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ON SIMILARITY TO NORMAL OPERATORS

CARLOS S. KUBRUSLY

ABSTRACT. This paper gives a characterization of the asymptotic limit Ap
associated to a contraction T that is similar to a normal operator (Theorem
2). Extensions from contractions to power bounded operators intertwined to a
contraction with a Cp. completely nonunitary part (not necessarily a normaloid
contraction) are considered as well (Theorem 1). It is also given a character-
ization of the asymptotic limit A7 for a hyponormal contraction T, and it is
shown that if a hyponormal contraction has no nontrivial invariant subspace,
then one of the defect operators is not finite-rank (Corollary 1).

1. NOTATION AND TERMINOLOGY

Throughout this paper H and K are complex (nontrivial) Hilbert spaces and
B|H, K] denotes the Banach space of all bounded linear transformations of H into K.
Norms in H and K and the induced uniform norm in B[H, K] will all be denoted by
de same symbol || - ||. Inner products in both in H and K will also be denoted by the
same symbol (-;-). By an operator on H we mean a bounded linear transformation
of H into itself. Set B[H]| = B[H, H], which is the C* algebra of all operators on
H. Let N(T) C H denote the kernel of T € B[H,K] (ie., N(T) = T-'({0}) =
{z € H: Tz = 0}), which is a subspace (i.e., a closed linear manifold) of H, and let
R(T) C K denote the range of T (i.e., R(T") = T(H)), which a linear manifold of
H. A transformation T' € B[H, K] is said to be finite-rank (or finite-dimensional) if
its range R(T) is a finite-dimensional (thus closed) subspace of K.

A contraction is a transformation 7' € B[H, K] such that ||T|| < 1 (i.e., such that
|ITz|| < ||z|| for every z in H). A power bounded is an operator T' € B[H] such
that sup,~q |[|7"|| < oo (trivially, every contraction in B[H] is power bounded).
Let T* € B[K,H] denote the adjoint of T € B[H,K]. An operator T' € B[H] is self-
adjoint if T* =T. A self-adjoint operator T' € B[H] is nonnegative if 0 < (T'z; x)
for every = in H (notation: O < T'). Let I € B[H] denote the identity operator in
B[H)]. The defect operator of T' € B[H, K] is the self-adjoint Dy = I — T*T € B[H],
so that T € B[H, K] is a contraction if and only if Dr is nonnegative (i.e., if and
only if T*T < T — the defect operator of a contraction T' € B[H] is sometimes
defined as (I —T*T)2 € B[H], however the closure of the ranges of both forms
coincide). Let 7 = dimR(Dr) and dp« = dim R(Dr+) stand for the rank of the
defect operators. An isometry is a transformation V € B[H, K] such that V*V =TI
(i.e., such that |Vz|| = ||z|| for every x in H, thus isometries are contractions whose
defect operators are null), and a coisometry is a transformation whose adjoint is an
isometry. A transformation U € B[H, K] is unitary if it is both an isometry and a
coisometry (equivalently, if it is a surjective isometry, or still an invertible isometry).
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A transformation X € B[H, K] intertwines an operator T' € B[H] to an opera-
tor L € BIK] if XT = LX and, in this case, T is said to be intertwined to L via
X; if there exists an X with dense range, then T is densely intertwined with L; if
there exists a quasiinvertible X (i.e., if X is injective with dense range), then T
is a quasiaffine transform of L. If T is a quasiaffine transform of L (via a quasiin-
vertible X € B[H,K]) and L is a quasiaffine transform of T' (via a quasiinvertible
Y € B[K,H]), then T and L are quasisimilar. If there is an invertible (or unitary)
X € B[H, K] — that is, if X is injective and surjective (or if X is a unitary transfor-
mation) — such that X7 = LX, then T and L are similar (or unitarily equivalent).

If a sequence {7}, },>¢ of transformations T,, € B[H, K] converges to T' € B[H, K]
uniformly, strongly, or weakly, then this will be denoted by T}, - T, T,, = T, or
T, - T (or by T = w-limT,, T = s-limT,, or T = w-limT},,), respectively. An
operator T' € B[H] is uniformly, strongly, or weakly stable if the power sequence
{T"™},>0 converges uniformly, strongly, or weakly to the null operator O; that is,
™ 25 0, TP =5 O, or T™ =5 O. If T is strongly stable, then T is said to be
of class Cy. — if T* is strongly stable, then T is said to be of class C.g, and if
both T and T* are strongly stable, then they are of class Cgp. Uniform stability
implies strong stability, which implies weak stability, which in turn implies power
boundedness. Uniform stability is equivalent to r(T') < 1, and power boundedness
implies 7(T') < 1 (where r(T') stands for the spectral radius of T).

If T € B[H] is a contraction, then {T*"T"},>¢ is a bounded monotone sequence
of self-adjoint operators (a nonincreasing sequence of nonnegative contractions)
so that T*"T™ = Ap; that is, {T*"T"},>0 converges strongly to an operator
Arp € B[H], which is a nonnegative contraction (i.e., O < Ap < I). Recall that T is
of class Cy. if and only if Ar = O. For a wide-ranging review on the properties of Ar
see, e.g., [21, Chapter 3] and [23]. A characterization of nonnegative contractions
that may be the strong limit of {T*"T"},, > was recently achieved in [9, Theorems
6 and 7]. Sometimes Ay is referred to as the asymptotic limit of 7, which can be
extended from contractions to power bounded operators by means of Banach limits
[15], [16], and beyond, for operators whose power sequence satisfies some regularity
condition weaker than power boundedness [17], [18]. For a discussion on asymptotic
limits of power bounded operators see [10], [11].

2. INTRODUCTION

We take as a starting point the 1947 classical Sz.-Nagy’s result, which says that
an operator is similar to a unitary operator if and only if it is an invertible power
bounded with a power bounded inverse [30] (also see [32, Section IX.1]). Since a
unitary is precisely an isometric (thus contractive) normal operator, this naturally
motivates investigating generalizations (perhaps with restrictions) to (i) plain con-
tractions, (ii) isometries, and (iii) normal operators. Extensions to plain contrac-
tions — which operators are similar to contractions? — has a long and successful
story. This question was posed by Sz.-Nagy himself in [31], and has passed along
some seminal papers such as [8], [14], [28], [4] (also see [13], [32, Section IL.8], [21,
Section 8.1], and the references therein). Further discussions on similarity to con-
tractions can be found in [19], [20], [26]. As for similarity to isometry see [30] again,
and for quasisimilarity to isometries, see [33], [34], [35]. Quasisimilarity to normal
operators was investigated in [1] (also see [12]).
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Our focus in this paper will be on similarity to normal operators. A distinguished
reference on this topic is [2]. Its main result, [2, Theorem 1.6.6], is the one that
will be of interest to the present paper. This will be stated in Theorem 0 below.
Before stating it we need some further standard notions. The resolvent set p(T") of
T € B[H] is the set of all complex numbers A such that A\I — T is invertible (i.e.,
has a bounded inverse), and its spectrum o (7") is the complement ¢(T') = C\p(T).
The resolvent function of T' € B[H] is the function Ryp: p(T) — B[H] defined by
Rr(\) = (M —T)~! for every X in p(T), and the spectral radius of T € B[H]
is the nonnegative number 7(1) = maxyeq(7) |A|, which is bounded by the norm:
0 < 7(T) < |IT||- The spectrum of a power bounded operator is a subset of the closed
unit disk D~ (i.e., if sup,,~¢ [|T"] < 1, then o(T) C D7). Let d(A,o(T")) denote the
distance of a point A\ € C to the set o(T) C C. An operator T € B[H] is said to
satisfy the linear resolvent growth if supyc, i [[Rr (N[ d(A,0(T)) < oo; that is, if

sup ||(M —T)7 1 d(\, 0(T)) < 0.
Aep(T)
An operator T' € B[H] is normal if it commutes with its adjoint (O = T*T — TT*),
quasinormal if O = (T*T — TT*)T, hyponormal if O < T*T — TT* (equivalently, if
|T*z|| < ||Tx| for every x in H), paranormal if ||Tz||?> < ||Tz|?||z| for every = in
H, and normaloid if (T") = ||T'||. Every normal is quasinormal, every quasinormal is
hyponormal, every hyponormal is paranormal, every paranormal is normaloid, and
a unitary operator is precisely a normal isometry. Coquasinormal, cohyponormal,
or coparanormal mean that the adjoint is quasinormal, hyponormal or paranormal.

Theorem 0. [2] Let T € B[H] be a contraction with finite-rank defect operators for
T and T* (i.e., 07 <00, dp <o0). The following assertions are equivalent.

(i) T is similar to a normal operator.

(ii) o(T) # D~ (so that ér = dr«) and T satisfies the linear resolvent growth

condition.

In this paper we will characterize the nonnegative contraction At associated to a
contraction 7" which is similar to a normal operator. This follows as a particular case
of a characterization of A for a power bounded operator T similar to a contraction
with a Cp. completely nonunitary part (also see [11]).

3. PRELIMINARY RESULTS

The auxiliary results in Propositions 1 and 2 below will be applied to prove the
main result in Theorems 1 and 2 (next section).

Proposition 1. If a normaloid operator is similar to a power bounded operator,
then it is a contraction.

Proof. Let T € B[H] be a power bounded operator. Suppose there exists an invert-
ible transformation X € B[H, K] and a normaloid operator N € B[K] such that

XT=NX.

Since similarity preserves the spectrum, and since power boundedness implies spec-
tral radius not grater than 1, we get

[N[|=7(N)=r(X"'NX)=r(T) < 1. O
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Proposition 2. Let N € B[K] be a contraction and consider its Nagy—Foias—Langer
decomposition,

N=U®aG,

where U is unitary (the unitary part of N) and G is a completely nonunitary con-
traction (the completely nonunitary part of N). Suppose N is intertwined to an
operator T € B[H],

YN=TY

for some nonzero transformation Y € BIK, H]. For each integer n > 0 set

A, = Y*T*"T"Y

in BIK]. Then
where
B,=(0a®G™"Y*Y(0OaG"),
C,=0G™YY(U"® O0),
D,=U"®0)Y'Y(OadG"),
E,=U"a0)Y*Y(U" & 0),
in B[K]. If
G" = 0,
then

B, 0, D, 0, and C, - 0.

Proof. Since YN = TY, it follows that YN™ =T"Y, and so Y*T™*" = N*"Y™* and
hence, for each n,

A, = Y*T*"T"Y = N*"Y*YN™ = (U*" & G*™")Y*Y (U™ & G™)

where
B,=(0a&GM™Y'Y(O®G"),
Ch=0G@MY'Y(U"®O0),
D,=U"®0)Y'Y(OadG"),
E,=U"T"s0)YY{U" )

Suppose G™ - O. Since U* is power bounded (and also is G and so is G* as well),

it follows that B,, = O and D,, =~ O. Moreover, C,, =~ O because C,, = D}. 1

Recall that G always is weakly stable, G %~ O, since it is a completely nonuni-
tary contraction [7, p.55] or [21, p.106] — a contraction is completely nonunitary
if its unitary part is missing in its Nagy—Foiag—Langer decomposition.
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Remark 1. Besides the results of Proposition 2 it will be necessary to ensure that
C,, = O. Consider the setup of Proposition 2: N € B[K] is a contraction, inter-
twined via Y € B[K,H] to an operator T € B[H] (i.e., YN = TY), whose completely

nonunitary part G is strongly stable (i.e., G* — O). Suppose T is such that
T*nTn i) AT
for some O < Ap € B[H]. If, in addition,
[Enyll < YAz Yy
for every y € K, then
E, 2 Y*ATY,

which is equivalent to

C, = 0.

Indeed, if 7T*"T™ %+ Ar, then A, >+ A =Y*A7 Y. Since B,, =+ O and D,, =~ O
(Proposition 2), it follows that C,, + E,, = A. Since C,, = O (Proposition 2), it
follows that E, -2~ A. Now recall that weak convergence from below implies strong
convergence (i.e., if F,, == F and ||Fpz| < ||[Fz| for every x, then F,, = F, see
e.g., [22, Problem 5.23(b)]). Therefore, if |F,y|| < ||Ay| for every y € K, then
E, =+ A, which means that C,, == O.

Remark 2. We did not assume that N is normal, and the assumptions “N is
normaloid” and “X is invertible” have been used only in Proposition 1 to ensure
that N is a contraction. By assuming that IV is a contraction we may dismiss both
the normaloidness assumption on N and the invertibility assumption on X.

(i) As for the normaloidness issue, there are some classical examples of normaloid
contractions N for which the completely nonunitary part G is strongly stable. For
instance, recall that paranormal (and so coparanormal) operators are normaloid,
and also recall that if N is a coparanormal (in particular, a cohyponormal or, more
particularly, a normal) contraction, then G is strongly stable; that is,

G" = O.

Indeed, if a contraction NN is coparanormal, then its completely nonunitary part
G is of class Cp. [27]. This was first investigated for cohyponormal contractions
in [29]. Thus if a contraction N is normal, then G is of class Cgg. Actually, the
class of contractions for which the completely nonunitary part is of class C.g goes
beyond the paranormal (including k-paranormal, k-quasihyponormal and dominant
contractions — e.g., [24] and the references therein).

(ii) As for the power boundedness (or even contractiveness) of T, the assumption
that T*"T™ -+ Ar is always satisfied if T is a contraction and, in this case, the
nonnegative Ar is a contraction. In fact, it is enough to assume simply that a
contraction NV is intertwined to an operator 1" such that the completely nonunitary
part G of N is strongly stable (as we did in Proposition 2), and then impose that

S

T*T™ = Ar (as in Remark 1), which implies that 7" must be power bounded.

Summing up, we may dismiss the assumptions of Proposition 1 for a while, and we
may replace the assumptions of Remark 1 with the assumptions of the forthcoming
Theorem 1 (where it is proved that C,, —= O under weaker hypotheses), yielding
the most general setup for our purpose so far.
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4. AsYMPTOTIC LIMITS FOR T INTERTWINED TO A CONTRACTION N

Next we characterize the limit A7 for power bounded operators T such that
{T*™T"},>0 converges strongly (in particular, for contractions T'), whenever a
contraction N with a Cy. completely nonunitary part is intertwined to 7. Such a
characterization is also considered in Theorem 2 for the special case when inter-
twinement is strengthened to similarity and the contraction N is coparanormal (in
particular, if N is normal). The overall setup of Theorem 1 reads as follows. Let a
contraction N, whose completely nonunitary part G is strongly stable (i.e., G is of

class Cy.), be intertwined to an operator T such that T*"T™ — Ar for some Ar.

Theorem 1. Let N € B[K], T € B[H], and Ar € B[H] be operators on Hilbert
spaces H and KC, and consider the following properties.

(a) [N <1,

b) N=U®G with G* = O,

¢) YN =TY for some nonzero transformation Y € B[K,H],
d) T*"T™ =5 Arp.

~—~ o~ o~ —~

If
(1) At is nonnegative, and T is power bounded.

From now on suppose (a), (b), (c), and (d) hold. Then
(2) C, = 0,

where C,, € BIK] was defined in Proposition 2, and

d) holds, then

(3) Y*ArY = s-limU*QU" & O,
where O < @ denotes the upper left block of Y*Y with respect to the Nagy—Foias—

Langer decomposition for the contraction N in (b) (ie., Y*Y = (Cg SR* )

(4) If, in addition to (c), T and N are similar, then there is an invertible transfor-

mation Y € B[K, H] satisfying (c), with inverse X =Y ~' € B[H, K], such that

Ap = X*(s-lmUQU"™ & O)X,
so that, if N is completely nonunitary, then Ar = O (i.e., T is strongly stable).
(4.1) With respect to the same decomposition in (b), Y is lower (upper) triangular
if and only if X is (ie., Y = (21 122) if and only if X = (i; X(Zz) and Y =
(381 22 ) if and only if X= (Xél }?222 )) If they are lower triangular, then

Ar = slim X7, U™QU™ X, @ O.
(4.11) If they are upper triangular, then

Q=YY = (X X7y) 7
and Q =1 if and only if X11 (equivalently, Y11) is unitary. In this case
Ar=X"I®0)X = X"AnX,

where N*"N™ =5 Ay =1& 0 (ie, Ay = s-lim N**N™).
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(4.iii) If they are lower and upper (i.e., block diagonal with respect to the same
decomposition in (b)), and if Y11 (equivalently, X11) is unitary, then

Ar=An =1 O.

Proof. (1) If (d) holds, then Ar must be nonnegative because the cone of all non-
negative operators is weakly, thus strongly, closed. Moreover, since O < Arp, it

follows by (d) that ||T"z| — ||AT%x|| for every x in H, and so sup,, [|T"]| < oo by
the Banach—Steinhaus Theorem.

(2) Assumption (a), (b), (c), and (d) are enough to ensure that A, —— Y*ArY,
B, = 0, and D,, =% O according Proposition 2, and hence

E,+C, = A, — By, — D,, => Y*A7Y.

With respect to the same decomposition in (b) write Y*Y = (g i; ), so that

C, = (G*nOSUn 8) and F,, = (U*ngUn g). Thus

Gmsu™ O
Claim. There exists a bounded linear transformation Z such that
G"SuU™ = Z.
. . . . . (W, O s w e
Proof. First observe the following string of equivalences: ( 7 O) — ( pe 9,) —

(VZ":‘;V :g/)x — 0 for every z <= ||(W,,— W)u — Ov, (Z,— Z)u — 0"v||> — 0 for
every z = (u,v) <> ||(W, — W)u — Ov||*+||(Z,, — Z)u — ©"v||*- 0 for every (u,v).
Set u =0, and get © = O and ©' = O. So ||(W,— W)ul||®> + ||(Z,— Z)u|* — 0 for
every u, which means that W,, >» W and Z, > Z. Since E, + C, - Y*A7Y,
it then follows that there exist W and Z such that
w0 slimU™QU™ O _ (UmQU™ 0O )
( 7 0> = (s-limG*"SU” 0> = slim (G*”SU” 0> = VYD

The above Claim ensures that there is a C' = (g g) such that C,, = C, and so

C, - C. But C,, = O (Proposition 2), and therefore C' = O. Outcome:
C, = 0.
(3) Since C,, + E,, == Y*ArY, C, - O, and E, >~ (‘g 8) =W & O, we get
Y*ArY =W & 0 = slim U QU™ & O.
(4) The result in (4) follows at once from (3).

(4.i,ii,iii) To verify items (i,ii,iii) of (4), first observe that Y and X = Y ! are lower
(upper) triangular together. Indeed, a simple algebraic manipulation shows that
if (%1 onz)(gi 2;) = (21 Q;)(%i X(Z2) = (é ?)’ then Y}, = X', Vi, = O,
Yy = —Xoo' X5, Xoo', and Yy, = X5'. Thus Y and X are lower triangular together.
Dually, Y and X are upper triangular together. Now set M,, = U**Q U™ and M =
s-lim M,,. If Y and X are lower triangular, then X*(M © 0)X = X{;M X1, @ O,
implying (4.1). (Indeed, || X3, (M, — M)X11u|| < *||X11|| (M, — M)X71u|]| — 0.) If
Y and X are upper triangular, then Y*Y = (g ‘iz ) with @ = Y1Y;,, S =YY,
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and R = Y5Y), + Y55Y5,. Also, if Q = I, then Y7, is an invertible isometry, which
means that it is unitary (the converse is trivial). This implies, by (4), the expression
for Ay in (4.ii). The result in (4.iii) follows from (4.i) and (4.ii). |

Observe that in Theorem 1 the operator T was not supposed to be a contraction
(there are power bounded noncontractions that satisfy (d); trivial example: nilpo-
tent noncontractions), and N was not supposed to be even normaloid; and items

Theorem 2. Let N € BIK|, T € B[H|, and Ar € B[H] be operators on Hilbert
spaces H and K.

(i) If T satisfies property (d) in the statement of Theorem 1, and if T is similar
to a coparanormal operator N, then T is power bounded, N is a contraction
whose completely nonunitary part is strongly stable, and At is given as in
part (4) of the statement of Theorem 1.

(ii) If a contraction T is similar to a normal operator N, then N is a contraction
whose completely nonunitary part is strongly stable, and Ar is given as in
part (4) of the statement of Theorem 1.

Proof. Consider properties (a), (b), (¢) under similarity, and (d) as in the statement
of Theorem 1.

(i) Suppose T is such that property (d) holds so that T is power bounded (according
to the proof of part (1) in Theorem 1), and suppose N is coparanormal. Paranormal
operators are normaloid, and so are coparanormal operators. If a normaloid NV
is similar to a power bounded T, then N is a contraction by Proposition 1, so
that properties (d) and (c¢) under similarity imply property (a). If a contraction
N is coparanormal, then property (b) holds [27] by uniqueness of the Nagy—Foiag—
Langer decomposition for contractions (i.e., the completely nonunitary part of a
coparanormal contraction is of class Cy. — see Remark 2(i)). Thus if (d) holds and
T is similar to a coparanormal N, then properties (a), (b), (c) under similarity, and
(d) hold, and so Theorem 1 ensures that Ay is given as in part (4).

(ii) Since contractions do satisfy property (d), and since normal operators are co-
paranormal (and also paranormal), item (ii) is a particular case of item (i). d

Remark 3. According to Theorem 2, if T is a contraction similar to a normal
operator NV, then T and N satisfy the assumptions of Theorem 1. What else can be
said if we assume that N is normal (and perhaps that T is a contraction and Y is
invertible)? Here is a result that can be helpful. As we saw in Remark 2(i) a normal
contraction N has a completely nonunitary part G of class Co. (i.e., G == O),
where G actually is a Cyp-contraction. In fact more is true as stated below, because
if a normal operator is strongly stable, then it is a proper contraction of class Cyp.

Indeed, consider the following result from [6, Lemma 2].
Let L be any operator and consider the following assertions.
(i) L is strongly stable.
(ii) L is a proper contraction (i.e., |Lz| < ||z| whenever x # 0).

(iii) L is a Coo-contraction.
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If L is paranormal, then (1) implies (ii) and (iii). If L is quasinormal,
then assertions (i), (i), and (iii) are pairwise equivalent.

The above statement allows us to straighten Theorem 2 for the case of N normal.
(Recall: the completely nonunitary part of a normal operator is normal.)

If a contraction T € B[H] is similar to a normal operator N € BIK],
then N 1is a contraction whose completely nonunitary part is a proper
contraction of class Cog, and

Ar = X" (s-limU™QU™ ® O0) X,
Ap- =Y (slimU™Q™ ' U*™ @ O)Y™,

where X, Y, U, and @Q are defined as in Theorem 1, and T is of class
Coo (i.e., Ar = Ap« = O) if N is completely nonunitary.

Corollary 1. If T€ B[H] is a hyponormal contraction for which T and T* have
finite-rank defect operators (i.e., dr < 0o and dp+ < 00), then

(i) T has a nontrivial invariant subspace,

(ii) the spectrum of T is a proper subset of the closed unit disk if and only if T
is similar to normal contraction N € B[K] and, in this case,

Ar = X* (s im U"Q U™ @ 0)X

for the invertible transformation X € B[H,K] that intertwines T to N (i.e.,

— \—1 _ (Q S*
XT = NX), where Q denotes the upper left block of (XX*)™! = (S R ),
and U the is unitary part of the contraction N.

Proof. (i) Since similarity preserves nontrivial invariant subspace, if an operator has
no nontrivial invariant subspace, then it is not similar to a normal operator (for
normal operators have nontrivial invariant subspace by the Spectral Theorem).
Also, if a contraction T has no nontrivial invariant subspace, then 0 Z o(T') by
the Brown-Chevreau-Pearcy Theorem [3], and so ¢(T) # ™. If an operator is
hyponormal, then ||[(A —T)7t|| = d(\,0(T))~! for every X € p(T) (see, e.g., [T,
p.11] or [22, Problem 6.14(b)]), and therefore it satisfies the linear resolvent growth
condition. Hence, by the Benamara—Nikolski Theorem (Theorem 0), the defect
operator of T or the defect operator of T* is not finite-rank. Conclusion:

If a hyponormal contraction 7" has no nontrivial invariant subspace, then
O = 00 or d7+ = oo (one of the defect operators is not finite-rank).

(ii) Suppose T is a hyponormal contraction for which the defect operators of T
and of T™ are finite-rank. Since T is hyponormal, it satisfies the resolvent growth
condition (as we saw in item (i) above). Therefore, o(T") C D~ (proper inclusion) if
and only if T is similar to a normal operator IN, by another application of Theorem
0. Moreover, since contractions satisfy assumption (d) of Theorem 1, and normal
operators are coparanormal, the claimed result follows from Theorem 2. O

A collection of properties that a possible hyponormal contraction without a
nontrivial invariant subspace must possess has been discussed in [23]. The preceding
corollary adds another one. In connection with it, it is worth remarking on the
following points. First recall that if T is a Cgg-contraction, or if an operator T
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is similar to a normal operator, then ér = dp+ [32, Proof of Theorem 5.2] or [5,
Corollary 3.6], and [2, Corollary 1.2.2]. Also recall the following well-known result.

If a contraction T' of class Cpg has no nontrivial invariant subspace, then
O = 00 or dr= = oo (one of the defect operators is not finite-rank),

equivalently, then d7 = oo [32, Theorems VI.5.2 and IIL.6.5] or [5, Proposition
3.15 and Corollary 4.9]. However, it is not known whether a hyponormal contrac-
tion without a nontrivial invariant subspace is of class Cog (it lies in Cog U C1o [25,
Theorem 1], but it remains as an open question whether it lies in Cqg).
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