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ALGEBRAIC ELEMENTARY OPERATORS

B.P. DUGGAL, S.V. DJORDJEVIC, AND C.S. KUBRUSLY

ABSTRACT. A Banach space operator A is algebraic if there exists a non-trivial
polynomial p(.) such that p(A) = 0. Equivalently, A is algebraic if o(A)
is a finite set consisting of poles. The sum of two commuting Banach space
algebraic operators is algebraic, and the generalized derivation 4 = L4 —Rp
(and, for non-nilpotent A and B, the left right multiplication operator L s Rp)
is algebraic if and only if A and B are algebraic. We prove: If asc(dgap—A) <1
for all complex A, and if A*, B have SVEP, then d4p — A has closed range for
every complex A if and only if A, B are algebraic; if A, B are simply polaroid,
then dap — A\ has closed range for every A\ € iso o(dap); and if A, B are
normaloid, then L4Rp — A has closed range at every A in the peripheral
spectrum of L 4 Rp if and only if L 4 Rp is left polar at .

1. INTRODUCTION

For a Banach space X, let B(X) denote the algebra of operators, equivalently
bounded linear transformations, on X into itself. Given an operator T' € B(X), the
kernel T-1(0) of T is orthogonal to the range T'(X) of T, T=*(0) L T(X), in the
sense of G. Birkhoff if ||z|| < ||z + y|| for all z € T=1(0) and y € T(X) [6, Page

25]. Clearly, T=*(0) L T(X) = T-Y0)NT(X) = {0} = T-1(0) N T(X) = {0}.
(Here, as also in the sequel, W denotes the closure of T'(X).) The range-kernel
orthogonality of an operator is related to its ascent. The ascent of T' € B(X),
asc(T), is the least non-negative integer n such that 7-™(0) = T~ (*1(0); if no
such integer n exists, then asc(T) = oo. It is well known [1, 6] that asc(T) < m < oo
if and only if 7="(0)NT™(X) = {0} for all integers n > m, and that T-1(0) L T(X)
implies asc(T') < 1.

The range-kernel orthogonality 7-1(0) L T(X) of Banach space operators has
been studied by a number of authors over the past few decades. A classical result
of Sinclair [19, Proposition 1] says that “if 0 is in the boundary of the numeri-
cal range of a T € B(X), then T71(0) L T(X)”. Anderson [2], and Anderson
and Foiag [3], considered the generalized derivation 45 = Lo — Rp € B(B(H)),
dap(X) = AX — X B, to prove that if A, B € B(H) are normal (Hilbert space) op-
erators, then 6,5(0) L dap(B(H)). These results have since been extended to a
variety of elementary operators ®ap(X) = Ay X B; — A3 X B, for a variety of choices
of tuples of operators A = (A1, A3) and B = (B, By) (see [9, 11, 14, 15, 20] for
further references). The range-kernel orthogonality of an operator T' € B(X) does
not imply that the range T'(X) is closed or that X = T—1(0) ® T(X); see [3, Exam-
ple 3.1 and Theorem 4.1] and [19, Remark 2]. Indeed, range-kernel orthogonality

Date: March 5, 2013.
2000 Mathematics Subject Classification. Primary 47A80, 47A53; Secondary 47A10.
Keywords. Elementary operator; algebraic; range closure.

1



2 B.P. DUGGAL, S.V. DJORDJEVIC, AND C.S. KUBRUSLY

neither implies nor is implied by range closure. Thus, every bounded below opera-
tor has closed range and satisfies range-kernel orthogonality, an injective compact
quasi-nilpotent operator (for example, the Volterra integral operator on L2(0, 1))
satisfies range-kernel orthogonality but does not have closed range, and no operator
T (whether it has closed range or not) with 2 < asc(T) < oo satisfies range-kernel
orthogonality. The implication T~1(0) L T(X) = asc(T) < 1 is strictly one way;
if A;,B; € B(H), 1 <i < 2, are normal Hilbert space operators such that A; com-
mutes with Ay and By commutes with Bs, then asc(®ap) < 1 [12, Theorem 3.4]
but ®,5(0) L ®as(B(H)) if and only if (A; ® B})~(0) N (A2 @ B)~'(0) = {0}
[20, Corollary 2.3].

Letting iso o(A) (resp., iso 0,(A)) denote the set of isolated points of the spec-
trum o(A) (resp., approximate point spectrum o,(A)) of A € B(X), we say that
A is polar at X € iso o(A) (resp., left polar at \ € iso 0,(A)) if X is a pole of the
resolvent of A (resp., there exists an integer d > 1 such that asc(A — A) < d and
(A — N)4H1(X) is closed); A is polaroid (vesp., left polaroid) if A is polar at ev-
ery A € iso (A) (resp., left polar at every A € iso 0,(A)). A well known result of
Anderson and Foiag [3, Theorem 4.2] says that if A, B € B(H) are scalar Hilbert
space operators, then 45 — A has closed range for every complex A if and only if
0(A) U o(B) is finite. Scalar Hilbert space operators are similar to normal opera-
tors, and normal operators are simply polar (i.e., they have ascent less than or equal
to 1). Hence, [1, Theorem 3.83], if A, B € B(H) are scalar operators, then d4p — A
has closed range for every complex A if and only if A, B are algebraic operators.

This paper considers algebraic elementary operators. We start by observing that
an A € B(X) is algebraic if and only if L4 and R4 are algebraic. The algebraic
property transfers from commuting A, B € B(X) to A+ B, ap is algebraic if and
only if A and B are algebraic, and if A, B are non-nilpotent then L 4 Rp is algebraic
if and only if A, B are algebraic. Let d4p denote either of 45 and L4 Rp, where
A,B € B(X) are non-trivial. In considering applications, we prove that: (i) If
asc(dap — A) < 1 for all complex A, and if A*, B have SVEP, then dap — A has
closed range for every complex A if and only if A, B are algebraic; (ii) if A, B are
simply polaroid, then d4p — A has closed range for every A € iso o(dap); and (iii)
if A, B are normaloid operators, then L4 Rp — A has closed range at every A in the
peripheral spectrum of L4 Rp if and only if L4 Rp is left polar at A.

2. RESuULTS PART A: ALGEBRAIC

Let C denote the set of complex numbers. An operator A € B(X), has the single-
valued extension property at A\g € C, SVEP at \¢ for short, if for every open disc
D), centered at Ao the only analytic function f : Dy, — & which satisfies

(A=X)f(A\) =0 forall Ae€D,,

is the function f = 0. A has SVEP if it has SVEP at every A € C. The single
valued extension property plays an important role in local spectral theory and
Fredholm theory [1, 17]. Evidently, A has SVEP at points in the resolvent set and
the boundary 0o (A) of o(A)

Let A € B(X). The quasinilpotent part Hy(A—\) and the analytic core K(A—\)
of (A — \) are defined by

Ho(A-XN)={zeX: lim |[(A-N)"z
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and
K(A —\) = {z € X : there exists a sequence {z,} C X and § >0 for
which z =xzg, (A — N)(Zpt1) =2, and ||z,] < 5"||z| for all n=1,2,...}.

Ho(A — )) and K(A — ) are (generally) non-closed hyperinvariant subspaces of
(A—X) such that (A—X)"9(0) C Ho(A—A) forall ¢ =10,1,2,... and (A—N)K(A—
A) = K(A—)\); also, if A € iso 0(A), then Ho(A— \) and K(A — \) are closed and
X =Ho(A-XN) & K(A-)) [1].

A € B(X) is an algebraic operator if there exists a non-trivial polynomial p(.)
such that p(A) = 0. It is easily seen, [1, Theorem 3.83], that an operator A €
B(X) is algebraic if and only if o(A) is a finite set consisting of the poles of the
resolvent of A (i.e., if and only if o(A) is a finite set and A is polaroid). Since
o(A)=0(La)=0(Ra4), and since A is polaroid if and only if L4 (R4) is polaroid
[4, Theorem 11], we have:

Proposition 2.1. Let A € B(X), and let E4 = La or Ry. Then E4 is algebraic
if and only if A is algebraic.

The algebraic property transfers from commuting A, B € B(X) to A+ B.

Proposition 2.2. If A, B € B(X) are algebraic operators such that [A, B] = AB—
BA =0, then A+ B is algebraic.

A proof of the proposition (in a certain sense, a more direct proof) may be
obtained as a consequence of the easily proved fact that if A and B are commuting
algebraic elements of an algebra, then each polynomial p(A, B) is also algebraic: In
keeping with the spirit of this paper, in the following we draw upon local spectral
theory to prove the proposition.

Proof. If A € B(X) is algebraic, then there is an integer n > 1 such that ¢(A4) =
{A1, A2, , A} (for some scalars A\;, 1 < i < n), X = @], Hy(A—X\), and to
each i there corresponds an integer p; > 1 such that Ho(A—\;) = (A—X;)7Pi(0). Let
Ai = Alpg(a—x,); then A = @7, A;, A;— ); is nilpotent for all 1 <4 = j < n, and
A; — \j is invertible for all 1 < i # j < n. Furthermore, if we let B; = B|py,(a-x,)
for all 1 < ¢ < n, then B = @, B; and (since [A, B] = 0) [4;,B;] = 0 for all
1 < i < n. Trivially, B algebraic implies o(B;) is a finite set for all <. Consider
Ai+Bi— X = (4 — X)) + (Bi — A+ \;), where A € o(B;) (= isoo(B;)). If
A—=X ¢0(A; — N\ + B;) = 0(B;), then A; + B; — X is invertible, and hence

Ho(A; + B; — A) = {0} = (A; + B; — \)""(0)

for every positive integer 7;. If, on the other hand, A—\; € 0(4; —\;+ B;) = o(B;),
then Ho(B; + A — A) = (B; + A; — A)7"(0) for some integer r; > 1. Observe that

1Bi + X = N'allt = [{(Ai+Bi—A) = (4 = M)}
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for all x € X implies
Ho(Bi+ A — A) € Ho(A; + B; — \).
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By symmetry
Ho(A; + B; — A) € Ho(Ai + B; — A — A; + \;) € Ho(B; + A — N),
and hence
Ho(A; + B; — X\) = Ho(B; + \i = A\) = (Bi + A — A)77(0).
Now let r;p; = m;. Then, for all z € (B; + A\; — A)~™(0),

(A+B;—\)™iz = Z {( "]”‘ ) (Bi + X — \)™ 79 (A; = NV P} (As — A)Pra =0
Jj=pi+1
implies
Ho(A; + B;i = X)) = (B;+ X\ = A)7™(0) C (4; + B; — \)"™(0) C Ho(A4; + B; — ).
Thus, there exists an integer m; > 1 such that
Ho(Ai + Bi —A\) = (4i + B; = A\)"™(0)

for every A € iso o(B;). Let m = maxi<;<,m;, and let A € 0(A+B) =iso 0(A+B).
Then

Ho(A+B—>\) = éHO(Az+ B;— /\) = é(Al—F B;— A)imi«)) = (A+B—/\)7m(0)
i=1 i=1
at every A € 0(A+ B). Since
X =Hy(A+B-)N)®K(A+B-)\)=(A+B-\)""0)®K(A+B-))
— X=(A+B-)\N)""0)®(A+B-\"X

for every A € 0(A+ B), A+ B is polaroid. This, since 0(A + B) C 0(A) 4+ o(B) is
finite, implies A + B is algebraic. O

The descent of A € B(X), dsc(A), is the least non-negative integer n such that
A™(X) = A"TL(X); if no such integer exists, then dsc(A) = co. Evidently, A is
polar at A if and only if asc(A—\) = dsc(A— ) < 0o, and a necessary and sufficient
condition for an operator A with dsc(A — \) to be polar at A is that A has SVEP
at A [1, Theorem 3.81]. The following corollary is immediate from Proposition 2.2
and [1, Theorem 3.83].

Corollary 2.3. If A, B € B(X) are commuting algebraic operators, then the fol-
lowing statements are mutually equivalent:
(i) There exists a non-trivial polynomial p(.) such that p(A+ B) = 0.
(ii) dsc(A+ B — ) < oo for all complex A.
(i) dsc(A+ B — \) < oo for every X in the topological boundary 0o(A + B) of
o(A+ B).
(iv) A+ B — X is polar (at 0) for every complex A.
The converse of Proposition 2.2 is false: For a general non-algebraic operator
A€ B(X), A— A =0 is always algebraic. Propositions 2.1 and 2.2 have a number

of consequences. Recall from [11, Lemma 3.8] that if A™ is polaroid for some integer
n>1 (and A € B(X)), then A is polaroid. Since o(A™) = o(A)™, we have:

Corollary 2.4. A € B(X) is algebraic if and only if A™ is algebraic for all natural
numbers n.

Combining this corollary with Proposition 2.2 we have::
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Corollary 2.5. If A, B € B(X) are commuting algebraic operators, then AB is
algebraic.

Proof. If AB = BA, then AB = 1{(A+ B)? — (A— B)?}. O

The converse of Corollary 2.5 is false: If A € B(X) is a nilpotent and B €
B(X) is an operator which commutes with A, then AB being nilpotent is algebraic
irrespective of whether B is or is not. It is immediate from Proposition 2.2 and
Corollary 2.5 that A, B € B(X) algebraic implies 45, LaRp, and Ayp = LaRp—
A algebraic for all complex A. The following proposition shows that the converse
holds in the case of 45..

Proposition 2.6. Let A, B € B(X).

(a) 0ap is algebraic if and only if A and B are algebraic.

(b) LaRp algebraic does not imply A and B algebraic.
Howewver, if LARp is algebraic, then at least one of A and B is algebraic.

(¢c) Furthermore, if neither of A and B is nilpotent, then LoRp is algebraic if and
only if A and B are algebraic.

Proof. (a) Assume that d4p is algebraic, i.e., assume that there exists a polynomial
p(.) such that p(dap) = Z?:o a;6% 5" = 0. Then there exist scalars a;, 1 <1i < n,
not all zero such that

A"X + A" 'XB+---+a, 1AXB" ' +a,XB" =0

for all X € B(X). Considering only those powers B? (including B® = I) of B for
which a; # 0, it is seen that the linear independence of this set implies that A* = 0
for every power of A which appears in the identity above (see [16, Theorem 1]).
Hence B™ is a linear combination of elements from a maximal linearly independent
subset of the set {I,B,B?,--- , B"1}. Thus B is algebraic, and hence Rp is
algebraic. Since Ly = dap + Rp, A is also algebraic.

(b) The example of the operator A = 0 and B is a quasinilpotent proves that L4 Rp
algebraic does not imply A and B algebraic. The hypothesis L 4 Rg algebraic implies
the existence of scalars a;, 1 < i < n, not all 0 such that

A"XB" + a1 A" ' XB* '+ ...+ a, 1AXB+a,X =0

for all X € B(X). Denote by {an,;any;--.,0n,,,1} the set of coefficients a,—;,
0 <i <n—1, which are non-zero, and arrange the corresponding sets of ascending
powers of Band Aby Sg = {By, B2, - , B, B"}and Sy = {41, Ag, -+ , Ay, A}
If the set Sp is linearly independent, then A™ = 0, and if Sg is not linearly inde-
pendent then B™ is a linear combination of powers B, i < n, of B [16, Theorem
1]. Thus either A or B is algebraic.

(c)Assume now that neither of A and B is nilpotent. Then the preceding ar-
gument implies that B is algebraic. If {Bj, Bg, -+, Bg} is a maximal linearly
independent subset of Sp, then there exist scalars «y;, not all zero, such that
Ay = Y0 awgAj for all 1 < ¢ < k [16, Theorem 1]. Hence A is also alge-
braic. O

If A = (Ay,A9,---,A,) and B = (By, By, , B,) are n-tuples of mutually
commuting operators in B(X), then [La,Rp,,La;Rp,] = 0 for all 1 <i,j < n.
Since A; and B, algebraic implies L4, Rp, algebraic, we have:
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Corollary 2.7. If A = (A1, A4y, ,A,) and B = (By, B, -+, B,) are n-tuples
of mutually commuting algebraic operators in B(X), then the operator Eap — A,
(EaB — N (X) =", A, XB; — \X, is algebraic for all complex .

Remark 2.8. (i) Given two complex infinite-dimensional Banach spaces X’ and ),
let X®) denote the completion, endowed with a reasonable uniform cross-norm, of
the algebraic tensor product X ® Y of X and Y; let, for A € B(X) and B € B(}),
A® B € B(X®)Y) denote the tensor product operator defined by A and B. If A
and B are non-nilpotent operators, then A ® B is an algebraic operator if and only
if A and B are algebraic operators: this may be proved directly or deduced from
Proposition 2.2(b) using an argument of Eschmeier [13, Pages 50 and 51] relating
tensor products to the operator of left-right multiplication in the operator ideal
B(B(Y,X)). (Here, in using [13], one observes that B is algebraic if and only if B*
is algebraic.) It is evident from Proposition 2.2 that if A; and B; are algebraic for
all 1 S ) S n and [Al,A]] =0= [Bl,B]] for all 1 S ’L,] S n, then E?:l Al & Bl is
an algebraic operator.

(ii) An operator A € B(X) is meromorphic if its non-zero spectral points are poles
of the resolvent [17, Page 225]. Clearly, a meromorphic operator possesses at most
countably many spectral points {\;} (and 0 as its only accumulation point) which
we may arrange by decreasing modulus by |[A1] > |A2] > ---. Recall that the
polaroid property transfers from A and B to La, R4, LsRp and L4, —Rp [4, 5, 10].
Evidently, A meromorphic implies L4 and R4 meromorphic. Let A and B € B(X)
be meromorphic operators, and let 0 # A € o(LsRp) = 0(A)o(B). Then A\ = pv
for some 0 # p € 0(A) and 0 # v € o(B), and it follows that L4y Rp is polar at
A. Conclusion: If A and B € B(X') are meromorphic, then L4 Rp is meromorphic.
This fails for the operator L4 — Rp, for the reason that 0(Ls —Rp) = 0(A) —o(B)
(and hence every u € 0(A) and every —v € o(B) is a point of accumulation. Note
however that L4 — Rp is polaroid.

PART B: RANGE CLOSURE

An operator A € B(X) is left polar at a point A € iso 0,(A) if there exists a positive
integer d such that asc(4 — \) < d and (A — \)4T1(X) is closed; A is left polaroid
if it is left polar at every A € iso 0,(T). Trivially, a Banach space operator T, in
particular the operator dap or the operator £ap above, with ascent less than or
equal to one has closed range if and only if it left polar (at 0). Furthermore, if
asc(T'— A) < 1 and T™ has SVEP (everywhere), then T'— A has closed range for
all complex A if and only if T is an algebraic operator. To prove this, start by
observing that T algebraic implies T polaroid, and hence if asc(T — ) < 1 then
T — X has closed range for all A. Conversely, the hypothesis 7 has SVEP implies
o(T) = 04(T), and hence T' — X has closed range implies 7' — A is polar for every
complex \. But then we must have that (0(7") has no points of accumulation,
consequently) o(7") is a finite set. Since already T is polaroid, T is algebraic. This
argument extends to the operators 45 and LaRp.

Proposition 2.9. Let A, B € B(X) be two non-trivial operators, and let dap de-
note either of dap and LaRp. If asc(dap — \) < 1 for all complex A\, and if either
(i) A* and B have SVEP or (ii) d* g has SVEP, then dap — A has closed range for
all complex A if and only if A and B are algebraic operators.
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Proof. If A and B are algebraic operators in B(X'), then so is d4p. Hence, since
asc(dap — A) < 1 for all complex A, dap — A has closed range for all complex
A. Conversely, asc(dap — A) < 1 and dap — A has closed range for all complex
A imply dap is left polar at every complex A. (Here, by a misuse of language we
consider points A in the resolvent set as left poles of order 0.) Now let A* and B
have SVEP. Then o(A) = 0,(A), o(B) = 05(B) (= to the surjectivity spectrum
of B), 04(0ap) = 04(A) —0s(B) = 0(A) —0(B) = 0(dap) and 04,(LaRp) =
04(A).05(B) = 0(A).0(B) = 0(LaRp). Observe also that if d% 5 has SVEP, then
0a(dap) = 0(dap). Hence, if either of the hypotheses (i) and (ii) is satisfied, then
dap is polar at every complex A (implies A € iso o(dap) for every complex \).
Consequently, we must have that o(d4p) is a finite set and the operator dap is
algebraic. This, by Proposition 2.6 (a), implies that A and B are algebraic in the
case in which dag = dap. Consider now L Rpg. Since A, B non-trivial and either
of A, B nilpotent implies L4 Rp nilpotent with asc(LaRp) > 1, Proposition 2.6(c)
applies and we conclude that L4 Rp algebraic implies A and B algebraic. [

The “only if part” of Proposition 2.9 fails if one relaxes the requirement that
“dap — A has closed range for all complex A\’. Thus, if A, B are two unitary
(hence non—algebraic) Hilbert space operators, then Ly Rp — A has closed range
for all A ¢ o(A).o(B*). Proposition 2.9 generalizes [3, Theorem 4.2] (and other
similar results). Observe that A, B € B(H) normal implies 6 45 normal, and hence
asc(dap — A) = asc(d(a—rp) < 1 for all complex A and 0% 5 has SVEP. A, B ¢
B(H) normal does not in general imply L4 Rp normal [11, Example 2.1]; however,
Proposition 2.9 applies to LaRp for normal A, B € B(H) (for the reason that
A, B* have SVEP and asc(LaRp — \) < 1 for all complex A\ — see the proof of
[7, Theorem 4.1]). An alternative argument generalizing [3, Theorem 4.2], see the
following proposition, is consequent from the observation that normal operators T
are simply polaroid (i.e., asc(T — \) = dsc(T — A) < 1 at every A € iso o(T)).

Proposition 2.10. If A and B € B(X) are non-trivial simply polaroid operators,
then dap — A has closed range for every \ € iso o(dap).

Proof. In view of the fact that the polaroid property transfers from A, B to dap
and L, Rp, we have only to prove that asc(dap — A) < 1 for all A € iso o(dap).
Let A € iso o(dap). We start by considering the case in which A # 0. (Thus, if
A=p—v €isoo(dap) then (only) one of p and v may equal 0, and if A = pv €
iso 0(LsRp) then neither of y and v equals zero.) Then for every u € iso o(A)
and v € iso 0(B) such that A=y — v if dap = dap and A = puv if dap = LaRp,
X=X ®Xig=Ao @ Xog, A= Alx,, @ Alx,, = A1 @ Az, B= Blx,, ® Blx,, =
By ® By, A1 — 1 is 1-nilpotent, As — i is invertible, By — v is 1-nilpotent and By — v
is invertible. Let X : X9 @& Aoy — Xy @ Ao have the matrix representation
X = [Xij]zz,jzl' Then
20y _ 0 (uR%,_,)(X12) ) _
a0 =0 = (zz Ty (s ARy ) =
— X=X =Xp=0= (6AB — )\)(X) = 0.

A similar argument shows that (LaRp—))?(X) = 0if and only if (LaRp—\)(X) =
0. We consider next the case A = 0. If dyp = dap, then either y =v =0o0r pu =

v # 0 for every p € iso 0(A) and v € iso o(B) such that A = p—v. Defining A4;, B;,
X1; and Xy;, 1 < i < 2, as above it is then seen that (4; = 0 = By and) 645(X) =0
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implies X9 = 0 in the case in which y = v = 0 and X153 = X391 = X935 = 0 in the
case in which y = v # 0. In either case 45(X) = 0. Finally, if dyp = LsRp
and 0 € iso 0(LaRp), then either 0 € iso 0(A) and 0 ¢ o(B), or, 0 ¢ o(A) and
0 €iso o(B), or, 0 € iso 0(A) and 0 € iso o(B). (Note that by hypothesis A, B are
non-trivial and polaroid; hence neither of 0(A) and o(B) = {0}.) Trivially, if either
of A or B is invertible, then asc(LsRp) < 1. If, instead, 0 € {iso o(A4)Niso o(B)},
then upon defining A;, B;, X1; and X5, 1 < ¢ < 2, as above it is seen that
A1 =0= B and (LsRp)*(X) = 0 implies X95 = 0. Hence (LaRg)(X)=0. O

The hypotheses of Proposition2.10 are satisfied by a wide variety of classes of
operators. We mention here one such class, the class of paranormal Banach space
operators [17, Page 229).

For an operator T € B(X) with spectral radius 7(T) = lim,_ ||T™||*, the
peripheral spectrum o(T) of T is the set 0.(T) ={A € o(T) : |\ =r(T)}. As we
saw earlier on, if A, B € B(X) are meromorphic operators, then the operator L4 Rp
is meromorphic. Since A, B normaloid (I' € B(X) is normaloid if »(T') = ||T|)
implies L4 Rp normaloid, if A, B are normaloid then A € 0,(LsRp) if and only if
there exist 4 € o.(A) and v € 0,(B) such that A = pv. Recall from [17, Proposition
54.4] that if L4 Rp is a normaloid meromorphic operator, then asc(LsRp — ) < 1
for all A € o.(LaRp). Such an operator L4 Rp being polaroid, we conclude: If
A,B € B(X) are normaloid meromorphic operators, then LyRp — A has closed
range for every A € o.(LaRp). The following proposition is a generalization of
this result.

Proposition 2.11. If A,B € B(X) are normaloid operators, then the following
assertions are mutually equivalent for all A € o, (LaRpB):

(i) LaRp — A has closed range.

(ii) LaRp — A is left polar at 0.

(iii) LaRp — A is polar at 0.

Proof. The proof of the proposition depends upon the known fact, [8, Proposition
2.4], that asc(LaRp — A) < 1 for all A € 0.(LaRp): we include a proof here for
completeness.

If A, B are normaloid, then L4 Rp is normaloid, r(LaRp) = r(A)r(B) = ||A|||| B,
and
O-W(LARB> = {)‘ €EC:A=puv,pe UTr(A)al/ € UTI'(B)}'

If we define the contractions A; and By by Ay = A/||A|| and B; = B/||B||, then
L4, Rp, is a contraction and

ox(La,Rp,) ={AN€C: A=puv,pu € o.(A1),v € o.(B1),|p| =|v| =1}
Choose a )\0 = lolp € UTr(LAlRBl); let Au) = Al/MO and Bm = Bl/l/(). Then

/\ - [ /\ n n
||;0 Z (LAIORBIO) (LAwRBw - 1)(Z)|| = ||?0( Ai0fVBig — 1)(Z)||
1=0

1
= g||(LArleRB?O —1)(Z)|| — 0 as n —

for all Z € B(X). Set \o||A||||B|| = A € 0x(LaRp). Then X € B(X) satisfies
(La,,RB,,)(X) = 0 if and only if (L4Rp)(X) = 0. An easy calculation shows



that X € (La, Rp,, — 1)7'(0) implies X = 1"V (L4, Rp,,)"(X). Hence if
X € (LyRg —1)"1(0) and Y = Z/||A[|||B]], then for all Z € B(X),

n—1

Ao i
||X + ; ; (LAwRBw) (LAwRBw - 1)(Z)||
1 n—1 )
= ||E Z (Lo RByo) (X + Ao(Lay, Re,, — 1)(2))]]
1=0

IN

X+ Ao(Layo By = D2 = [[X + (La, BB, = 20)(2)]|
IX + (LaRg = N)(Y)]]

for all Y € B(X) and A € ox(LaRp).

The two way implication (i)<=>(ii) is evident. Observe that if L4 Rp is normaloid
and A € 0,(LaRg), then A is in the boundary of o(L4Rp). Hence (LyRp — \)*
has SVEP (at 0), and so LaRp is left polar at A if and only if it is polar at .
Hence (ii)«<=-(iii)). O
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