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POWERS OF POSINORMAL OPERATORS

C.S. KUBRUSLY, P.C.M. VIEIRA, AND J. ZANNI

ABSTRACT. Square of a posinormal operator is not necessarily posinormal. But
(i) powers of quasiposinormal operators are quasiposinormal and, under closed
ranges assumption, powers of (ii) posinormal operators are posinormal, (iii)
of operators that are both posinormal and coposinormal are posinormal and
coposinormal, and (iv) of semi-Fredholm posinormal operators are posinormal.

1. INTRODUCTION

Throughout this paper the term operator means a bounded linear transformation
of a Hilbert space into itself. Posinormal operators where introduced in [10] as the
class of operators T such that T7T* = T*QT for some nonnegative operator @,
which turns out to be equivalent to saying that TT* < o>T*T for some nonnegative
real number «. It was noticed then that this was a very large class, including the
dominant (and so the hyponormal) operators, as well as the invertible operators.

It is well known that the square of a hyponormal operator is not necessarily hy-
ponormal. Since hyponormal operators are posinormal, it is sensible to ask whether
the square of a posinormal operator is posinormal. Although open for a while, this
question had been tackled before. For instance, an operator 1" is p-posinormal for
some positive real number p > 0 if (T'T*)? < o?(T*T)P for some positive real num-
ber o > 0 (cf. [3], [9]), so that a 1-posinormal operator is posinormal. Tt was shown
in [9, Corollary 4] that, for each integer n > 1, if T' is p-posinormal, then T is £-
posinormal. However, the original simple question remained unanswered, namely is
the square of a posinormal operator posinormal ? We show that this fails in general,
and investigate conditions to ensure that natural powers of a posinormal operator
are posinormal. In particular, we show that each natural power of a posinormal op-
erator with finite descent is posinormal, natural powers of operators that are both
posinormal and coposinormal are posinormal and coposinormal, natural powers of
semi-Fredholm posinormal operators are posinormal, and every natural power of a
quasiposinormal operator i quasiposinormal.

2. POSINORMAL OPERATORS

Let H be a complex Hilbert space, and let B[H] denote the Banach algebra
of all operators on H. If M is a linear manifold of H then M~ and M stand
for closure and orthogonal complement of M, respectively. For any T € B[H], set
N(T) =ker T = T~*{0} (the kernel or null space of T, which is a subspace — that
is, a closed linear manifold — of H) and R(T") = ranT = T'(H) (the range of T,
which is a linear manifold of H). Let T* € B[H] denote the adjoint of T € B[H]. A
nonnegative operator Q € B[H] is a self-adjoint (i.e., @* = @) such that 0 < (Qz ; x)
for every « € ‘H, which is denoted by O < @ (or @ > O), where ( ; ) stands for the
inner product in H, and O stands for the null operator. If A and B are operators
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on H such that O < A — B, then we write B < A. Recall that T*T (and so TT*)
is always nonnegative. An operator T' s normal if it commutes with its adjoint (i.e.,
TT* =T*T), hyponormal if TT* < T*T, and cohyponormal if 7% is hyponormal.
There are several equivalent definitions of posinormality as it will be listed in Def-
inition 1, whose properties that will be required in the sequel will be presented in
Proposition 1. For proofs concerning the equivalences in Definition 1 and the prop-
erties in Proposition 1, the reader is referred to [10, Theorems 2.1, 3.1, Corollary
2.3, Proposition 3.5], [8, Proposition 1, Remarks 1,2], and [4, Theorem 1, Propo-
sition 3]). The main ingredient for proving the equivalences in Definition 1 is a
classical result due to Douglas [2, Theorems 1,2], which reads as follows.

Lemma 1 [2]. For arbitrary operators A and B in B[H], the following assertions
are pairwise equivalent.

(a) AA*< a?BB* for some a > 0.
(b) R(A) € R(B).
(¢) There exists C € B[H] such that A = BC.

Definition 1 [10, 8, 4]. Take an arbitrary operator T € B[H].

(a) T is posinormal if any of the following equivalent assertions are fulfilled.
(a1) TT* =T*QT for some Q > O.

(ag) TT* <T*QT for some Q > O.

(ag) T =T*L for some L € B[H].

(as) R(T) € R(T™).

(as) TT* < aT*T for some o > 0.

(ag) ||[T*z| < a||Tz| for some o > 0 and every z € H.

(b) T is coposinormal if T* is posinormal.
(c) T is dominant if any of the following equivalent assertions are fulfilled.

(c1) AI —T is posinormal for every A € C.

(ca) R —T)C R(N —T*) for every \ € C.

(c3) For each A € C there is a real number a) > 0 such that
[[(AT — T*)z|| < a)|[(A — T)z|| for every x € H.

(d) T is codominant if T* is dominant.

A further characterization for posinormality was worked out in [3, Theorem 2].
Basic properties of posinormal operators that will be required in the sequel are
summarized in Proposition 1 below. Note from Definition 1 that

o T is posinormal and coposinormal if and only if R(T) = R(T*),
o T is dominant and codominant if and only if RN —T) = R\ —T*) for all \.
Proposition 1 [10, 8, 4]. Take an arbitrary operator T € B[H)].
(a) If T is posinormal, then
(a1) N(T) S N(T™),
(az) N(T?) = N(T).

(b) Every invertible (in fact, every injective with closed range) is posinormal.
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(¢) The class of hyponormal operators is properly included in the class of dominant
operators, which is properly included in the class of posinormal operators.

Remark 1. (a) Proposition 1(a;) is an immediate consequence of Definition 1(ag),
and Proposition 1(ag) has been verified in [4, Proposition 3] and [8, Remark 2].

(b) An operator is surjective if and only if its adjoint is injective with closed range.
(Indeed, for any A € B[H], R(A) = H if and only if R(A) is closed and dense, and
R(A) is closed if and only if R(A*) is closed, and R(A)™=H <= R(A)*= {0}
<= N(A*) = {0}). Now observe that, if T* is surjective, then T is trivially posi-
normal (cf. Definition 1(a4)); equivalently. if T is injective with closed range, then
T is posinormal, and this leads to Proposition 1(b).

(c) That the inclusions in Proposition 1(c) are all proper has been shown, for
instance, in [8, p.5]. Since a normal operator is precisely an operator that is both
hyponormal and cohyponormal, it is worth noticing in light of the proper inclusion
in Proposition 1(c) that even the combined inclusion of dominant with codominant,
and posinormal with coposinormal, remain proper. In other words,
normal = hyponormal N cohyponormal
C dominant N codominant € hyponormal

C posinormal N coposinormal € dominant.

In fact, a bilateral weighted shift on ¢2 with weights {|k|~'}°, is quasinilpotent,
posinormal, and coposinormal, and so it is dominant and codominant, but it is
not hyponormal, thus showing that there exist nonhyponormal operators such that
R(M —T) = R(A — T*) for all A € C. Moreover, for an example of a posinormal
and coposinormal which is not dominant take an invertible nondominant operator;
eg.,T = ((1) %) where R(I —T') € R(I — T%); this can be generalized by taking the
sum of 21 with a backward unilateral shift, also yielding an invertible nondominant.

3. AN AUXILIARY RESULT

Recall the notion of ascent of an operator. If A € B[H], then

(i) N(A™) C N(A™H1) for every integer n >0, and

(ii) if N(Am0) = N(Amo+1) for some integer ng > 0, then N'(A") = N(A™H1) for
every integer n > ng,

where (i) is clear, and (ii) is well-known (see, e.g., [7, Lemma 5.29]). If there exists an
integer ng > 0 such that N'(A™0) = N (A" *1)  then the least integer for which the
identity holds is the (finite) ascent of A — notation: asc(A) — so that N(A™) =
N (A2 for every n > asc(A); if there is no such an integer, then we write
asc(A) = co. Summing up: asc(A) = min{n: N(A"*!) = N(A")}.

Dually, recall the notion of descent of an operator. If A € B[H], then
(i") R(A™T1) C R(A™) for every integer n >0, and
(ii") if R(Amo+l) = R(A™) for some integer ng > 0, then R(A™*!) = R(A") for
every integer n > ng.

where again (i’) is clear, and (ii”) is well-known (see, e.g., [7, Lemma 5.29]). If there
exists an integer ng > 0 such that R(Am*!) = R(A™0), then the least integer for
which the identity holds is the (finite) descent of A — notation: dsc(A) — so that
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R(A™) = R(A%M) for every n > dsc(A); if there is no such an integer, then we
write dsc(A) = co. Summing up: dsc(A4) = min {n: R(A"") = R(4A™)}.
Remark 2. Thus what Proposition 1(ag) says is

(a) A is posinormal = asc(T") < 1.
The following basic properties of ascent and descent are readily verified.

(b) asc(A) =0 <= Aisinjective and dsc(A)=0 <= A is surjective.
For arbitrary integers j, k > 1,

(c) asc(AF) < j <= asc(A) <jk and dsc(AF) <j <= dsc(4) < jk.

(Indeed, NV(Akm0) = N(AF(mot1) «—= N(AR70) C N(AFmotl) C oo C N(ARotE)
= N(AFmo) = N(AFno) = N(AFrotl) = ... = (Ao t1)) — fasc(AF) < ng
<= asc(A) < kng}. By a similar argument: dsc(A*) < ng <= dsc(4) < kny.)

Lemma 2. Take any operator A € B[H| and an arbitrary integer k > 1. If
asc(A) <k and dsc(A) <oo or asc(A)<oo and dsc(A) <k,

then

dsc(A) = asc(4) <k,
and so

R(A™) = R(A*)  and N(A™) = N(A*)  for each integer n > k.
If, in addition, R(A™) is closed for every n, then
dsc(A*) = asc(A¥) <k,
and so

R(A™) = R(A*)  and N(A™)=N(A**)  for each integer n > k.

Proof . Take an arbitrary A € B[H]. Consider the following auxiliary results.
CLAIM (1). asc(A) < oo and dsc(A) < co = asc(A) = dsc(4).

Proof of Claim (i). See, e.g., [12, Theorem 6.2]. O

CramM (1rn).

(a) dsc(A*) < oo = asc(A) < oo,

(b) asc(A) < oo = dsc(4*) < o0 if R(A™) is closed for every integer n > 1,

(c) asc(A) < oo =~ dsc(A*) < oo if R(A™) is not closed for some integer n > 1.

Proof of Claim (ii). Take an arbitrary positive integer n.

(a) If asc(A) = oo, then N (A™) C N(A™H!) so that N(A™H1)L € M(A™)L (since
N () is closed — indeed, M C N = Nt C M+t and N+ = Mt= M =N").
Equivalently, R(A*(™t1))~ C R(A*™)~. As R(A*™!) C R(A*"), the above proper
inclusion ensures the proper inclusion R(A*(" 1)) c R(A*"). So dsc(A*) = oo, and

asc(A) = oo = dsc(A4*) = 0.
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(b) If dsc(A) = oo, then R(A"™!) C R(A™). Suppose R(Am™) is closed so that
R(A™M1) CR(A™) implies R(A™)L C R(A™1)L. That is, N(A*™) C N(A*(nFD),
Hence asc(A*) = co. Therefore

dsc(A) =00 = asc(A*) =0 if R(A™) is closed for every integer n > 1.
Dually (as A** = A and R(A") closed <= R(A*") closed),
dsc(A*) =00 = asc(A) =00 if R(A"™) is closed for every integer n > 1,

(¢c) To verify (c) consider the following example. Take A such that A'(A*) = {0}
and R(A*) # R(A*)~ = H. Then N(A) = R(A*)* = {0}, and hence asc(A) = 0.
We show that dsc(A*) = oc.

Since R(A*) # R(A*)” = H, take v € H\R(A*). Suppose dsc(A*) < oo, say, sup-
pose dsc(A*) = n. Then R(A*") = R(A*"*1), and so there exists w € H such that
Antly = A*my. Thus A**(A*™w — v) = 0 so that A*w = v (since asc(A*) = 0 =
N(A*™) = {0}). Hence v € R(A*), which is a contradiction. Thus dsc(A4*) = co. O
CLamM (11).  dsc(4) < oo = asc(A*) <dsc(A).

Proof of Claim (iii). Consider the argument in the proof of Claim (ii-a). So dsc(4) =
ng implies R(A™) = R(A™) for every n > ng. Thus R(A™)™ = R(A™)~. Equiva-
lently, N'(A*™) = N(A*™0) (as R(-)+ = N(-*)), which implies asc(A") < ng. O

If asc(A) < k and dsc(A4) < oo (or if asc(A) < oo and dsc(A) < k), then
dsc(A) =asc(A) <k

by Claim (i). Moreover, this implies that asc(A*) < dsc(A) < k by Claim (iii).
Now suppose R(A™) is closed for every n. Since asc(A4) < k, we get dsc(A4*) < oo
by Claim (ii-b). Then, since asc(A*) < k, Claim (i) ensures that

dsc(A*) = asc(A*) < k.
The range and kernel identities follow from the definition of ascent and descent. [

Lemma 2 will be needed in the next section.

4. POWERS OF A POSINORMAL OPERATOR
We begin with an example of a posinormal T" whose square is not posinormal.

Notation: since A*™ = A™* for every A € B[H] and every n > 1, we will denote
the adjoint of A™ by A*™ for every positive integer n.

Example 1. Set P=(30), Po=1# (S’ ) so that (P + P2 =4 (221
inB [(C2] for each positive integer k, where P and each Py are orthogonal projections.
Set A=@, Pand B=A+@, P, = @, (P + Px) in B[(2(C?)] so that

O<A<LB.
Since O < AY2A2 < B1/2Bl/27 Lemma 1 ensures that
R(AY?) C R(B'?).

If O < (P + Py)? — 3P for some integer k > 1, then 8 < % This implies that there
is no constant a > 0 for which 0 # @, P < o @, (P + Px)?. Thus (since A = A?)
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there is no « > 0 such that AA = A < o2B? = aQBB, which means that

R(A) £ R(B)
by Lemma 1. Now consider the operator T' € B[ﬂi(ﬂi((ﬂ))] defined by
O
A2 0
A2 0
T = BY2 0O ;
Bl/2

where every entry not directly below the main block diagonal is null. Thus

10)
10) o)
A o) o)
2 BY24Y2 0 O
- B O
B
Observe that
R(T) = {0} & RAY?) eRA%) e RBY? &@;R(B?,
R(T*) =R(AV) @ TR(AY2) & R(BY2)a R(BY?2) o @, R(B?),
R(T?) = {0} @& {0} & R(A) @& R(BV?AV?*) & @i, R(B),
R(T*?) = R(A) & R(AV2BY?)e R(B) & R(B) & Dy R(DB).

Since R(A'Y/2) C R(B'/?), it follows that R(T) C R(T*), and so T is posinormal.
Since R(A) € R(B), it follows that R(T?) € R(T*?), and so T? is not posinormal.

When we refer to a power of an operator we mean a positive integer power.
Now we investigate under which conditions powers of posinormal operators remain
posinormal. Theorem 1 below ensures that every power of an operator is eventually
posinormal if it has a posinormal power and a power with finite descent; and also
that every power of an operator having a posinormal power and a coposinormal
power is eventually both posinormal and coposinormal. These hold under the as-
sumption that all ranges are closed. Let k, m,n stand for positive integers.

Theorem 1. Take T € B[H]. Suppose R(T™) is closed for every n > 1.

(a) If T* is posinormal for some k > 1 and dsc(T™) < oo for some m > 1, then
T™ is posinormal for every n > k.

(b) If T* is posinormal for some k > 1 and T*™ is posinormal for some m > k,
then T™ is posinormal for every n > k and coposinormal for every n > m.

Proof. (a) Let T* be posinormal for some k > 1, so that asc(T%) < 1 (cf. Remark
2(a)), for which dsc(T™) < oo for some m > 1. Since asc(T*) < 1 if and only if
asc(T) <k and dsc(T™) < oo if and only if dsc(T") < oo (cf. Remark 2(c)),

asc(T) <k and dsc(T) < 0.
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Suppose R(T") is closed for every n > 1. Then by Lemma 2
dsc(T) <k and dsc(T™) < k.
Therefore, since R(T*) C R(T**) (i.e., since T* is posinormal), we get
R(T™) = R(TF) C R(T**) = R(T*™),
implying that 1™ is posinormal, for every integer n > k.
(b) If T* is posinormal for some k > 1 and T*™ is posinormal (i.e., 7™ is coposinor-
mal) for some m > 1, then asc(T*) < 1 and asc(T*™) < 1 by Remark 2(a) and so
asc(T) <k and asc(T*) <m

by Remark 2(c). Suppose R(T™) is closed for every n > 1, and so is R(T™*") (since
these ranges are closed together). Thus by Claim (ii-b) in the proof of Lemma 2,

dsc(T*) < o0 and dsc(T) < oo.
Applying Claim (i) in the proof of Lemma 2,

dsc(T) <k and dsc(T™) <m.
Thus by Claim (iii) in the proof of Lemma 2,

asc(T*) <k and asc(T) < m.
So applying Claim (i) in the proof of Lemma 2 once again,

dsc(T) <k and dsc(T*) <k and dsc(T*) <m and dsc(T) < m.
Since dsc(7T) < k and dsc(T*) < k (so that R(T™) = R(T*) and R(T*") = R(T**)
for every n > k), and since T* is posinormal (so that R(T*) C R(T**)),
R(T™) = R(T*) C R(T*™*) = R(T™™),

and so T™ is posinormal for every n > k. Since dsc(T*) < m and dsc(T) < m (so
that R(T*™) = R(T*™) and R(T™) = R(T*™) for every n > m), and since T is
posinormal (so that R(T*™) C R(T™)),

R(IT™) = R(T™™) € R(T™) = R(T™),
and hence T*" is posinormal for every n > m. O
An important particular case of Theorem 1 for £k = m = 1 reads as follows.

Corollary 1. Take T € B[H]. Suppose R(T™) is closed for every n > 1.
(a) If T is posinormal and dsc(T) < oo, then T™ is posinormal for every n > 1.

(b) If T is posinormal and coposinormal, then T™ is posinormal and coposinormal
for every n > 1.

Example 1 and Theorem 1(a) (or Corollary 1(a)) suggest the existence of posi-
normal operators T' with dsc(T") = co. Posinormal operators T with dsc(T") = oo,
however, do not need to have a nonposinormal square. A typical example is the
canonical unilateral shift 7' of multiplicity 1 acting on ¢2, which is hyponormal,
and hence posinormal. Since T is an isometry, it is injective, and so asc(T') = 0.
Moreover, for each positive integer n. R(T™) = (3 & C™ (which is closed because
T™ is an isometry) so that dsc(T") = co. Furthermore, T" is a unilateral shift of mul-
tiplicity n, thus hyponormal, and so posinormal. The next theorem shows that this
argument can be extended along the same line to injective unilateral weighted shifts
S, so that dsc(S) = oo, although R(S) is not necessarily closed, and asc(S) = 0.
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Theorem 2. If an injective unilateral weighted shift S is posinormal, then S™ is
posinormal for every integer n > 1.

Proof. Let
0
w1 0
w9 0
S = Shift({wk}zo:]) = w3 0

wq

be a unilateral weighted shift on ¢2, which is injective if and only if the weight
sequence {wy} has no zero term (i.e., wy # 0 for every k > 1). Suppose S is an
injective unilateral weighted shift. It is know that

S is posinormal if and only if supy>, d:“—ill—‘ < 00

[8, p.4]. This can be extended to every integer power of injective unilateral weighted
shifts as follows. Take an arbitrary integer n > 1. Observe that

* . 2 +1 2
S5 = diag(0,...,0, TTr; lwkl® TTitslwsls . ),
a diagonal operator on E%L with zeros at the first n entries, and

. 2n—1 2 2n+1
§TSt = dlag(HZ:] ‘wk‘Qa vy kzn ‘wk‘QaHkZ»rH»] ‘wk‘QaszJ;L+2‘wk‘23 s )a

another diagonal operator on Ki. According to Definition 1(as), for each n the
operator S™ is posinormal if and only if there exists a nonnegative number «,,
(constant with respect to the variable k) such that S™S*™ < o2 $*"S™. This means
+j 2ntj , -
that T 27 ) Jwil® < a2 TIi50 41 lwkl? for every j > 0. Equivalently,
"
HZ:§+1|Wk|

;T S
Hkinij+] |wk|

A

o, forevery j>0.

Therefore,
. . . . H:j{;l‘wk‘
S™ is posinormal if and only if sup;-g HQ+ < 00.
k:n+j+1‘°“’~"
Since
n+j n n?
Hk:_j+1|wk| |wi| |wi|
sup —5-—=———— < ( sup < | sup ;
20 T2 o lwel — \k21 (Wt k21 Wkt
it follows the claimed result: if S is posinormal, then S™ is posinormal. O

If T is invertible, then T™ is posinormal for every m > 1. (Indeed, if T is in-
vertible, then 7™ is invertible for every n > 1, and hence posinormal every n > 1).
Recall that T, T% T*T and TT* are invertible (or not) together.

Another special class of posinormal operators for which the square is again posi-
normal will be given in Theorem 3(c) below. Consider the class of all posinormal
operators such that TT* commutes with T*T. Trivial examples: normal operators,
or multiples of isometries (whose powers are clearly normal, or multiple of an isom-
etry, respectively, thus posinormal). In fact, every posinormal operator 7" such that
T*T = p(TT*) (or TT* = p(T*T)) for some polynomial p lies in this class. Note
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that TT* commutes with T*T if and only if TT*T*T is self-adjoint (which hap-
pens if and only if TT*T*T is nonnegative, because the product of commuting
nonnegative operators is again nonnegative). Thus, in particular, if the nonnega-
tive operators T*T and TT* are both diagonal (diagonalized with respect to the
same orthonormal basis for H), then they must commute.
Theorem 3. Take an arbitrary operator T € B[H] so that
R(TT*) CR(T*T) if and only if (TT*)?2< B*(T*T)? for some constant (3 > 0.
Now suppose T is posinormal.

(a) If R(T*T) = R(T*), then T? is posinormal and R(TT*) C R(T*T).

(b) If R(TT*) C R(T*T), then T? is posinormal.

(c) If T*T and TT* commute, then T? and T® are posinormal.
Proof . Take A and B in B[H]. If A and B are self-adjoint (as it is the case for TT*
and T*T), then R(A) C R(B) is equivalent to A%< 32B? for some 3 > 0 accord-
ing to Lemma 1. Recall that R(A*A) C R(A*) and R(A*A)~ = R(A*)~ for every
operator A in B[H].

Suppose T is posinormal, which means that R(T) C R(T*); equivalently, there
exists a constant & > 0 such that |T*y|| < «||Ty|| for every y € H; still equivalently,
there exists a constant a > 0 such that TT* < o?T*T (cf. Definition 1).

(a) Since R(T) C R(T*), it follows that if R(T*T) = R(T*), then R(T?) C R(T) C
R(T*) = R(T*T) = T*(R(T)) C T*(R(T*)) = R(T*?), and T? is posinormal.
Moreover, R(TT*) C R(T) C R(T*) = R(T*T), completing the proof of (a).

(b) Since R(TT*) C R(T*T) is equivalent to saying that there is a 3 > 0 such that
(TT*)2< B2(T*T)? which in turn is equivalent to | TT*z||? < 32| T*Tx|? for every
x € H, it follows that if R(TT*) C R(T*T) and T is posinormal, then

1T T*z|| < o|TT*z|| < aB|T*Tz|| < B TTx|
for every x € H, and so T2 is posinormal, which proves (b).

Recall: if @ and R are operators in B[H] such that O < Q < R, and if QR = RQ,
then O < QR and O < Q? < R? (see, e.g., [6, Problems 5.59 and 5.60]).

(c) Since T is posinormal, it follows that O <TT* < a?T*T. If the nonnegative
operators TT* and T*T commute, then (TT*)? < o*(T*T)?, which means that
|ITT*z||? < || T*Tx||? for every = € H; equivalently, R(TT*) C R(T*T). Thus
T? is posinormal by (b) with

|IT*T*z|| < of| TT*2|| < &®||T*T2|| < o*||TTx|
for every z € ‘H. Take an arbitrary = € H. The above inequalities imply that
|T*T*T*z|| < o*|TTT*z| and |T*T*Tz|| < o*|TTTz|.
However, since TT* and T*1T commute, and since T is posinormal,
|\ TTT*||?= (TTT*x; TTT*z) = (T*TTT*z ; TT*z) = (TT*T*Tx ; TT* )
={(T*T*Tx; T*TT*x) < |T*T*Tx||T*TT 2| < a||T*T*Tx|||TTT*z||.
Therefore, | TTT*z| < a||T*T*Tx||, so that
|T*T*T*z| < o*|TTT || < o°|T*T*Tx| < o°|TTTx],
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and hence T is posinormal. O
When is the product of two commuting posinormal operators posinormal?

Remark 3. (a) The collection of all posinormal operators is a cone in B[H] (i.e.,
~T is posinormal for any « > 0 whenever 7' is posinormal).

(b) Sum of two posinormal operators may not be posinormal. Clear: if T is not
posinormal and A is in the resolvent set of T, then AI and T' — AI are both invertible,
thus posinormal.

(c) Orthogonal direct sums of posinormal operators are trivially posinormal, and
tensor products of posinormal operators are posinormal as well [5, Theorem 4].

(d) Product of two posinormal operators is not necessarily posinormal. For com-
muting operators, see Example 1. For operators that do not commute, consider,
for instance, a unilateral weighted shift, which is the product of two noncommut-
ing posinormal operators, namely, a diagonal (normal) and the canonical unilateral
shift (hyponormal); but examples of (injective) unilateral weighted shifts that are
not posinormal were exhibited in [8, p.4]. Therefore, this shows that even the prod-
uct of a positive operator and a quasinormal (in particular, and a hyponormal)
operator may not be posinormal.

(e) It is worth noticing that, if S and T' commute, and if ST is posinormal, then
R(ST) CR(S)NR(T) NR(S*) NR(T™).
(If S and T' commute, then R(ST) C R(S)NR(T) and R(T*S*) C R(T*)NR(S*),
so that, if ST is posinormal, then R(ST) C R((ST)*) = R(T™*S*).)
Theorem 4. Suppose T is posinormal.
(a) If S is posinormal and S* and T commute, then ST is posinormal.

(b) If S is normal and S and T commute, then ST is posinormal.

Proof. (a) If T and S are posinormal in B[H], and if T'S* = S*T', then there exist
positive constants ap and ag such that |[(ST)*z| = [|[T*S*z| < arp||TS*z|| =
ar||S*Tz| < arag|STz| for every x € H, and so ST is posinormal.

(b) If T is posinormal, S is normal, and ST = T'S, then the Fuglede Theorem
ensures that S*T = T'S* (see, e.g., [7, Corollary 3.19]), so that (b) follows from (a)
since S is posinormal. O

5. POWERS OF A QUASIPOSINORMAL OPERATOR

Definition 2. Take a arbitrary operator T' € B[H)].

(a) T is quasiposinormal if any of the following equivalent assertions are fulfilled.
(a1) R(T)~ CR(T*)".
(a2) N(T') S N(T™).

(b) T is coquasiposinormal is T* is quasiposinormal.

The above equivalence is readily verified. In fact, take an arbitrary operator A
on H, an arbitrary pair of linear manifolds M and N of H, and recall that A**= A,
R(A)™ = N(A*)*, N(A) = N(A)~, and M+ C N+if and only if N~ C M~. Thus
R(A)~ C R(A*)™if and only if N(A) C N (4").
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As every surjective operator is trivially coposinormal, every injective operator
is trivially quasiposinormal. In particular, every injective unilateral weighted shift
s quasiposinormal. Along this line it is also worth remarking that if T is not
quasiposinormal (or not coquasiposinormal so that either 7" or T is not injective),
then T has a nontrivial invariant subspace (cf. [8, Section 5]).

Clearly, every posinormal is quasiposinormal (either by Definitions 1(a4) and
2(a1), or by Proposition 1(aq) and Definition 2(as)). The converse holds for opera-
tors with closed range: if R(T) is closed (equivalently, if R(7T*) is closed) and if T’
is quasiposinormal, then T is posinormal. If T" is posinormal and dsc (7) < oo, then
T™ posinormal by Corollary 1(a), so that 7™ is quasiposinormal. More is true.

Theorem 5. If T is quasiposinormal, then T™ is quasiposinormal for every n > 1.

Proof. The result in Proposition 1(ag), namely, N (T?) = N(T) whenever T is
posinormal, can be extended to quasiposinormal operators. Indeed, the very same
proof in [8, Remark 2] survives: if T is quasiposinormal, then N (T?) = N(T).
This means (as in Remark 2(a)) that

if T is quasiposinormal, then asc(T) <1,
which implies that N'(T") = N(T) (by the definition of ascent). Summing up:
N(T)CN(T*) = NT*»=N(T) = N(T")=N(T)
for every n > 1. Therefore, if N(T') C N(T*) (i.e., if T' is quasiposinormal), then
N(T™) = N(T) CN(T*) C N(T™),
so that T™ is quasiposinormal, for every n > 1. O

Since posinormality implies quasiposinormality, and since quasiposinormality
and closed range imply posinormality, we get the following immediate consequences
of Theorem 5. (Recall again: R(T) is closed if and only if R(T™*) is closed).

Corollary 2. If T is posinormal, then T™ is quasiposinormal for every n > 1.

Corollary 3. If T is posinormal and R(T™) is closed for every integer n > 1,
then T™ is posinormal.

By Corollary 3, assumption dsc(T") < oo in Corollary 1(a) can be dismissed. The
next result is reminiscent of Fredholm Theory, a special case of Corollary 3.

Theorem 6. If a semi-Fredholm operator T is posinormal, then T™ is posinormal
(and semi-Fredholm) for every integer n > 1.

Proof. Note that the above statement is equivalent to the following one: if T is
posinormal, if R(T) is closed, and if dim N (T) < oo or dim(T*) < oo, then T™ is
posinormal for every integer n > 1.

Indeed, suppose T is posinormal. Corollary 2 says that 1™ is quasiposinormal for
every n > 1. In addition, suppose R(T) is closed and N(T) or N(T*) is finite-
dimensional, which means that T is semi-Fredholm (see, e.g., [7, Corollary 5.2]).
Since T is semi-Fredholm, it follows that T™ is semi-Fredholm, and this implies
that R(T™) is closed, for every n > 1 (see, e.g., [7, Corollaries 5.2 and 5.5] — also
see [1, Corollary 2]). Being quasiposinormal with a closed range (so that the range
of T*™ is also closed), T™ is posinormal for each n > 1. d
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The notion of supraposinormal operators was recently introduced and investi-
gated in [11]: an operator T is supraposinormal if there exist nonnegative operators
P and Q, at least one of them with dense range, such that TPT* = T*QT — a
posinormal operator is a particular case of a supraposinormal with P = I, and
a coposinormal operator is a particular case of a supraposinormal with Q = I.
It is clear that if T is posinormal or coposinormal, then it is quasiposinormal or
coquasiposinormal. However, it was shown in [11, Theorem 1] that a supraposinor-
mal operator is quasiposinormal or coquasiposinormal (according to whether P or
@ has dense range, respectively). This leads to another consequence of Theorem 5.

Corollary 4. If T is supraposinormal, then T™ or T" is quasiposinormal for
every integer n > 1.
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