Thus
R(X)* = (span{fi}2,)
Consider the finite-dimensional subspace

n

M = span{e; + fi}ioq = span{ Ei\—/%fi }izl

of K =R(X)+ R(X)* spanned by the orthonormal set {% ? ., which is an

orthonormal basis for M. Since every nonzero vector in the finite-dimensional
space M has a component in R(X) and a component in R(X)+, we get

R(X)NM={0} and R(X)NM*=/{0},
and hence X ¢ D. Therefore,
XeD = dimR(X)=o0.
which completes the proof of the claimed result in Part 1.
Part 2.  dimR(X)t < .

The proof goes as follows. Since dimR(X) = oo by Part 1, and since R(X)~ is
separable, let {e;}22; be a countably infinite orthonormal basis for R(X)~, so that
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R(X)™ = (span{e}i2;)
Suppose dim R(X )J‘ = 00. Thus there exists a countably infinite orthonormal basis
{fi}32, for R(X)* such that

R(X): = (span {f:}321)

Consider the countably infinite orthonormal set {e\-/;-g L1920, and take the subspace

eit [e%S)

M spanned by it (so that {Tgf 20, is an orthonormal basis for M),

M = (span {17 )7 = (span{e; + fi}32) 7,

which is an infinite-dimensional subspace of K = R(X)~ + R(X)™. Since every
nonzero vector in the infinite-dimensional space M has a component in R(X)~
and a component in R(X)*, we get

R(X)"NM={0} and R(X)"nM*+={0}.
Thus
R(X)NM={0} and R(X)NM*={0},
and hence X ¢ D. Therefore,
XeD = dimR(X)" <.

which completes the proof of the claimed result in Part 2. O

Remark 4.1. Observe that Proposition 3.4 is a particular case of Proposition 4.1,
once class C is included in class D (although Proposition 3.4 can be independently
proved by using similar arguments). Also note that the proof of Part 2 in Proposi-
tion 4.1 ensures the following assertion.

If X € B[H,K] is such that dimR(X) = co and dim R(X)* = oo, then there

is an infinite-dimensional subspace M C K such that R(X) N M = {0} and

R(X) N M+ = {0}.

Actually, since class D includes class C, and based on Question 3, we pose the
following central question.

Question 4. Does every operator D-intertwined to a normal operator have a non-
trivial invariant subspace?

This has an affirmative answer whose proof depends on the following result.

Theorem 4.1. If X € B[H,K] is a transformation of class D, and if N € B[K] is
a normal operator, then there is a nontrivial reducing subspace M for N such that

R(X) L M and R(X)N M # {0}.

Proof. Let X € B[H, K] be a transformation of class D and let N € B[K] be a normal
operator. Suppose that every nontrivial reducing subspace M for N is such that

R(X)NM={0} or R(X)CM. (%)
Since N is normal, there is a nontrivial reducing subspace M; for N. Since in
addition X € D, it also follows by Definition 2 that
R(X)N My #{0} or RX)NM;i #£{0}
With no loss of generality assume that R(X) N M; # {0}. By (%) we get
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R(X) € My, (34)
which implies that
Mt CR(X)* .

By Proposition 4.1, Part 2, dim M{ = n; < oo, so that dim M; = co. Since N
is normal and M is a nontrivial reducing subspace for N, it follows that the
restriction Ny = N|paq,: My — M is normal, so that there is a nontrivial reducing
subspace My C M; for Ny (which is nontrivial and reducing for N). Let M
denote the orthogonal complement of My in My, and write

My = My + Mo,

where M1, 1. Ms, and M5 is nontrivial and reducing for N1, and hence nontrivial
and reducing for N. Since X € D, it follows by Definition 2 that

R(X)NMy#{0} or R(X)NMz #0.
If R(X)N My # {0}, then by (*)
R(X) C My C M.
If R(X) N Mz # {0}, then by () and (xx)
R(X) C My C M.
Again, with no loss of generality assume that
R(X) C My C My,
which implies that
My € My CR(X)™,

and so (by Proposition 4.1, Part 2) dim My = ny < 00, so that dim My = oo, where
ny < ny. Repeating this argument we construct (by induction) a sequence { My }x>1
of infinite-dimensional nontrivial reducing subspaces for IV such that, for each & > 1,

R(X) C My,

M SR(X)*,

dim Mé‘ =N < Ng41-
Since the sequence {n}x>1 of positive integers nj, = dim M- is increasing, it fol-
lows that dim R(X)* = oo, which contradicts Proposition 4.1, Part 2. Therefore,
there is a nontrivial reducing subspace M for N such that

RX)NM#£{0} and R(X)Z M. O
An important consequence of Theorem 4.1 is the answer to Question 4.

Corollary 4.1. Let T€ B[H|, Ne BIK], and X € B[H,K] be such that XT =
NX. If Xe€D and N is normal, then T has nontrivial invariant subspace.

Proof. Since the intertwining transformation X is of class D, Theorem 4.1 says that
N has a nontrivial reducing subspace M for which

R(X)ZM and R(X)NM #{0}. (%)
(a) Since X is linear and continuous, X (M) is a subspace of H.

Actually, the inverse linear image of a linear manifold is a linear manifold, and the
inverse continuous image of a closed set is closed.

(b) Since M is invariant for N, X ~1(M) is an invariant for 7.
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Indeed, since X[X~1(M)] € M, it follows that NXX~1(M) C N(M) C
(because M is N-invariant). Thus, since X7 = NX, we get XT X ~1(M) C M,
that [TX~1(M)] € X~}(M), and hence X ~1(M) is invariant for 7.

(c) Since () holds, X ~1(M) is nontrivial

In fact, the condition R(X)N M # {0} in () ensures that X ~1(M) # {0}. On
the other hand, if X ~}(M) = H, then R(X) = X(H) = XX} (M) C M, which
contradicts the condition R(X) € M in (x), and therefore X ~}(M) # H. |

Corollary 4.1 supplies an affirmative answer to Question 4.

If an operator T is D-intertwined to normal operator, then T has
a nontrivial invariant subspace.

Since C C D, Corollary 4.1 trivially holds if class D is replaced by class C, supplying
an affirmative answer to Question 3, which is stated as above with class D is replaced
by class C. Motivated by the affirmative answer to Question 3 we pose the question.

Question 5. Is every bounded linear transformation with dense range of class C?

Question 5 is important because, according to Corollary 4.1, an affirmative an-
swer to it would imply an affirmative answer to Question 1. However, we will see
next that Question 5 has a negative answer.

Proposition 4.2. There exists X € B[H, K]\ C with dense range.

Proof. Set K = 'H so that B[H, K] = B[H]. Take an arbitrary noncompact operator
X € B[H] with R(X) # R(X)™ = H. Set R =R(X) for short. Since X is not
compact, it follows that M C R for some infinite-dimensional subspace M of H
[5, pp.265-266]. Moreover, since R is nonclosed and H is separable, there exists a
unitary operator U € B[H] such that RN U(R) = {0} [5, Theorem 3.6]. Therefore,
U(M) is an infinite-dimensional subspace of H (because U is an isomorphism and
an isometry and dim M = oo) such that R N U (M) = {0}, which means that X is
not of class C according to Definition 1. |

Proposition 4.2 not only supplies a negative answer to Question 5 but in fact it
shows that every noncompact operator on a separable Hilbert space with nonclosed
range is not of class C.

5. CONCLUDING REMARKS
Observe that the same argument in the proof of Corollary 4.1 ensures the fol-

lowing result (compare with Proposition 3.3).

Proposition 5.1. Let T € B[H], L € B[K], and X € B[H, K] be such that XT =
LX. If L has a nontrivial invariant subspace M such that R(X) Z M and
R(X)N M # {0}, then X1 (M) is a nontrivial invariant subspace for T.

Proposition 5.1 can be thought of as a generalization of Proposition 3.3, which
motivates the following generalizations of Questions 4 and 5.

Question 6. Does every operator D-intertwined to reducible operator have a non-
trivial invariant subspace?

Question 7. Is every bounded linear transformation with dense range of class D?
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We close the paper with a partial answer to Question 6 in Proposition 5.2, and
with examples of noninvertible transformations of class D in Proposition 5.3.

Proposition 5.2. Let T € B[H], Le B[K], and X € B[H,K] be such that XT =
LX. If Xe€ D and L has a nontrivial reducing subspace M such that dim M = oo
and dim R(X)* < dim M*, then either X ~1(M) or X~1(M™) is a nontrivial in-
variant subspace for T.

Proof. Suppose X € D so that R(X) N M # {0} or R(X) N ML # {0} by Defini-
tion 2. If R(X)NM # {0} and dim R(X)* < dim M+, then R(X) € M. (Rea-
son: R(X) C M = M+ CR(X)+ = dim M+ <dimR(X)*.) Thus, by Propo-
sition 5.1, X~1(M) is a nontrivial invariant subspace for 7. On the other hand,
if R(X)N ML # {0} and dim M = oo, then R(X) € M. (Reason: since M =
M~ = (M), we get R(X) C MLt = M CR(X)L = dimM < dimR(X)L =
dimR(X)t = c0.) Again, by Proposition 5.1, X~1(M") is a nontrivial invariant
subspace for T. Outcome: either

RX)NM# {0} and R(X) Z M or R(X)N ML+ {0} and R(X) € M .

Since M and M are nontrivial and invariant for L, it follows by Proposition 5.1
that either X ~1(M) or X~1(M) is a nontrivial invariant subspace for 7. |

The next proposition ensures the existence of examples of noninvertible trans-
formation of class C (and therefore of class D). For instance, let R be an infinite-
dimensional Hilbert space, consider the one-dimensional space C, let I be the iden-
tity operator on R, and set X = 0®7 on H = C®R. Thus R(X) = R and
R(X)t = C, and so X is of class C (and hence it is of class D) according to
Proposition 5.3 below.

Proposition 5.3. Take X € B[H,K]. If R(X)™ = R(X) and dimR(X)*+ < oo,
then X € C.

Proof. Suppose R(X) is closed and dimR(X)+ < oo. If dimR(X)+ = 0 (i.e.,
if R(X)* = {0}, then R(X)™ = R(X) = K, and X € C trivially. Thus suppose
dim R(X)* = n for some positive integer n. Let M be an arbitrary subspace of K
with infinite dimension. We show that

R(X)N M £ {0}.

Take n + 1 linearly independent vectors z1,..., 2,41 in M. Since K is a Hilbert
space and R(X) is closed, it follows that M C K = R(X) + R(X)*, and so there
exist o1,...,T,41 in R(X) and 91, ..., Yns1 in R(X)L such that

zi =T+ ¥i

for each integer i € [1,n + 1]. Since dim R(X)* = n, the finite sequence {y;}7*" is
made up of linearly dependent vectors in R(X)"*, so that

n+1
> =0
=1

for some finite sequence of {a; }7, 11 of scalars, not all null. Moreover, since the finite
sequence {zi}?jll is made up of linearly independent vectors in M, it follows that

n+1 n+1 n+1 n+1
E L oGz = E Lo+ E oy = E _ar; € R(X)
=1 =1 =1 =1
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by the above two displayed identities, and also
n+1
0 7é Zi:l ;25 S M

Therefore -
0# Z‘il a2z € R(X)NM.
Thus X € C. O

As a final remark we include an example yielding a negative answer to Question
7, which has been communicated to us by an anonymous referee.

Remark 5.1. Let T denote the unit circle in the complex place, let p stand for
the normalized Lebesgue measure on Borel subsets of T, and consider the Hilbert
space L2(T) = L?(T,u). Take the standard orthonormal basis {ex} = {exr(z) =
2% 2 € T, k € Z} for L?(T), and let H? be the Hardy space spanned by the elements
of {ex} with nonnegative indices, viz., H* = \/, .y ex. Consider the arcs

TH={zeT:z2=¢", 0 €c|0,n]},
Tf ={z e T :2=¢", 0¢0,Z]},
Ty ={z€T :2= el 0¢c (5,7},
and let X: H? — L?(TT) be the map that takes f € H? into f|p+ € L*(TT). This
is a bounded linear transformation between the Hilbert spaces H? and L?(T+) that

has a dense range. Recalling that the only function in H? that vanishes on a set of
positive measure is the null function, we get

R(X)N L*(T{) = R(X) N L*(T§) = {0}.

Since L2(T*) = L*(T}) @ L%(TJ), so that L?(T5) = L?(T{ )", it follows that X is
not of class D.
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