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Abstract

Given a Hilbert space operator A € B(H) with polar decomposition A = U|A|,
the class A(s,t), 0 < s,t < 1, consists of operators A € B(H) such that |A*|*' <
(JA* [P AP | A* Y 5. Every class A(s, ) operator is paranormal; prominent amongst
the subclasses of A(s,t) operators are the class A(%, %) consisting of w-hyponormal
operators and the class A(1,1) consisting of (semi quasihyponormal [16, p. 93], or)
class A operators. Our aim here is threefold. We prove that A(s,t) operators satisfy:
(i) Bishop’s property (3), thereby providing a proof of [6, Theorem 3.1], and (ii) a
Putnam—Fuglede commutativity theorem, thereby answering a question posed in [17,
Conjecture 2.4]; we prove also an extension of [3, Theorem 3.4] to prove that (iii) if an
A(s, t) operator is weakly supercyclic then it is a scalar multiple of a unitary operator.

1. Introduction

Let H denote a complex infinite dimensional Hilbert space and let B(H) denote the al-
gebra of operators (equivalently, bounded linear transformations) on M into itself. An
operator A € B('H), with polar decomposition A = U|A|, is hyponormal if |A*|? < |A|?,
p-hyponormal for some 0 < p < 1 if |A*|?P < |A|?P, w-hyponormal (or, weakly hyponormal)
if (JA[ZUJA|U*|A|2)z < |A| < (|A]2U*|A|U|A|2)z, class A (or, semi-quasihyponormal) if
|A|? < |A?| and paranormal if ||Az||? < ||A2z|| for all unit vectors z € H. The following
inclusion is well known:

Hyponormal C p-hyponormal C w-hyponormal C class A C paranormal.

Mihai Putinar [20] proved that hyponormal operators satisfy (Bishop’s) property (3), and
this result has since been extended to w-hyponormal operators (see, for example, [4]). Para-
normal operators do not satisfy property (8) [11], and this naturally leads to the question:
Do class A operators satisfy property ()7 [6, Theorem 3.1] claims property (5) for class
A operators, but the authors have recently withdrawn their claim. In this paper we prove
that class A operators satisfy property (5) (even property (3). under certain conditions).

If A,B € B(H) are normal operators, then the classical Putnam—Fuglede theorem
says that 52’13(0) C 5;\*1’3*(0) [16], where d4. 5 € B(B(H)) is the generalized derivation
da,(X) = AX — XB. An asymmetric version of this classical result holds for classes
of Hilbert space operators more general than the class of normal operators. Thus, if
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A, B* € B(H) are hyponormal operators, then 52713(0) C 83! 5.(0) 23, 7]. Lee and Jeon
[17] ask the question: Does 5;}3(0) C (52*173* (0) hold for operators A, B* € A? We answer
this question in the affirmative to show that if A, B* are class A(s,t), 0 < s,t < 1, operators
such that 0 is a normal eigenevalue of both A and B*, then §,'5(0) C 6,1 5.(0). (A(s,?)
operators are defined in the following section; we note that class A coincides with A(1,1).)

Finally, we consider weakly supercyclic operators in B(H). Answering a question of
Sanders [22, Question 4.6], Bayart and Matheron proved in [3, Theorem 3.4] that a weakly
supercyclic hyponormal operator is necessarily a scalar multiple of a unitary operator.
The argument used by Bayart and Matheron depends in an essential way on the Berger-
Shaw theorem, a result (at least currently) not available for classes of operators such as
w-hyponormal operators. Using an alternative argument, we prove that a weakly supercyclic
class A(s,t) operator is a scalar multiple of a unitary operator.

2. Results

Given an A € B(H), we say that the operator A is a class A(s,t) (0 < s,t) operator if

t

AP < (AT |APe AT e

Let A have the polar decomposition A = U|A|, and let A = |A|2U|A|2 denote the (first)
Aluthge transform of A. Then A € A(3,3) if and only if I(A)*] < |A] < |A] (ie., A €
A(3, %) if and only if A is w-hyponormal [14]) and A € A(1,1) if and only if [A]* < |A?|
(i.e., A € A(1,1) if and only if A is semi-quasihyponormal [16] or class A [14]). Tt is known,
[14, Theorem 4], that A € A(s,t) implies A € A(a, 3) for every 0 < s < a and 0 < t < (3,
and if 0 < s,t <1 then A € A(s,t) implies A™ € A(£, L) for every n € N. Consequently,
for an operator A € A(s,t),if 0 < s,t < % then A is w-hyponormal, and if % < s,t <1 then
A'is a class A operator and A? is a w-hyponormal operator. Conclusion: If A € A(s,t),

0 < s,t < 1, then (either A or) A? is w-hyponormal.

2.1 Properties () and (3). for A(s,t) operators

For a Banach space X and open subset U of C, let £(U, X) (resp., OU, X)) denote the
Fréchet space of all infinitely differentiable X'-valued functions on U/ endowed with the
topology of uniform convergence of all derivatives on compact subsets of U (resp., of all
analytic X-valued functions on ¢/ endowed with the topology of uniform convergence on
compact subsets of U). We say that A € B(X) satisfies: (Bishop’s) property (5) at A € C if
there exists a neighbiourhood A of X such that, for each open subset U of N and sequence
{fn} of X-valued functions in OU, X),

(T —2)fn(z) — 0 in OU,X) = fn(z) — 0 in OU,X);

(Eschmeier—Putinar—Bishop’s) property (5). at A € C if there exists an r > 0 such that, for
every open subset U of the open disc D(A;7) of radius r centered at A and sequence {f,}
of X-valued functions in £(U, X),

(T = 2)fn(z) — 0 in EU,X) = fn(z) — 0 in EU,X).

Recall that an operator A € B(X) has the single-valued extension property at a point
Ao € C, SVEP at Ag, if for every open disc D centered at A\g the only analytic function
f: D — X satisfying (A — A)f(A\) = 0 is the function f = 0; A has SVEP if it has SVEP



Duggal, Kubrusly, Kim Property (3) for A(s,t) operators 3

at every A € C. Evidently, property (3). implies property (3), and operators satisfying
property (3). are subscalar [12]. It is well known that property () implies (Dunford’s
condition (C') , which in turn implies) SVEP [18, pp. 22-23].

Theorem 2.1 If A € A(s,t), 0 < s,t <1, then:

(i) A satisfies property (3).

(ii) A satisfies property (). whenever 0 < s,t < 1/2.

(iii) If% < s,t <1 and o(A) is contained in an angle L < , then (again) A satisfies
property (ﬁ)e

Proof. (i) As observed above, A € A(s,t), 0 < s,t < 1, implies A? is w-hyponormal.
Recall from [4, Proposition 4.1] that w-hyponormal operators satisfy property (5); hence
A? satisfies property (3). Recall now from [18, Theorem 3.3.9] that if T is a Banach space
operator such that f(7T) satisfies property () for a function f analytic on, and non-constant
on all connected components of, a neighbourhood of o(T"), then T satisfies property (5):
Hence A satisfies property (3).

(i) and (iii) If 0 < s,t < 1/2, then A is w-hypopnormal and so satisfies property (3).
[4, Proposition 4.1]. If, instead, % < s,t < 1, then A? satisfies property (3)c. Recall
from [8, Theorem 2.9] that if T is a Banach space operator and f is bi-holomorphic on a
neighbourhood of o(T'), then T satisfies property () if and only if f(T") satisfies property

(B)e: Hence A satisfies property (). (in this case also). O

Remark 2.2 (i) We thank a referee for pointing out reference [15], where it is proved,
using a totally different argument, that class A operators are subscalar of order 12.

(ii) A Banach space operator A satisfies property (). if and only if it is subscalar [12];
hence operators A € A(s,t) satisfying either of the conditions in Theorem 2.1 (ii) and (iii)
are subscalar and so satisfy the condition that their quasinilpotent part Ho(A — \) = {z €
H : limy, o ||(A — A)"z|| % = 0} is nilpotent for all complex A (see [1, p. 175] and [18]). It
is well known [9] that paranormal operators are simply polaroid (i.e., the isolated points of
the spectrum of a paranormal operator are rank one poles of the resolvent of the operator);
hence A(s,t), 0 < s,t < 1, operators are simply polaroid. This, coupled with the fact that
class A(s,t) (0 < s,t < 1) operators have SVEP, implies that the operators in this class
satisfy Weyl’s theorem (indeed, generalized Weyl’s theorem). (We shall say no more about
Weyl’s or generalized Weyl’s theorem, and refer the reader to [9] for more information.)

(iii) The fact that A(s,t) operators, 0 < s,t < 1, satisfy property (8) has a number of
other interesting consequences. Thus, if A,B € A(s,t) (0 < s,t < 1) satisfy AX = XB
and BY = Y A for some operators X,Y € B(H) with dense range, then A and B have
the same spectrum, the same (Fredholm) essential spectrum, and the same (Fredholm)
index at every point of their Fredholm domain [18, Theorem 3.7.15]; if N € B(H) is an
algebraic operator (i.e., there exists a non-trivial polynomial p(z) such that p(N) = 0)
which commutes with A, in particular if N is a nilpotent which commutes with A, then
A+ N satisfies property (5) (resp., (5)e if A satisfies (8).) [8, Theorem 2.4]. Again, if o(A)
is thick, then A has a non-trivial invariant subspace [18, Theorem 2.6.12]. Here a compact
subset F' C C is thick if there exists a non-empty, bounded and open set £ C C in which F
is dominating; F' is dominating in E if ||f||lcc = sup{f(A| : A € FNE} for all f € P>(E),
where P> (U) C H*(U) is the weak star closure of complex polynomials on U [18, p. 180].
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2.2 A Commutativity theorem for A(s,t) operators

The classical Putnam-Fuglede commutativity theorem [16] says that if A, B € B(H) are
normal operators, then AX = X B implies A*X = XB* for every X € B(H). An asym-
metric version of this theorem holds for classes of Hilbert space operators more general
than the class of normal operators (see, for example, [7]). In their consideration of an
asymmetric Putnam-Fuglede commutativity theorem for quasi-class .4 operators (i.e., op-
erator A € A(1,1) such that A*|A|?A < A*|A2%|A), Lee and Jeon [17] ask the question
of whether AX = XB implies A*X = XB* for operator A, B* € A. We answer this
question here. Observe that if 64 p(X) = 0 = da+ p-(X) = 0 for all X € B(H), then
(also) d4,B(AX) = 0 = 04+ p-(AX) = 0; hence (A*A — AA*)X = X(B*B — BB*) =
AXX* — XX*A=X*XB - BX*X =0. We have:

Lemma 2.3 [24] Let A,B € B(H). If X € 52713(0) C 52373*(0), then ran(X) reduces A,
ker(X)* reduces B, and A|W(X) and Blyer(x)r are unitarily equivalent normal operators.

If AX = XA* implies A*X = XA for an operator A € B(H), then necessarily
A~1(0) € A*1(0). Hence the Putnam Fuglede theorem fails for operators A, B* € A(s, t),
0 < s,t < 1, such that 0 is not a normal eigenvalue (i.e., such that the eigenspace
corresponding to the eigenvalue is not reducing). However, if A=1(0) € A*~'(0) and
B*~1(0) € B~'(0), then the presence of 0 is in the point spectrum of either of A (resp.,
B*) implies that A = 0@ A; (resp., B* = 0@ B}) for some injective A(1, 1) operators A;
(resp., Bf). Hence, if 0 is in the point spectrum of both A and B*, and if X € §;'5(0)
has the (corresponding) matrix representation X = [Vi;]} o, then 04, p,(Y11) = 0, and
it is seen that d4 p(X) = 0 implies 04+ p«(X) = 0 if and only if d4, 5, (Y11) = 0 implies
daz, B;(Yn) = 0. Since a similar statement holds for when only one (or, none) of A and
B* has 0 in its point spectrum, we may as well assume that A, B* are injective A(1,1)
operators (and prove d4 g(X) = 0= d4- p-(X) = 0).

Let, as above, A denote the (first) Aluthge transform of A € B(H), and 1et~;~1 denote
the second Aluthge transform of A. (Thus, if A has the polar decomposition A = V/[A],
)

then A=|A|2V]|A|2.) If an A € B(H) is w-hyponormal, then its second Aluthge transform
A is hyponormal; if A=1(0) C A*_1(0)~then (A—X)~Y0) C (A* —})_1(0) for all complex
A in the point spectrum of A, and if A is normal then A = A = A [2]. The proof of the
following (known) lemma is included for completeness.

Lemma 2.4 If A, B* € B(H) are w-hyponormal operators such that A=*(0) C A*~1(0)
and B*~'(0) € B~1(0), then 63'5(0) € 64! 5.(0).

Proof. As seen above, we may assume A and B* to be injective and prove X € 52}3(0) =
X € 52*1’3* (0). Evidently, ran(X) is invariant for A and ker(X)* is invariant for B*; let
A=A ran (%)’ B} = B*|xer(x)+, and define X : ker(X)* — ran(X) by setting X,z = Xz
for each x €~ker(X)J-. Then A; and B are w-hyponormal, and X is a quasiaffinty. Let C' =
Ay, D* = B; and Y = |A,|7|A|2 X,|B;|2|B}|7; then 64 5(X) = 0 implies d¢, p(Y) = 0,
where C, D* are hyponormal operators in B(H). Applying the asymmetric Putnam—Fuglede
theorem for hyponormal operators [7, 23] we have d¢+ p=(Y) = 0, and hence (by Lemma 2.3)
C = A; and D = By are (unitarily) equivalent normal operators. But then CY — YD =0
implies | A1|2|A1]2 (A} X1 — X1 B})|Bf|2|B;|? = |A1|(A; X1 — X1 B})|Bf| = 0. Since Ay, B}
are injective, A7 X; — X1 By = 0. Conclusion: AX — XB = 0 implies ran(X) reduces A4,




Duggal, Kubrusly, Kim Property (3) for A(s,t) operators 5

ker(X)* reduces B, and A|m and B |ker(X)L are unitarily equivalent normal operators

(consequently, A and B* can not be pure or completely non-normal). Now decompose A, B*
into their normal and pure parts by A = A,, @ A, (with respect to some decomposition
H =H, ®H,) and B* = B, © B, (with respect to H = Hy @ Ha); Let X : H1 & Hy —
H, ® H, have the matrix representation X = [X;;]7;_;. Then A;X;; = X;;B; implies
A?Xij = XUB;(, where A,L = An if i = 1, Ai = Ap if i = 2, Bj = Bn lf] = 1, Bj = Bp if
j=2and 1<4,j <2. Since A, and B, are pure, it follows from our conclusion above that
Xij =0forall 1 <4,j <2 except for i = j = 1. But then A*X = XB*. O

Our promised theorem follows.

Theorem 2.5 If A € A(s1,t1) and B* € A(sa,t2), 0 < s1,82,t1,t2 < 1, are such that
A71(0) € A*71(0) and B*71(0) € B7Y(0), then 0 '5(0) C d! 5. (0).

Proof. Without loss of generality, we may assume that both A, B* are A(1,1) and A2, B*?
are w-hyponormal. If 64 g(X) = 0 for some X € B(H) and injective A, B* € A(1,1), then
942 p2(X) = 0, where A% and B*? are injective w-hyponormal operators. Apply Lemma
2.4 to conclude that § 4.2 g.2(X) = 0. Hence (see Lemma 2.3) ran(X ) reduces A?, ker(X )+
reduces B2, and A2|m and Bz|ker( x)+ are unitarily equivalent normal operators Let
A = A|m and B} = B*|ier(x)L- Observe that if M is an invariant closed subspace of

A€ A(1,1) and P is the orthogonal projection onto M, then

|A[y|? = P|A]PP < P|A%|P = P(A*?A%): < (PA*?A2P)% = (PA*>PPA®P) = |A]%,].

Hence A; and Bj are A(1,1) operators. The normality of A% implies (by [21, Theorem 1])
the existence of normal operators F, F' and a positive injective operator G which commutes

with F' such that
F G

Al:E@< 0 —F

)-ron

We prove that the upper triangular block matrix operator H in this expression is the trivial
operator. Suppose thus that H is non-trivial. The operator H being an .A(1,1) operator,

o ( IF?P F*G [F* 0 _ 2
|H|_<GF c2riFp ) S\ 0 pp ) T

0 —F*G

= O§<FG e

> — G=0.

Since G is injective, this contradiction implies that H acts on the trivial space. Hence
A; is normal. Similarly, By is normal. Applying the classical Putnam—Fuglede theorem
for normal operators it follows that Ar B (X1) = 0. Since the non-zero eigenvalues of an
A(1,1) operator are normal (i.e., the corresponding eigenspaces are reducing) [6, Lemma
2.3], this implies that if EZ — FZ = 0 implies E*Z — ZF* = 0 for some E, F € A(1,1),
then neither of £ and F* can be pure. Decomposing A, B* € A(1,1) into their normal and
pure parts and arguing as in the proof of Lemma 2.4 it is now seen that §4+ p=(X) =0. O

Tt is well known (indeed, easily proved) that hyponormal, p-hyponormal (0 < p < 1) and
quasihyponormal operators are A(s, t) operators; hence either of the hypotheses that A and
B* are A(s,t), 0 < s,t < 1, operators in Theorem 2.5 may be replaced by the hypothesis
that the operator is hyponormal or p-hyponormal or quasihyponormal. An interesting case
of Theorem 2.5 is obtained in the case in which B* =V is an isometry. Recall from [11]
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that an operator A € B(H) satisfies property PF(d) (resp., property PF(A)) if for every
isometry V' € B(H) for which the equation d4 v+ (X) = AX — XV* = 0 (resp., the equation
Agyv+(X) = AXV* — X = 0) has a non-trivial solution X € B(H), the solution X also
satisfies 94+ v (X) = 0 (resp., Aa« v(X) = 0). It is known that A € B(H) satisfies property
PF(d) if and only if it satisfies property PF(A) [10]. Evidently, A(s,t) (0 < s,t < 1)
operators satisfy property PF(d). Recall, however, that paranormal operators fail to satisfy
property PF(d) [19, 11].

2.3 Weak supercyclicity

A Banach space operator A € B(X) is n-supercyclic for some n € N if X has an n-
dimensional subspace M with dense orbit Orbyi(A) = (J,,cy A™M; a 1-supercyclic op-
erator is supercyclic, and we say that A is weakly supercyclic if there exists a vector
x € X, with M the corresponding one dimensional subspace generated by z, such that
Orbp(A) = C.Orby(A) is weakly dense (equivalently, if the scaled orbit of x is dense in the
weak topology) in X. Recall from [5] that paranormal, hence also A(s,t) (0 < s,t < 1),
operators are not supercyclic. Recall also from Bayart and Matheron [3, Theorem 3.4] that
a weakly supercyclic hyponormal operator is necessarily a scalar multiple of a unitary oper-
ator. The argument used by Bayart and Matheron to prove this result depends in essential
way on the Berger—Shaw theorem (relating the trace of the commutator of a hyponormal
operator to the Lebesgue area of its spectrum). Using an alternative argument, involving
property (), we prove in the following that a similar result holds for weakly supercyclic
A(s,t) operators. We start by recalling some complementary results and terminology.

An operator A is normaloid if r(A) = ||A||, where 7(A) = lim, o ||A"|| = is the spectral
radius of A. It is well known that paranormal, in particular A(s,t) (0 < s,t < 1) opera-
tors, operators are normaloid [13, Proposition 54.6]. Furthermore, the inverse (whenever it
exists) of a paranormal operator is paranormal (hence, normaloid).

Weak supercyclicity implies the existence of a weakly cyclic vector (indeed, a vector
x € X is a l-weakly supercyclic vector for A € B(X) if and only if z is a cyclic vector
for A), and since cyclicity in the weak topology is equivalent to cyclicity in the strong
topology, every weakly supercyclic operator has a strongly cyclic vector. Furthermore, see
[22, Proposition 2.1], the set of weakly supercyclic vectors of an operator is (not only dense
in the weak operator topology, but also) dense in the strong operator topology. (Thus,
weakly supercyclic operator have a dense range.) In view of this, and the fact that A(s,t)
(0 < s,t < 1) operators satisfy property (/3), it follows from the argument of the proof of
[18, Proposition 3.3.18] that:

Lemma 2.6 If an A € A(s,t), 0 < s,t < 1, is weakly supercyclic, then |A\| = 1 for every
A€ a(A).

The following theorem generalizes [3, Theorem 3.4]. Let D, denote the disc of radius r
centered at the origin in the complex plane, and let 9D, denote its boundary.

Theorem 2.7 If an A € A(s,t), 0 < s,t < 1, is weakly supercyclic, then it is a scalar
multiple of a unitary operator.

Proof. Since operators A € A(s, t) are paranormal and paranormal operators are normaloid,
we may assume that A € A(s,t) is a weakly supercyclic contraction which satisfies property
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(8). Hence, by Lemma 2.6, 0(A) C dD;. Consequently, A~! is well defined as a bounded
paranormal operator such that o(A~1) C 9D;. But then ||A|| = ||A~}|| = 1; hence

||z]| = [|A™  A|| < ||A71[[|Az]| = [|Az]| < |||
for all x € H, which implies that A is an invertible isometry, hence a unitary. O

Recall from [11, Corollary 5.2] that paranormal operators do not satisfy property (3); hence
the argument above does not extend to paranormal operators. The question however still
remains: Does the weak supercyclicity of a paranormal operator force it to be a scalar
multiple of a unitary?
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