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WEYL SPECTRAL IDENTITY AND BIQUASITRIANGULARITY

C.S. KUBRUSLY AND B.P. DUGGAL

ABSTRACT. Let A and B be operators acting on infinite-dimensional complex
Banach spaces. We say that the Weyl Spectral Identity holds for the tensor
product A ® B if 04(A® B) = 0w (A) - 0(B)Uo(A) - ow(B), where o(-) and
ow(+) stand for spectrum and Weyl spectrum, respectively. Conditions on A
and B for which the Weyl Spectral Identity holds are investigated. Especially,
it is shown that if A and B are biquasitriangular (in particular, if the spectra
of A and B have empty interior), then the Weyl Spectral Identity holds. It
is also proved that if A and B are biquasitriangular, then the tensor product
A ® B is biquasitriangular.

1. INTRODUCTION

Given a pair of operators A and B it is a relevant question to enquire whether the
Weyl Spectral Identity holds. An example where this condition plays an important
role is the result that says that if A and B are isoloid, satisfy Weyl’s theorem, and
the Weyl Spectral Identity holds, then the tensor product A ® B satisfies Weyl’s the-
orem [20, Theorem 1] (also see [24, Proof of Theorem 1], [19, Corollary 4]). The aim
of this paper is to investigate conditions on A and B for which the Weyl Spectral
Identity holds. The main result (Theorem 1) says that if A and B are biquasitri-
angular operators (in particular, if the spectra of A and B have empty interior),
then the Weyl Spectral Identity holds, and this implies that biquasitriangularity is
transferred from the operators to their tensor product A ® B.

2. NOTATION AND TERMINOLOGY

Notation in this area is not standard. Thus, to begin with, we pose the notation
and terminology that will be used throughout the text. By an operator we mean a
bounded linear transformation of a normed space into itself. Throughout this paper
T will denote an arbitrary operator acting on a complex infinite-dimensional Banach
space X, and I will denote the identity operator on X. Let the kernel and range of T
be denoted by N (T') and R(T), respectively, let X /R(T)~ be the quotient space of
X modulo the closure of R(T) (which in a Hilbert space is identified with N/ (T™)),
let o(T) and op(T) stand for the spectrum and point spectrum (i.e., the set of all
eigenvalues) of T} and let o4p(T) = {A € C: AI — T is not bounded below} be the
approximate point spectrum of 7. Recall that o(T’) is compact and nonempty. Set

00e(T) = {A € C: R(M —T) is not closed or dimN (A —T) = oo},
ore(T) = {X € C: R(AI —T) is not closed or dim X/R(M —T) = oo},
the left and right essential spectra in a Hilbert-space setting, or the upper and lower

semi-Fredholm spectra in a Banach-space setting; and let
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2 C.S. KUBRUSLY AND B.P. DUGGAL
0e(T) = 00e(T)U0re(T) = {A € C: A —T is not a Fredholm operator }

be the essential spectrum (also called the Fredholm spectrum) of 7. Let

ow(T) = {A € C: A — T is not a Fredholm operator of index zero}

be the Weyl spectrum of T'. Set
oo(T) = o(T)\ow(T),

the complement of the Weyl spectrum o,,(T) in the whole spectrum ¢ (7). The pair
of sets {0, (T),00(T)} forms a partition of the spectrum o(7T). Observe that in a
Hilbert space, where T denotes the adjoint of T, we get
oo(T) = {A€op(T): R(M —T)is closed and
dim N (M — T) = dimN'(X] — T*) < oo}
(see, e.g., [17, §5.3] — in a Banach space the same result still holds with A(A —T%)

replaced with the quotient space X/R(M — T)7; the upper bar ~ standing for
closure). Consider the set opp(T) of all eigenvalues of T of finite multiplicity,

opr(T) ={A € op(T): AimN(XI — T) < oo},
so that 0o(T") C opp(T), and set
700(T) = 0iso(T) Nopr(T),

where 0i5,(T") denotes the set of all isolated points of the spectrum o(T). Its com-
plement 0...(T) in o(7T) is the set of all accumulation points of the spectrum:
Oace(T) = 0(T)\0iso(T) — these are sometimes also denoted by isoo(T") and
acco(T), respectively. One says that an operator T satisfies Weyl’s theorem if

Jo(T) = 7T00(T),
and it is said to satisfy Browder’s theorem if

oo(T) C moo(T).
Set
70(T) = 0iso(T) Noo(T).
The set
ob(T) = o(T)\mo(T)

is referred to as the Browder spectrum of T, and so {oy(T),m(T")} forms another
partition of the spectrum o(7T'). Recall that

0.(T) € 0u(T) C 0y(T) € o(T),
and

ow(T) = 0p(T) if and only if T satisfies Browder’s theorem.

These are well-known results (see, e.g., [17, Chapter 5]). An operator T is isoloid if
Oiso(T) C op(T) (i.e., if every isolated point of the spectrum is an eigenvalue).
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3. AUXILIARY RESULTS

In this section we explore the relationship among biquasitriangular operators,
operators without isolated points in their spectra and, on the other end, operators
whose spectra have empty interior, which will be needed in the sequel. Let o(T')°
denote the interior of the spectrum o (7T') of T.

An operator T on a complex infinite-dimensional separable Hilbert space is qua-
sitriangular if there is a sequence {P,} of finite-rank projections that converges
strongly to the identity operator I and {(I — P,)TP,} converges uniformly to the
null operator [10, §2]. If both T and T* are quasitriangular, then T is biquasi-
triangular (BQT). Biquasitriangular operators are equivalently described as follows.

T is BOT if and only if 04e(T) = 0re(T) = 0(T) = 0 (T)
[2, Theorem 5.4], [3, Theorem 2.1] (also see [21, p.37]), which means that [18, §4]

T is BQT if and only if ¢.(T") has no holes and no pseudoholes

(see the forthcoming Lemma 1(e)). Thus we take the above equivalent statement as
the definition of a BOT operator on a Banach space. By the above characterization,
if there is an operator on a complex infinite-dimensional separable Hilbert space
without a nontrivial invariant subspace, then it must be biquasitriangular [21, p.47].
Indeed, since o(T)\oe(T) C opp(T) Uopr(T*)*, 0ee(T)\ore(T) C op(T)\opr(T),
Ore(T)\Oee(T) C op(T*)*\opr(T*)* (see e.g., [17, Theorem 5.16 and Corollary
5.18]), and recalling that o4 (T) U 0,e(T) = 0.(T) Cow(T) Cop(T) Co(T), we get

00e(T) = 0e(T) = 0e(T) = 0(T) = 0p(T) = o(T)
whenever op(T) = op(T*) = @. In particular,

op(T) = op(T*) = & implies that T is BOT.
Equivalently,
o(T) = o¢(T) implies that T is BOT,

where o¢(T) = o(T)\ (op(T) Uop(T*)*) stands for the continuous spectrum of 7.
Recalling that if 7" has no nontrivial invariant subspace, then o(T') = o¢(T), it
follows that if 7" has no nontrivial invariant subspace, then T' is BQ7T.

Lemma 1. Let T be an arbitrary operator.
(a) If 0i0(T) = @, then op(T) = o(T).
(b) If 0o(T) =@, then 0,(T) = 0p(T) = o(T).
(¢) If 0iso(T) = 00o(T) = @, then T satisfies Weyl’s theorem.
(d) If 0o(T) = @ and 0.(T) has no holes, then o.(T) = 0.,(T) = 0p(T) = o(T).
(e) ge(T) has no holes and no pseudoholes if and only if T is BQT.

Proof. If 0is0(T) = @, then mo(T) = @, and hence (a) 0,(T) = o(T'). Recall that
0e(T) C 0u(T) C op(T) Co(T). If 0o(T) = o(T)\ow(T) = @, then (b) 0,(T) =
ou(T) = o(T) (which implies that T satisfies Browder’s theorem). If, in addition,
Oiso(T) = @, then (c) T satisfies Weyl’s theorem as well (since moo = @ trivially).
Since 0,,(T) is the union of o.(7T") and its holes (the Schechter Theorem: see, e.g.,
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[17, Theorem 5.24]), we get (d) form (b). Consequently, o.(T") has no holes — which
means that o.(T) = 0, (T) — and the pseudoholes 01+ (T) = 04 (T)\0re(T) and
O—oo(T) = 0pe(T)\0ve(T) (see, e.g., [17, Theorem 5.16]) of 0.(T) are empty — so
that 0¢e(T) = 0,e(T) = 0.(T) — if and only if 04 (T) = 04 (T) = 0.(T) = 0 (T),
which means that T is BO7. O

Lemma 2. Suppose o(T)° = @. Then

(@) 00e(T) = 07¢e(T) = 0e(T) = 0w(T) = 0u(T)
(i.e., T is BOT and satisfies Browder’s theorem),

(b) 04e(T) = 0,e(T) = 0.(T) = 0 (T) = 04(T) = o(T) if and only if 7o(T) = 2.

Proof. Recall that oo(T) = 1o(T) Umo(T), where 79(T") = 0o(T)\7o(T) is an open
set in C (cf. [17, Corollary 5.20]). Suppose o(T')° = @. Then 0o(T") = mo(T'), which
is equivalent to saying that o, (T) = ou(T) (i.e., T satisfies Browder’s theorem —
see, e.g., [17, Corollary 5.41]). Moreover, since the holes of o.(T") are open sets,
the Schechter Theorem (see, e.g., [17, Theorem 5.24]) ensures that o.(T') = 0,,(T).
Furthermore, the pseudoholes of o, (T) are also open sets, so that 0. (T) = 0,..(T) =
0.(T) (see, e.g., [17, Theorem 5.16]). This concludes the proof of (a). From (a
o0o(T) = @ (ie., 0,(T) = o(T)) if and only if 04e(T) = 0,e(T) = 0.(T) = 0,(T)
ou(T) = o(T) (since 0, (T) C 0p(T) C o(T)), and so we get (b).

~—

9

O

Remark 1. (a) Let T" act on X. Recall that
0e(T) = 04e(T) U 0re(T) = (00e(T) N 0re(T)) U 0400(T) U oo (T);

that 04(T), 0pe(T), 0e(T), 0w(T), and op(T) are subsets of o(T) which are all
closed in C; and also that the pseudoholes of 0. (T'), viz., 04 00(T) = 04e(T)\Ore(T)
and 0_o(T) = 07¢(T)\0¢e(T), which are holes of 0,.(T) and o4.(T), are open in
C. Therefore, it can be verified (cf. [17, Theorem 5.16, Corollary 5.18, Remarks
5.15(a), 5.27(a), 5.40(a)]) that assertions (i) to (iii) below are pairwise equivalent.

(i) dim X = co.

(ii) One of the sets 04 (T), 0re(T), 0e(T), 0u(T), or op(T) is not empty.

(iii) All the sets 0¢(T), 0re(T), 0(T), 04,(T), and op(T') are not empty.

(b) Thus the sets in Lemma 2(a) are nonempty. If 0i5,(T) = o(T), then #0(T) < co
(# means cardinality), and so o(7T)° = &, implying the assumption of Lemma 2.

(¢) The result in Lemma 2(b) also holds if T' is BOQT. That is, if T is BQT, then
Uée(T) = Ure(T) = Ue(T) = Uw(T) = Ub(T) = J(T) if and only if UO(T) =g.

(d) The converse of Lemma 2(a) fails: 04(T) = 0,¢(T) = 0.(T) = 0(T) = 0u(T)
does not imply o(T")° = @. It was exhibited in [16, Example 6.H (Part 2)] a Hilbert

space operator such that o(T) = o¢(T) = D, the closed unit disc, and so op(T) =
op(T*) = @, which implies 04e(T) = 0re(T) = 0(T) = 0 (T) = 0u(T) = o(T).

4. WEYL SPECTRAL IDENTITY

By a tensor product space X ® Y of (complex infinite-dimensional) Banach spaces
X and Y we mean the completion endowed with a reasonable uniform cross norm



WEYL SPECTRAL IDENTITY AND BIQUASITRIANGULARITY 5

[22, §6.1] of the algebraic tensor product of X and Y [5, p.22-25], [25, §3.4]. Let the
(bounded linear) operator A ® B on X ® ) denote the tensor product of (bounded
linear) operators A on X and B on ). (A and B will always stand for operators
on Banach spaces.) As far as tensor product properties used in this paper are
concerned there will be no fuss in considering tensor products either in a Banach
or in a Hilbert space setting [15, §2]. For instance, that the spectrum of a tensor
product coincides with the product of the spectra of the factors,

o(A® B) = o(A) - o(B),

was proved in a Hilbert space setting [4, §1], but it is well known [23, Theorem 2.1],
[11, Theorem 4.13], [9, Theorem 3.2] that this has a natural extension to a Banach
space setting (reasonably uniformly cross normed). For the essential and Browder
spectra it was proved in [12, Theorem 4.2(c,a)] that

0.(A® B) =0.(A)-0(B) U c(A)-oe(B),
o(A® B) = ay(A) - 0(B) U a(A) - 06(B),

while for the Weyl spectrum it was also proved in [12, Theorem 4.2(f)] that
ow(A® B) Coy,(A)-o(B) Uoa(A)-ou(B).

It remained as an open question whether the above inclusion might be an identity.
This question was solved quite recently by using the counterexample from [14, §3]
(which exhibits a pair of operators that satisfy Weyl’s theorem whose tensor product
does not satisfy Browder’s theorem) together with a result from [19, Corollary 6]
(which says that Browder’s theorem is transferred from a pair of operators to their
tensor product if and only if the above inclusion is an identity). This ensures the
existence of pairs of operators for which the above inclusion is proper. If a pair of
operators {A, B} is such that

ow(A® B) =04,(A)-0(B) U d(A) - ou(B),

then we say that the Weyl Spectral Identity (WSI) holds for A ® B.

It is an important question to enquire whether the WSI holds. An example where
this condition plays a crucial role is the result that says that if A and B are isoloid,
satisfy Weyl’s theorem, and the WSI holds, then A ® B satisfies Weyl’s theorem
[20, Theorem 1] (also see [24, Proof of Theorem 1], [19, Corollary 4]).

In the next sections we investigate conditions on A and B for which the Weyl
Spectral Identity (WSI) holds. We begin with a collection of intermediate results,
exhibiting conditions that imply the Weyl Spectral Identity, or are implied by it,
which are closely linked with Browder’s theorem.

Lemma 3. Let A and B be operators acting on infinite-dimensional spaces.
(a) If 0w(A® B) =0,(A® B), then the WSI holds
(i.e., if A® B satisfies Browder’s theorem, then the WSI holds).

(b) In particular, if 0o(A® B) =&, then the WSI holds
with 04,(A® B) = 0p(A® B) = 0(A® B).
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(¢) If oe(A\{0} = 04, (A)\{0} and 0.(B)\{0} = 04, (B)\{0}, then the WSI holds
with 0.(A® B) = 0,(A® B).

(d) If 0y (A) =0y (B) = {0}, then the WSI holds
with O'o(A (9 B) = Uo(A) . O'Q(B).

(e) If 0w (A) =0(A) or 04 (B) =0(B), and if the WSI holds, then
ow(A®B) =0,(A® B) =0(A® B) and 0o(A® B) = 0¢(A)-009(B) = 2.

(f) If 0w(A) =0p(A), 0w (B) = 0u(B), and the WSI holds, then c,(A® B) =
op(A® B) (ie., if A and B satisfy Browder’s theorem, and if the WSI
holds, then the tensor product A ® B satisfies Browder’s theorem).

Proof. (a) Since 0.,(T) C 0u(T), if 04, (A ® B) = 0p(A ® B), then

ow(A® B) C 0y(A)-0(B)Ud(A) - 0y(B)
C ap(4)-0(B)Ua(A)-0b(B) = 0p(A© B) = 0,(A® B)
[12, Theorem 4.2(f,a)].
(b) Since 0,(T) C 0p(T) C o(T), if 0o(A ® B) = &, equivalently, if 0,(A® B) =
0(A® B), then 0,(A® B) = 0,(A® B), and we get back to item (a).

(¢) Suppose g.(A)\{0} = 0, (A)\{0} and o.(B)\{0} = 0, (B)\{0}, and recall that
0e(T) C 0(T). Therefore, since 0,(A® B) C 04(A)-0(B)Uc(A)-o,(B), and
0.(A® B) =0.(A)-0(B)Uoc(A) - o.(B) [12, Theorem 4.2(f,c)], we get

ow(A® B)\{0} C (0w (4) -0 (B))\{0} U (0(A) - 7 (B))\ {0}
= ow(4 )\{0} o(B)\{0} U o(A )\{0} -0w(B)\{0}
= 0c(A)\{0} - o(B)\{0} U o (A)\{0} - 0c(B)\{0}
= (0e(4) - a(B))\{0} U (o(4) - 0e(B))\{0}
= 0c(A® B)\{0} € ou(A® B)\{0},
and so

0w(A @ B)\{0} = 0, (A)\{0} - o(B)\{0} U 0(A)\{0} - 00, (B)\{0},

which in turn implies that the WSI holds, since 0 € 0(A) Uo(B) if and only if
0 € 04 (A ® B), because 0 € 0¢g(A ® B) [19, Proposition 5(a)]).

(d) Recall that the Weyl spectrum is nonempty on infinite-dimensional spaces. Since
ow(A® B) Coy(A)-0(B)Uc(A)-0,(B), it follows that, if 0,,(A) = 0, (B) = {0},
then o, (A ® B) = {0} (because 0 € 0¢(A ® B)), and so the WSI holds. Moreover,
since 0(A® B) = 0(A) - 0(B) and 0,(A® B) = 0,(A4) = 04, (B) = {0}, it follows
that o(A ® B)\ow (A © B) = 0(A)\ow(A) - 0(B)\ow(B).

(e) If 0, (A) = 0(A) (equivalently, if 09(A) = @), and if the WSI holds, then

ow(A® B) = 0y(A)-0(B)Uo(A) - 0y(B

)
= 0(4)-a(B)Uoy(A) - 0u(B) = 0(4)-0(B) =o(A B),

and hence 09(A ® B) = @, which leads to the claimed identities. Clearly, the as-
sumption o,,(A) = 0(A) can be replaced with o,,(B) = o(B).

(f) If 0y (A) = 0p(A4) and 0, (B) = op(B), and if the WSI holds, then



WEYL SPECTRAL IDENTITY AND BIQUASITRIANGULARITY 7

ow(A® B) = 04(A)-0(B)Uog(A) - 0u(B)
= 0p(A)-a(B)Uc(A) - op(B) = 0p(A® B).

That is, if A and B satisfy Browder’s theorem, and if the WSI holds, then A ® B
satisfies Browder’s theorem. O

Remark 2. Lemma 3(f) provides a way to look for operators for which the WSI
does not hold:

If A and B satisfy Browder’s theorem, and if A ® B does not satisfy Browder’s
theorem, then the WSI does not hold.

The results in Lemma 3(a) and 3(f) were originally presented in [19, Propositions
6(a) and 7(a)]), leading to the following equivalences (cf. [19, Corollary 6]).

(a) A and B satisfy Browder’s theorem =—-
{A® B satisfies Browder’s theorem <= the WSI holds}.

Equivalently,

(b) {A and B satisfy Browder’s theorem => A® B satisfies Browder’s theorem }
<= the WSI holds.

Moreover, the following implication was shown in [19, Proposition 5].
(¢) If the WSI holds, then o0¢(A® B) C 0¢(4) - 00(B),

and the inclusion may be proper even if the WSI holds, with A, B and A ® B be-
ing isoloid operators satisfying Weyl’s theorem ([19, Remark 2]). Lemma 3(e) is a
particular case of (¢) giving another way to verify whether the WSI does not hold:

If 00(A) = @ and if 09(A ® B) # @& for some B, then the WSI does not hold.

5. BIQUASITRIANGULAR

The class of all biquasitriangular operators is quite a large class. For instance,
let N, K, Alg, Nil and QNil denote the classes of normal, compact, algebraic,
nilpotent, and quasinilpotent operators, respectively. Let A/ + K be the class of all
sums of normal plus compact, which trivially includes A" and K individually. These
classes are included in the class of biquasitriangular operators, and are related as
follows (see e.g., [21, pp.37-40,48]) — where the upper bar ~ stands for closure.

N+ K c BOT, Nil c Alg C Alg~ = BOT, Nil c ONil c Nil~ c BOT.
Theorem 1. Let A and B be operators acting on infinite-dimensional spaces.

(a) If A and B are BQT, then the WSI holds.
(b) If A and B are BQT, then the tensor product A® B is BOT as well.

Proof. (a) If A and B are BOT, then o.(A) = 0, (A) and 0.(B) = 0, (B), so that
0.(A\{0} = 0, (A)\{0} and 0.(B)\{0} = 0,(B)\{0}, and therefore Lemma 3(c)
ensures that the WSI holds.

(b) Suppose A and B are BOT, which means that
00e(A) = 0re(A) = 0.(A) = 0(A) and  0pe(B) = 0re(B) = 0.(B) = 0y (B).
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Item (a) says that the WSI holds (the spectral identity holds for the Weyl spectrum).
Since the spectral identity always holds for the essential spectrum (and since A and
B are BQT, which implies that 0.(A) = 0,,(B) and o.(A) = 0,(B)), we get

0.(A® B) = 0, (A® B).
Claim. If T is BOT, then o4p(T) = o(T).
Proof of Claim. Recall that, for any operator T (see, e.g., [17, p.148]),
oap(T) = 04e(T) U app(T).
Therefore, if T' is BT, then
oap(T) = 0w(T)Uopp(T).
However, since o(T)\ow(T) = 0o(T) C opp(T), it follows that
o(T) =0y (T)Uoo(T) Cow(T)Uopr(T) = oap(T) C o(T),
which concludes the proof of the claimed identity. [
Now recall from [13, Theorem 4.4(a,b)] that c4p(A® B) = 0ap(A) - 0ap(B), and
00e(A® B) = 04 (A) - 04p(B) U cap(A) - 04 (B).
Thus, if A and B are BQ7, then the above Claim ensures that
00e(A® B) =0.(A)-0(B) U o(A)-0.(B)=0.(A® B).
Dually, the above identity implies that, if A and B are BQT, then
0re(A® B) = 0.(A® B).

(The duality holds in any appropriate Banach space setting, and has a nice proof
in a Hilbert space setting. Indeed, since 0.(T) = 0(T*)* 0re(T) = 00 (T*)* T is
BOT if and only if T* is BOT, and (A ® B)* = A* ® B*, it follows that 0,.(A ® B) =
0ee((A® BY') = 00 (A°® B))* = 0o(A° @ B))" = 0.(A® B)*)* = 0 (A@ B)).
Outcome:

0te(AR B) = 0,..(A® B) =0.(A® B) = 0,(A® B),

which means that A ® B is BO7T. d

A note on a-WSI. The notion of a-WSI is an extension of WSI. Take the set
Oaw(T) = {)\ € oap(T): either A € 04.(T) or A\I — T has positive indeX}7

which we refer to as the approximate Weyl spectrum of an operator 7. We say
that the a-WSI holds for a tensor product A ® B if the original WSI holds with
spectra replaced with approximate point spectra and Weyl spectra replaced with
approximate Weyl spectra. In other words, the a-WSI holds for A ® B if

Oaw(A® B) = 04y(A) - 0ap(B) U oap(A) - 04w(B).
(See [7, Theorem 1] for the a-version of Remark 2(a).) Now observe that

T € BOT implies o4p(T)=0(T) and 04,(T) = 0 (T).
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(Reason: the Claim in the proof of Theorem 1 ensures that o4p(T) = o(T); more-
over, o (T) = 0, (T), and Al — T has index zero for A € 0o(T) = o(T)\ow(T).)
Hence, for BOT operators, the a-WSI holds if and only if the WSI holds, and, in
this case, the results in Remark 2(a) and those in [7, Theorem 1] are equivalent.

Corollary 1. Let A and B be operators acting on infinite-dimensional spaces.
(a) If 0(A)° =o(B)° =@, then the WSI holds, and A, B and A® B are BOT
and satisfy Browder’s theorem.
(b) If 0(A)° = 0is0(A) = @ and 0(B)° = 0i50(B) = &, then (in addition) A, B
and A® B satisfy Weyl’s theorem with

Go(A) = Uo(B) = 0'0(A X B) = Uiso(A &® B) = J.

Proof. (a) If 0(A)° = 0(B)° = &, then A and B are BOT and satisfy Browder’s
theorem by Lemma 2(a). Thus Theorem 1(a) ensures that the WSI holds, and
Theorem 1(b) ensures that A ® B is BQT. Since A and B satisfy Browder’s theorem
and the WSI holds, it follows A ® B satisfies Browder theorem by Lemma 3(f).

(b) Recall that 0o(T") C 70(T) U 0is0(T'), where 10(T") = 0o(T)\7o(T) C o(T) is an
open subset of C (cf. [17, Corollary 5.20]). Hence,

o(T)° = 0iso(T) =2 implies 0o(T) =&,

and so o(T)° = 0i50(T) = @ implies 0is0(T) = 0¢(T) = &, which in turn implies
that T satisfies Weyl’s theorem by Lemma 1(c). Therefore, if 0(A)° = 0i50(A) = @
and o(B)° = 0is0(B) = @, then (i) both A and B satisfy Weyl’s theorem, and (ii) A
and B are isoloid (there is no isolated point in their spectra, and so no isolated point
that is not an eigenvalue). Since (a) ensures that the WSI holds, it follows by [20,
Theorem 1] that A ® B satisfies Weyl’s theorem. Moreover, gis,(A) = 0iso(B) = @
implies 0i50(A ® B) = & (see e.g., [19, Proposition 3(c)]) and, since WSI holds,
00(A® B) C 0¢(A) - 0o(B) (cf. Remark 2(c)), so that 0o(A® B) = @. O

These are immediate consequences of Corollary 1(a):

Corollary 2. Let A and B be operators acting on infinite-dimensional spaces.
() #0acc(A) < 00 and #0aec(B) < 0o imply that the WSI holds.
In particular,

(b) 0(A) = 0is0(A) and o(B) = giso(B) implies that the WSI holds.

Remark 3. (a) If the WSI holds, then o¢(A® B) C 0o(A) - 09(B), as we saw in
Remark 2(c). Does the reverse inclusion imply that A and B are isoloid when the
WSI holds? In other words, is it true that if the WSI holds, and if oo(A® B) =
00(A) - 0o(B), then A and B must be isoloid? Corollary 1 offers a negative answer
to this question. Indeed, take a pair of compact weighted bilateral shifts A and B
on ¢2 so that they are quasinilpotent and their spectra coincide with their continu-
ous spectra, 0(A) = 0c(A) = 0(B) = 0¢(B) = {0}, and hence they are not isoloid.
Moreover, 0(A ® B) = 0(A)-0(B) = {0}. Since A and B act on infinite-dimensional
spaces, their Weyl spectra are not empty, and so 0,,(A ® B) = 04, (A) = 0,(B) =
{0}, which implies that oq(A ® B) = 0¢(A)-009(B) = @. Furthermore, Corollary
1(a) ensures that the WSI holds.
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(b) The preceding question suggests the next one. Is it true that if A and B are
isoloid then the WSI holds? Again the very same setup discussed in Section 4
offers a negative answer to this question too: the pair of operators that satisfy
Weyl’s theorem whose tensor product does not satisfy Browder’s theorem given in
[14, §3] are isoloid, and the WSI does not hold for their tensor product according to
[19, Corollary 6] (cf. Remark 2(b)). Such a pair of operators exhibited in [14, §3] is
constructed as follows. Let S be the canonical unilateral shift on X = 63_, consider
the following operators A and B on the (orthogonal) direct sum X & X = Ei &) @H

A=(I-588)®(3S-1), B=-(1-S5)a& (5 +1),
whose spectra are given by
o(A)={0,13U(zD~1),  o(B)={0,-1}U (3D +1),

where ) is the closed unit disc centered at the origin of the complex plane, and
take their tensor product A ® B acting on (X ¢ X') @ (¥ & X), sothat 0 (A® B) =
o(A)-o(B) = ({0,1}U (3D — 1)) - ({0,=1} U (3D +1)). The operators A and B
satisfy Weyl’s theorem, while their tensor product A ® B does not satisfy Browder’s
theorem [14, §3]. Hence, according to [19, Corollary 6] (cf. Remark 2(b)), the WSI
does not hold. However, observe that the isolated points 0 and 1 of o(A) and —1
and 0 of o(B), are eigenvalues of A and B, and so A and B are isoloid.

Remark 4. An operator T is said to have the single valued extension property,
SVEP for short, at a point u € C if for every open neighborhood A, C C of p, the
only analytic solution f: A, — X to the equation

(M —=T)f(A\) =0 forevery AeA,

is the null function (f = 0). Clearly, every operator 7" has SVEP at every point
of the resolvent set p(T") = C\o(T), and at every point in the boundary of o(7T),
and so at every isolated point of the spectrum o(T'). An operator T is said to have
SVEP if it has SVEP at every u € o(T). A countable spectrum implies SVEP, and,
if T has no eigenvalues (i.e., if op(T) = @), then T has SVEP; dually, if 7 has no
eigenvalues (i.e., if op(T*) = &), then T* has SVEP. It can be verified (see, e.g., [1,
Theorems 3.16 and 3.17, and Corollary 3.19]) that the following result holds true.

If T and T* have SVEP at every point in 0o(T) = o(T)\ow(T), then T is
BQT and satisfies Browder’s theorem (i.e., 0,,(T) = 0y(T)).

In such a case, 0,(T) = o(T) if and only if T" has no isolated eigenvalues of finite
multiplicity (cf. Lemma 2(b)). Observe that for a decomposable operator 7', both
T and T* have SVEP [1, Theorem 6.21], and so T is BQ7. According to the above
displayed result we get the following consequence of Theorem 1 and Lemma 3(f).

If A and A* have SVEP on 0¢(A), and if B and B* have SVEP on 0¢(B), then
the WSI holds, and A, B and A ® B are BQT and satisfy Browder’s theorem.

In particular, if A, B, A* and B* have SVEP, then the WSI holds, and A, B and
A ® B are BOT and satisfy Browder’s theorem — compare with Corollary 1(a).

Remark 5. Let A and B be arbitrary operators and consider the (bounded linear)
transformers L 4 and Rp, the left and right multiplication, defined by L4 (X) = AX
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and Rp(X) = XB for every operator X. Recall that the transformers d4 g (the
generalized derivation) and A4 g (the elementary operator) are given by 645 =
Ls—Rp and Ay p = LaRp — I, where I stands for the identity — I(X) = X.
The following corollary of Theorem 1 was verified in [6, Corollary 1].

(a) If A and B are BQT, then 0,,(LaRp) = 0(A) - 0(B) Uoy(A4) - o(B).
(b) If A and B are BQT, then LsRp is BOT.

Note that the identity oy (LaRp) = 0(A) - 04 (B) Uoy(A) - 0(B) is the analogue
of WSI (which was defined for tensor products), replacing A ® B with L4 Rp. The
above result implies, in particular, that if A is BOT, then L4 and R4 are BQT. It
was also shown in [6] that if A and B are BQT. then 64,5 = La — Rp is BQT, and
0w(d4,8) € (0(A) — 0w(B)) U (0w(A) — o(B)). (Also see [8].)
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