ALGEBRAIC ELEMENTARY OPERATORS

B.P. DUGGAL, S.V. DJORDJEVIĆ, AND C.S. KUBRUSLY

ABSTRACT. A Banach space operator A is algebraic if there exists a non-trivial polynomial p(.) such that p(A)=0. Equivalently, A is algebraic if $\sigma(A)$ is a finite set consisting of poles. The sum of two commuting Banach space algebraic operators is algebraic, and the generalized derivation $\delta_{AB}=L_A-R_B$ (and, for non-nilpotent A and B, the left right multiplication operator L_AR_B) is algebraic if and only if A and B are algebraic. We prove: If $\operatorname{asc}(d_{AB}-\lambda)\leq 1$ for all complex λ , and if A^* , B have SVEP, then $d_{AB}-\lambda$ has closed range for every complex λ if and only if A, B are algebraic; if A, B are simply polaroid, then $d_{AB}-\lambda$ has closed range for every $\lambda\in \operatorname{iso}\sigma(d_{AB})$; and if A, B are normaloid, then $L_AR_B-\lambda$ has closed range at every λ in the peripheral spectrum of L_AR_B if and only if L_AR_B is left polar at λ .

1. Introduction

For a Banach space \mathcal{X} , let $B(\mathcal{X})$ denote the algebra of operators, equivalently bounded linear transformations, on \mathcal{X} into itself. Given an operator $T \in B(\mathcal{X})$, the kernel $T^{-1}(0)$ of T is orthogonal to the range $T(\mathcal{X})$ of T, $T^{-1}(0) \perp T(\mathcal{X})$, in the sense of G. Birkhoff if $||x|| \leq ||x+y||$ for all $x \in T^{-1}(0)$ and $y \in T(\mathcal{X})$ [6, Page 25]. Clearly, $T^{-1}(0) \perp T(\mathcal{X}) \Longrightarrow T^{-1}(0) \cap \overline{T(\mathcal{X})} = \{0\} \Longrightarrow T^{-1}(0) \cap T(\mathcal{X}) = \{0\}$. (Here, as also in the sequel, $\overline{T(\mathcal{X})}$ denotes the closure of $T(\mathcal{X})$.) The range-kernel orthogonality of an operator is related to its ascent. The ascent of $T \in B(\mathcal{X})$, asc(T), is the least non-negative integer n such that $T^{-n}(0) = T^{-(n+1)}(0)$; if no such integer n exists, then $asc(T) = \infty$. It is well known [1, 6] that $asc(T) \leq m < \infty$ if and only if $T^{-n}(0) \cap T^m(X) = \{0\}$ for all integers $n \geq m$, and that $T^{-1}(0) \perp T(\mathcal{X})$ implies asc(T) < 1.

The range-kernel orthogonality $T^{-1}(0) \perp T(\mathcal{X})$ of Banach space operators has been studied by a number of authors over the past few decades. A classical result of Sinclair [19, Proposition 1] says that "if 0 is in the boundary of the numerical range of a $T \in B(\mathcal{X})$, then $T^{-1}(0) \perp T(\mathcal{X})$ ". Anderson [2], and Anderson and Foiaş [3], considered the generalized derivation $\delta_{AB} = L_A - R_B \in B(B(\mathcal{H}))$, $\delta_{AB}(X) = AX - XB$, to prove that if $A, B \in B(\mathcal{H})$ are normal (Hilbert space) operators, then $\delta_{AB}^{-1}(0) \perp \delta_{AB}(B(\mathcal{H}))$. These results have since been extended to a variety of elementary operators $\Phi_{AB}(X) = A_1 X B_1 - A_2 X B_2$ for a variety of choices of tuples of operators $\mathbf{A} = (A_1, A_2)$ and $\mathbf{B} = (B_1, B_2)$ (see [9, 11, 14, 15, 20] for further references). The range-kernel orthogonality of an operator $T \in B(\mathcal{X})$ does not imply that the range $T(\mathcal{X})$ is closed or that $\mathcal{X} = T^{-1}(0) \oplus \overline{T(\mathcal{X})}$; see [3, Example 3.1 and Theorem 4.1] and [19, Remark 2]. Indeed, range-kernel orthogonality

Date: March 5, 2013.

 $^{2000\ \}textit{Mathematics Subject Classification}.\ \text{Primary 47A80, 47A53; Secondary 47A10}.$

Keywords. Elementary operator; algebraic; range closure.

neither implies nor is implied by range closure. Thus, every bounded below operator has closed range and satisfies range-kernel orthogonality, an injective compact quasi-nilpotent operator (for example, the Volterra integral operator on $L^2(0,1)$) satisfies range-kernel orthogonality but does not have closed range, and no operator T (whether it has closed range or not) with $2 \le \operatorname{asc}(T) < \infty$ satisfies range-kernel orthogonality. The implication $T^{-1}(0) \perp T(\mathcal{X}) \Longrightarrow \operatorname{asc}(T) \le 1$ is strictly one way; if $A_i, B_i \in B(\mathcal{H}), \ 1 \le i \le 2$, are normal Hilbert space operators such that A_1 commutes with A_2 and B_1 commutes with B_2 , then $\operatorname{asc}(\Phi_{\mathbf{AB}}) \le 1$ [12, Theorem 3.4] but $\Phi_{\mathbf{AB}}^{-1}(0) \perp \Phi_{\mathbf{AB}}(B(\mathcal{H}))$ if and only if $(A_1 \oplus B_1^*)^{-1}(0) \cap (A_2 \oplus B_2^*)^{-1}(0) = \{0\}$ [20, Corollary 2.3].

Letting iso $\sigma(A)$ (resp., iso $\sigma_a(A)$) denote the set of isolated points of the spectrum $\sigma(A)$ (resp., approximate point spectrum $\sigma_a(A)$) of $A \in B(\mathcal{X})$, we say that A is polar at $\lambda \in iso \ \sigma(A)$ (resp., left polar at $\lambda \in iso \ \sigma_a(A)$) if λ is a pole of the resolvent of A (resp., there exists an integer $d \geq 1$ such that $\operatorname{asc}(A - \lambda) \leq d$ and $(A - \lambda)^{d+1}(\mathcal{X})$ is closed); A is polaroid (resp., left polaroid) if A is polar at every $\lambda \in iso \ \sigma(A)$ (resp., left polar at every $\lambda \in iso \ \sigma_a(A)$). A well known result of Anderson and Foiaş [3, Theorem 4.2] says that if $A, B \in B(\mathcal{H})$ are scalar Hilbert space operators, then $\delta_{AB} - \lambda$ has closed range for every complex λ if and only if $\sigma(A) \cup \sigma(B)$ is finite. Scalar Hilbert space operators are similar to normal operators, and normal operators are simply polar (i.e., they have ascent less than or equal to 1). Hence, [1, Theorem 3.83], if $A, B \in B(\mathcal{H})$ are scalar operators, then $\delta_{AB} - \lambda$ has closed range for every complex λ if and only if A, B are algebraic operators.

This paper considers algebraic elementary operators. We start by observing that an $A \in B(\mathcal{X})$ is algebraic if and only if L_A and R_A are algebraic. The algebraic property transfers from commuting $A, B \in B(\mathcal{X})$ to $A+B, \delta_{AB}$ is algebraic if and only if A and B are algebraic, and if A, B are non-nilpotent then $L_A R_B$ is algebraic if and only if A, B are algebraic. Let d_{AB} denote either of δ_{AB} and $L_A R_B$, where $A, B \in B(\mathcal{X})$ are non-trivial. In considering applications, we prove that: (i) If $\operatorname{asc}(d_{AB}-\lambda) \leq 1$ for all complex λ , and if A^*, B have SVEP, then $d_{AB}-\lambda$ has closed range for every complex λ if and only if A, B are algebraic; (ii) if A, B are simply polaroid, then $d_{AB}-\lambda$ has closed range for every $\lambda \in \operatorname{iso} \sigma(d_{AB})$; and (iii) if A, B are normaloid operators, then $L_A R_B - \lambda$ has closed range at every λ in the peripheral spectrum of $L_A R_B$ if and only if $L_A R_B$ is left polar at λ .

2. Results — Part A: Algebraic

Let C denote the set of complex numbers. An operator $A \in B(\mathcal{X})$, has the single-valued extension property at $\lambda_0 \in C$, SVEP at λ_0 for short, if for every open disc \mathcal{D}_{λ_0} centered at λ_0 the only analytic function $f: \mathcal{D}_{\lambda_0} \to \mathcal{X}$ which satisfies

$$(A - \lambda)f(\lambda) = 0$$
 for all $\lambda \in \mathcal{D}_{\lambda_0}$

is the function $f\equiv 0$. A has SVEP if it has SVEP at every $\lambda\in \mathbb{C}$. The single valued extension property plays an important role in local spectral theory and Fredholm theory [1, 17]. Evidently, A has SVEP at points in the resolvent set and the boundary $\partial\sigma(A)$ of $\sigma(A)$

Let $A \in B(\mathcal{X})$. The quasinilpotent part $H_0(A-\lambda)$ and the analytic core $K(A-\lambda)$ of $(A-\lambda)$ are defined by

$$H_0(A - \lambda) = \{ x \in \mathcal{X} : \lim_{n \to \infty} ||(A - \lambda)^n x||^{\frac{1}{n}} = 0 \}$$

and

 $K(A - \lambda) = \{x \in \mathcal{X} : \text{there exists a sequence } \{x_n\} \subset \mathcal{X} \text{ and } \delta > 0 \text{ for which } x = x_0, (A - \lambda)(x_{n+1}) = x_n \text{ and } ||x_n|| \le \delta^n ||x|| \text{ for all } n = 1, 2, ... \}.$

 $H_0(A-\lambda)$ and $K(A-\lambda)$ are (generally) non-closed hyperinvariant subspaces of $(A-\lambda)$ such that $(A-\lambda)^{-q}(0) \subseteq H_0(A-\lambda)$ for all q=0,1,2,... and $(A-\lambda)K(A-\lambda)=K(A-\lambda)$; also, if $\lambda \in \text{iso } \sigma(A)$, then $H_0(A-\lambda)$ and $K(A-\lambda)$ are closed and $\mathcal{X}=H_0(A-\lambda) \oplus K(A-\lambda)$ [1].

 $A \in B(\mathcal{X})$ is an algebraic operator if there exists a non-trivial polynomial p(.) such that p(A) = 0. It is easily seen, [1, Theorem 3.83], that an operator $A \in B(\mathcal{X})$ is algebraic if and only if $\sigma(A)$ is a finite set consisting of the poles of the resolvent of A (i.e., if and only if $\sigma(A)$ is a finite set and A is polaroid). Since $\sigma(A) = \sigma(L_A) = \sigma(R_A)$, and since A is polaroid if and only if L_A (R_A) is polaroid [4, Theorem 11], we have:

Proposition 2.1. Let $A \in B(\mathcal{X})$, and let $\mathcal{E}_A = L_A$ or R_A . Then \mathcal{E}_A is algebraic if and only if A is algebraic.

The algebraic property transfers from commuting $A, B \in B(\mathcal{X})$ to A + B.

Proposition 2.2. If $A, B \in B(\mathcal{X})$ are algebraic operators such that [A, B] = AB - BA = 0, then A + B is algebraic.

A proof of the proposition (in a certain sense, a more direct proof) may be obtained as a consequence of the easily proved fact that if A and B are commuting algebraic elements of an algebra, then each polynomial p(A,B) is also algebraic: In keeping with the spirit of this paper, in the following we draw upon *local spectral theory* to prove the proposition.

Proof. If $A \in B(\mathcal{X})$ is algebraic, then there is an integer $n \geq 1$ such that $\sigma(A) = \{\lambda_1, \lambda_2, \cdots, \lambda_n\}$ (for some scalars λ_i , $1 \leq i \leq n$), $\mathcal{X} = \bigoplus_{i=1}^n H_0(A - \lambda_i)$, and to each i there corresponds an integer $p_i \geq 1$ such that $H_0(A - \lambda_i) = (A - \lambda_i)^{-p_i}(0)$. Let $A_i = A|_{H_0(A - \lambda_i)}$; then $A = \bigoplus_{i=1}^n A_i$, $A_i - \lambda_j$ is nilpotent for all $1 \leq i = j \leq n$, and $A_i - \lambda_j$ is invertible for all $1 \leq i \neq j \leq n$. Furthermore, if we let $B_i = B|_{H_0(A - \lambda_i)}$ for all $1 \leq i \leq n$, then $B = \bigoplus_{i=1}^n B_i$ and (since [A, B] = 0) $[A_i, B_i] = 0$ for all $1 \leq i \leq n$. Trivially, B algebraic implies $\sigma(B_i)$ is a finite set for all i. Consider $A_i + B_i - \lambda = (A_i - \lambda_i) + (B_i - \lambda + \lambda_i)$, where $\lambda \in \sigma(B_i)$ (= $i s o \sigma(B_i)$). If $\lambda - \lambda_i \notin \sigma(A_i - \lambda_i + B_i) = \sigma(B_i)$, then $A_i + B_i - \lambda$ is invertible, and hence

$$H_0(A_i + B_i - \lambda) = \{0\} = (A_i + B_i - \lambda)^{-r_i}(0)$$

for every positive integer r_i . If, on the other hand, $\lambda - \lambda_i \in \sigma(A_i - \lambda_i + B_i) = \sigma(B_i)$, then $H_0(B_i + \lambda_i - \lambda) = (B_i + \lambda_i - \lambda)^{-r_i}(0)$ for some integer $r_i \geq 1$. Observe that

$$||B_{i} + \lambda_{i} - \lambda)^{t}x||^{\frac{1}{t}} = ||\{(A_{i} + B_{i} - \lambda) - (A_{i} - \lambda_{i})\}^{t}||^{\frac{1}{t}}$$

$$= ||\sum_{j=0}^{t} (-1)^{j} {t \choose j} (A_{i} + B_{i} - \lambda)^{t-j} (A_{i} - \lambda_{i})^{j}x||^{\frac{1}{t}}$$

$$\leq ||\sum_{j=0}^{t} \{{t \choose j} ||(A_{i} - \lambda_{i})||^{j}\}^{\frac{1}{t}}||(A_{i} + B_{i} - \lambda)^{t-j}x||^{\frac{1}{t}}$$

for all $x \in \mathcal{X}$ implies

$$H_0(B_i + \lambda_i - \lambda) \subseteq H_0(A_i + B_i - \lambda).$$

By symmetry

$$H_0(A_i + B_i - \lambda) \subseteq H_0(A_i + B_i - \lambda - A_i + \lambda_i) \subseteq H_0(B_i + \lambda_i - \lambda),$$

and hence

$$H_0(A_i + B_i - \lambda) = H_0(B_i + \lambda_i - \lambda) = (B_i + \lambda_i - \lambda)^{-r_i}(0).$$

Now let $r_i p_i = m_i$. Then, for all $x \in (B_i + \lambda_i - \lambda)^{-m_i}(0)$,

$$(A_i + B_i - \lambda)^{m_i} x = \sum_{j=p_i+1}^{m_i} \left\{ \begin{pmatrix} m_i \\ j \end{pmatrix} (B_i + \lambda_i - \lambda)^{m_i - j} (A_i - \lambda_i)^{j - p_i} \right\} (A_i - \lambda_i)^{p_i} x = 0$$

implies

$$H_0(A_i + B_i - \lambda) = (B_i + \lambda_i - \lambda)^{-m_i}(0) \subseteq (A_i + B_i - \lambda)^{-m_i}(0) \subseteq H_0(A_i + B_i - \lambda).$$

Thus, there exists an integer $m_i \geq 1$ such that

$$H_0(A_i + B_i - \lambda) = (A_i + B_i - \lambda)^{-m_i}(0)$$

for every $\lambda \in \text{iso } \sigma(B_i)$. Let $m = \max_{1 \leq i \leq n} m_i$, and let $\lambda \in \sigma(A+B) = \text{iso } \sigma(A+B)$. Then

$$H_0(A+B-\lambda) = \bigoplus_{i=1}^n H_0(A_i + B_i - \lambda) = \bigoplus_{i=1}^n (A_i + B_i - \lambda)^{-m_i}(0) = (A+B-\lambda)^{-m}(0)$$

at every $\lambda \in \sigma(A+B)$. Since

$$\mathcal{X} = H_0(A + B - \lambda) \oplus K(A + B - \lambda) = (A + B - \lambda)^{-m}(0) \oplus K(A + B - \lambda)$$

$$\implies \mathcal{X} = (A + B - \lambda)^{-m}(0) \oplus (A + B - \lambda)^{m} \mathcal{X}$$

for every $\lambda \in \sigma(A+B)$, A+B is polaroid. This, since $\sigma(A+B) \subseteq \sigma(A) + \sigma(B)$ is finite, implies A+B is algebraic. \square

The descent of $A \in B(\mathcal{X})$, $\operatorname{dsc}(A)$, is the least non-negative integer n such that $A^n(\mathcal{X}) = A^{n+1}(\mathcal{X})$; if no such integer exists, then $\operatorname{dsc}(A) = \infty$. Evidently, A is polar at λ if and only if $\operatorname{asc}(A-\lambda) = \operatorname{dsc}(A-\lambda) < \infty$, and a necessary and sufficient condition for an operator A with $\operatorname{dsc}(A-\lambda)$ to be polar at λ is that A has SVEP at λ [1, Theorem 3.81]. The following corollary is immediate from Proposition 2.2 and [1, Theorem 3.83].

Corollary 2.3. If $A, B \in B(\mathcal{X})$ are commuting algebraic operators, then the following statements are mutually equivalent:

- (i) There exists a non-trivial polynomial p(.) such that p(A+B)=0.
- (ii) $dsc(A + B \lambda) < \infty$ for all complex λ .
- (iii) $dsc(A+B-\lambda) < \infty$ for every λ in the topological boundary $\partial \sigma(A+B)$ of $\sigma(A+B)$.
- (iv) $A + B \lambda$ is polar (at 0) for every complex λ .

The converse of Proposition 2.2 is false: For a general non-algebraic operator $A \in B(\mathcal{X}), A - A = 0$ is always algebraic. Propositions 2.1 and 2.2 have a number of consequences. Recall from [11, Lemma 3.8] that if A^n is polaroid for some integer $n \geq 1$ (and $A \in B(\mathcal{X})$), then A is polaroid. Since $\sigma(A^n) = \sigma(A)^n$, we have:

Corollary 2.4. $A \in B(\mathcal{X})$ is algebraic if and only if A^n is algebraic for all natural numbers n.

Combining this corollary with Proposition 2.2 we have::

Corollary 2.5. If $A, B \in B(\mathcal{X})$ are commuting algebraic operators, then AB is algebraic.

Proof. If
$$AB = BA$$
, then $AB = \frac{1}{4}\{(A+B)^2 - (A-B)^2\}$. \Box

The converse of Corollary 2.5 is false: If $A \in B(\mathcal{X})$ is a nilpotent and $B \in B(\mathcal{X})$ is an operator which commutes with A, then AB being nilpotent is algebraic irrespective of whether B is or is not. It is immediate from Proposition 2.2 and Corollary 2.5 that $A, B \in B(\mathcal{X})$ algebraic implies δ_{AB} , $L_A R_B$, and $\Delta_{AB} = L_A R_B - \lambda$ algebraic for all complex λ . The following proposition shows that the converse holds in the case of δ_{AB} .

Proposition 2.6. Let $A, B \in B(\mathcal{X})$.

- (a) δ_{AB} is algebraic if and only if A and B are algebraic.
- (b) $L_A R_B$ algebraic does not imply A and B algebraic. However, if $L_A R_B$ is algebraic, then at least one of A and B is algebraic.
- (c) Furthermore, if neither of A and B is nilpotent, then $L_A R_B$ is algebraic if and only if A and B are algebraic.

Proof. (a) Assume that δ_{AB} is algebraic, i.e., assume that there exists a polynomial p(.) such that $p(\delta_{AB}) = \sum_{i=0}^{n} \alpha_i \delta_{AB}^{n-i} = 0$. Then there exist scalars a_i , $1 \le i \le n$, not all zero such that

$$A^{n}X + a_{1}A^{n-1}XB + \dots + a_{n-1}AXB^{n-1} + a_{n}XB^{n} = 0$$

for all $X \in B(\mathcal{X})$. Considering only those powers B^i (including $B^0 = I$) of B for which $a_i \neq 0$, it is seen that the linear independence of this set implies that $A^i = 0$ for every power of A which appears in the identity above (see [16, Theorem 1]). Hence B^n is a linear combination of elements from a maximal linearly independent subset of the set $\{I, B, B^2, \cdots, B^{n-1}\}$. Thus B is algebraic, and hence R_B is algebraic. Since $L_A = \delta_{AB} + R_B$, A is also algebraic.

(b) The example of the operator A=0 and B is a quasinilpotent proves that L_AR_B algebraic does not imply A and B algebraic. The hypothesis L_AR_B algebraic implies the existence of scalars a_i , $1 \le i \le n$, not all 0 such that

$$A^{n}XB^{n} + a_{1}A^{n-1}XB^{n-1} + \dots + a_{n-1}AXB + a_{n}X = 0$$

for all $X \in B(\mathcal{X})$. Denote by $\{a_{n_1}, a_{n_2}, \dots, a_{n_m}, 1\}$ the set of coefficients a_{n-i} , $0 \le i \le n-1$, which are non-zero, and arrange the corresponding sets of ascending powers of B and A by $S_B = \{B_1, B_2, \cdots, B_m, B^n\}$ and $S_A = \{A_1, A_2, \cdots, A_m, A^n\}$. If the set S_B is linearly independent, then $A^n = 0$, and if S_B is not linearly independent then B^n is a linear combination of powers B^i , i < n, of B [16, Theorem 1]. Thus either A or B is algebraic.

- (c) Assume now that neither of A and B is nilpotent. Then the preceding argument implies that B is algebraic. If $\{B_1, B_2, \cdots, B_k\}$ is a maximal linearly independent subset of S_B , then there exist scalars α_{kj} , not all zero, such that $A_t = \sum_{j=k+1}^m \alpha_{kj} A_j$ for all $1 \le t \le k$ [16, Theorem 1]. Hence A is also algebraic. \square
- If $\mathbf{A}=(A_1,A_2,\cdots,A_n)$ and $\mathbf{B}=(B_1,B_2,\cdots,B_n)$ are *n*-tuples of mutually commuting operators in $B(\mathcal{X})$, then $[L_{A_i}R_{B_i},L_{A_j}R_{B_j}]=0$ for all $1\leq i,j\leq n$. Since A_i and B_i algebraic implies $L_{A_i}R_{B_i}$ algebraic, we have:

Corollary 2.7. If $\mathbf{A} = (A_1, A_2, \dots, A_n)$ and $\mathbf{B} = (B_1, B_2, \dots, B_n)$ are n-tuples of mutually commuting algebraic operators in $B(\mathcal{X})$, then the operator $\mathcal{E}_{\mathbf{AB}} - \lambda$, $(\mathcal{E}_{\mathbf{AB}} - \lambda)(X) = \sum_{i=1}^{n} A_i X B_i - \lambda X$, is algebraic for all complex λ .

Remark 2.8. (i) Given two complex infinite-dimensional Banach spaces \mathcal{X} and \mathcal{Y} , let $\mathcal{X} \overline{\otimes} \mathcal{Y}$ denote the completion, endowed with a reasonable uniform cross-norm, of the algebraic tensor product $\mathcal{X} \otimes \mathcal{Y}$ of \mathcal{X} and \mathcal{Y} ; let, for $A \in B(\mathcal{X})$ and $B \in B(\mathcal{Y})$, $A \otimes B \in B(\mathcal{X} \overline{\otimes} \mathcal{Y})$ denote the tensor product operator defined by A and B. If A and B are non-nilpotent operators, then $A \otimes B$ is an algebraic operator if and only if A and B are algebraic operators: this may be proved directly or deduced from Proposition 2.2(b) using an argument of Eschmeier [13, Pages 50 and 51] relating tensor products to the operator of left-right multiplication in the operator ideal $B(B(\mathcal{Y},\mathcal{X}))$. (Here, in using [13], one observes that B is algebraic if and only if B^* is algebraic.) It is evident from Proposition 2.2 that if A_i and B_i are algebraic for all $1 \leq i \leq n$ and $[A_i, A_j] = 0 = [B_i, B_j]$ for all $1 \leq i, j \leq n$, then $\sum_{i=1}^n A_i \otimes B_i$ is an algebraic operator.

(ii) An operator $A \in B(\mathcal{X})$ is meromorphic if its non-zero spectral points are poles of the resolvent [17, Page 225]. Clearly, a meromorphic operator possesses at most countably many spectral points $\{\lambda_i\}$ (and 0 as its only accumulation point) which we may arrange by decreasing modulus by $|\lambda_1| \geq |\lambda_2| \geq \cdots$. Recall that the polaroid property transfers from A and B to L_A , R_A , L_AR_B and L_A-R_B [4, 5, 10]. Evidently, A meromorphic implies L_A and R_A meromorphic. Let A and $B \in B(\mathcal{X})$ be meromorphic operators, and let $0 \neq \lambda \in \sigma(L_AR_B) = \sigma(A)\sigma(B)$. Then $\lambda = \mu\nu$ for some $0 \neq \mu \in \sigma(A)$ and $0 \neq \nu \in \sigma(B)$, and it follows that L_AR_B is polar at λ . Conclusion: If A and $B \in B(\mathcal{X})$ are meromorphic, then L_AR_B is meromorphic. This fails for the operator $L_A - R_B$, for the reason that $\sigma(L_A - R_B) = \sigma(A) - \sigma(B)$ (and hence every $\mu \in \sigma(A)$ and every $-\nu \in \sigma(B)$ is a point of accumulation. Note however that $L_A - R_B$ is polaroid.

PART B: RANGE CLOSURE

An operator $A \in B(\mathcal{X})$ is left polar at a point $\lambda \in \text{iso } \sigma_a(A)$ if there exists a positive integer d such that $\operatorname{asc}(A-\lambda) \leq d$ and $(A-\lambda)^{d+1}(\mathcal{X})$ is closed; A is left polaroid if it is left polar at every $\lambda \in \text{iso } \sigma_a(T)$. Trivially, a Banach space operator T, in particular the operator d_{AB} or the operator \mathcal{E}_{AB} above, with ascent less than or equal to one has closed range if and only if it left polar (at 0). Furthermore, if $\operatorname{asc}(T-\lambda) \leq 1$ and T^* has SVEP (everywhere), then $T-\lambda$ has closed range for all complex λ if and only if T is an algebraic operator. To prove this, start by observing that T algebraic implies T polaroid, and hence if $\operatorname{asc}(T-\lambda) \leq 1$ then $T-\lambda$ has closed range for all λ . Conversely, the hypothesis T^* has SVEP implies $\sigma(T) = \sigma_a(T)$, and hence $T-\lambda$ has closed range implies $T-\lambda$ is polar for every complex λ . But then we must have that $(\sigma(T)$ has no points of accumulation, consequently) $\sigma(T)$ is a finite set. Since already T is polaroid, T is algebraic. This argument extends to the operators δ_{AB} and $L_A R_B$.

Proposition 2.9. Let $A, B \in B(\mathcal{X})$ be two non-trivial operators, and let d_{AB} denote either of δ_{AB} and $L_A R_B$. If $asc(d_{AB} - \lambda) \leq 1$ for all complex λ , and if either (i) A^* and B have SVEP or (ii) d_{AB}^* has SVEP, then $d_{AB} - \lambda$ has closed range for all complex λ if and only if A and B are algebraic operators.

Proof. If A and B are algebraic operators in $B(\mathcal{X})$, then so is d_{AB} . Hence, since $\operatorname{asc}(d_{AB}-\lambda)\leq 1$ for all complex λ , $d_{AB}-\lambda$ has closed range for all complex λ . Conversely, $\operatorname{asc}(d_{AB}-\lambda)\leq 1$ and $d_{AB}-\lambda$ has closed range for all complex λ imply d_{AB} is left polar at every complex λ . (Here, by a misuse of language we consider points λ in the resolvent set as left poles of order 0.) Now let A^* and B have SVEP. Then $\sigma(A)=\sigma_a(A),\,\sigma(B)=\sigma_s(B)$ (= to the surjectivity spectrum of B), $\sigma_a(\delta_{AB})=\sigma_a(A)-\sigma_s(B)=\sigma(A)-\sigma(B)=\sigma(\delta_{AB})$ and $\sigma_a(L_AR_B)=\sigma_a(A).\sigma_s(B)=\sigma(A).\sigma(B)=\sigma(L_AR_B)$. Observe also that if d_{AB}^* has SVEP, then $\sigma_a(d_{AB})=\sigma(d_{AB})$. Hence, if either of the hypotheses (i) and (ii) is satisfied, then d_{AB} is polar at every complex λ (implies $\lambda \in \operatorname{iso} \sigma(d_{AB})$ for every complex λ). Consequently, we must have that $\sigma(d_{AB})$ is a finite set and the operator d_{AB} is algebraic. This, by Proposition 2.6 (a), implies that A and B are algebraic in the case in which $d_{AB}=\delta_{AB}$. Consider now L_AR_B . Since A, B non-trivial and either of A, B nilpotent implies L_AR_B nilpotent with $\operatorname{asc}(L_AR_B)>1$, Proposition 2.6(c) applies and we conclude that L_AR_B algebraic implies A and B algebraic. \square

The "only if part" of Proposition 2.9 fails if one relaxes the requirement that " $d_{AB} - \lambda$ has closed range for all complex λ ". Thus, if A, B are two unitary (hence non–algebraic) Hilbert space operators, then $L_A R_B - \lambda$ has closed range for all $\lambda \notin \sigma(A).\sigma(B^*)$. Proposition 2.9 generalizes [3, Theorem 4.2] (and other similar results). Observe that $A, B \in B(\mathcal{H})$ normal implies δ_{AB} normal, and hence $\operatorname{asc}(\delta_{AB} - \lambda) = \operatorname{asc}(\delta_{(A-\lambda)B}) \leq 1$ for all complex λ and δ_{AB}^* has SVEP. $A, B \in B(\mathcal{H})$ normal does not in general imply $L_A R_B$ normal [11, Example 2.1]; however, Proposition 2.9 applies to $L_A R_B$ for normal $A, B \in B(\mathcal{H})$ (for the reason that A, B^* have SVEP and $\operatorname{asc}(L_A R_B - \lambda) \leq 1$ for all complex λ — see the proof of [7, Theorem 4.1]). An alternative argument generalizing [3, Theorem 4.2], see the following proposition, is consequent from the observation that normal operators T are simply polaroid (i.e., $\operatorname{asc}(T - \lambda) = \operatorname{dsc}(T - \lambda) \leq 1$ at every $\lambda \in \operatorname{iso} \sigma(T)$).

Proposition 2.10. If A and $B \in B(\mathcal{X})$ are non-trivial simply polaroid operators, then $d_{AB} - \lambda$ has closed range for every $\lambda \in iso \sigma(d_{AB})$.

Proof. In view of the fact that the polaroid property transfers from A,B to δ_{AB} and L_AR_B , we have only to prove that $\operatorname{asc}(d_{AB}-\lambda)\leq 1$ for all $\lambda\in\operatorname{iso}\sigma(d_{AB})$. Let $\lambda\in\operatorname{iso}\sigma(d_{AB})$. We start by considering the case in which $\lambda\neq 0$. (Thus, if $\lambda=\mu-\nu\in\operatorname{iso}\sigma(\delta_{AB})$ then (only) one of μ and ν may equal 0, and if $\lambda=\mu\nu\in\operatorname{iso}\sigma(L_AR_B)$ then neither of μ and ν equals zero.) Then for every $\mu\in\operatorname{iso}\sigma(A)$ and $\nu\in\operatorname{iso}\sigma(B)$ such that $\lambda=\mu-\nu$ if $d_{AB}=\delta_{AB}$ and $\lambda=\mu\nu$ if $d_{AB}=L_AR_B$, $\mathcal{X}=\mathcal{X}_{11}\oplus\mathcal{X}_{12}=\mathcal{X}_{21}\oplus\mathcal{X}_{22},\ A=A|_{\mathcal{X}_{11}}\oplus A|_{\mathcal{X}_{12}}=A_1\oplus A_2,\ B=B|_{\mathcal{X}_{21}}\oplus B|_{\mathcal{X}_{22}}=B_1\oplus B_2,\ A_1-\mu$ is 1-nilpotent, $A_2-\mu$ is invertible, $B_1-\nu$ is 1-nilpotent and $B_2-\nu$ is invertible. Let $X:\mathcal{X}_{21}\oplus\mathcal{X}_{22}\longrightarrow\mathcal{X}_{11}\oplus\mathcal{X}_{12}$ have the matrix representation $X=[X_{ij}]_{i,j=1}^2$. Then

$$(\delta_{AB} - \lambda)^{2}(X) = 0 \iff \begin{pmatrix} 0 & (\mu R_{B_{2}-\nu}^{2})(X_{12}) \\ \nu(L_{A_{2}-\mu}^{2})(X_{21}) & (\delta_{A_{2}B_{2}} - \lambda)^{2}(X_{22}) \end{pmatrix} = 0$$

$$\iff X_{12} = X_{21} = X_{22} = 0 \implies (\delta_{AB} - \lambda)(X) = 0.$$

A similar argument shows that $(L_A R_B - \lambda)^2(X) = 0$ if and only if $(L_A R_B - \lambda)(X) = 0$. We consider next the case $\lambda = 0$. If $d_{AB} = \delta_{AB}$, then either $\mu = \nu = 0$ or $\mu = \nu \neq 0$ for every $\mu \in \text{iso } \sigma(A)$ and $\nu \in \text{iso } \sigma(B)$ such that $\lambda = \mu - \nu$. Defining A_i , B_i , \mathcal{X}_{1i} and \mathcal{X}_{2i} , $1 \leq i \leq 2$, as above it is then seen that $(A_1 = 0 = B_1 \text{ and}) \delta_{AB}^2(X) = 0$

implies $X_{22}=0$ in the case in which $\mu=\nu=0$ and $X_{12}=X_{21}=X_{22}=0$ in the case in which $\mu=\nu\neq 0$. In either case $\delta_{AB}(X)=0$. Finally, if $d_{AB}=L_AR_B$ and $0\in \text{iso }\sigma(L_AR_B)$, then either $0\in \text{iso }\sigma(A)$ and $0\notin\sigma(B)$, or, $0\notin\sigma(A)$ and $0\in \text{iso }\sigma(B)$, or, $0\in\sigma(A)$ and $0\in \text{iso }\sigma(B)$, or, $0\in\sigma(A)$ and $0\in\sigma(B)$. (Note that by hypothesis A,B are non-trivial and polaroid; hence neither of $\sigma(A)$ and $\sigma(B)=\{0\}$.) Trivially, if either of A or B is invertible, then $\text{asc}(L_AR_B)\leq 1$. If, instead, $0\in\{\text{iso }\sigma(A)\cap\text{iso }\sigma(B)\}$, then upon defining A_i , B_i , \mathcal{X}_{1i} and \mathcal{X}_{2i} , $1\leq i\leq 2$, as above it is seen that $A_1=0=B_1$ and $(L_AR_B)^2(X)=0$ implies $X_{22}=0$. Hence $(L_AR_B)(X)=0$. \square

The hypotheses of Proposition 2.10 are satisfied by a wide variety of classes of operators. We mention here one such class, the class of paranormal Banach space operators [17, Page 229].

For an operator $T \in B(\mathcal{X})$ with spectral radius $r(T) = \lim_{n \to \infty} ||T^n||^{\frac{1}{n}}$, the peripheral spectrum $\sigma_{\pi}(T)$ of T is the set $\sigma_{\pi}(T) = \{\lambda \in \sigma(T) : |\lambda| = r(T)\}$. As we saw earlier on, if $A, B \in B(\mathcal{X})$ are meromorphic operators, then the operator $L_A R_B$ is meromorphic. Since A, B normaloid ($T \in B(\mathcal{X})$ is normaloid if r(T) = ||T||) implies $L_A R_B$ normaloid, if A, B are normaloid then $\lambda \in \sigma_{\pi}(L_A R_B)$ if and only if there exist $\mu \in \sigma_{\pi}(A)$ and $\nu \in \sigma_{\pi}(B)$ such that $\lambda = \mu\nu$. Recall from [17, Proposition 54.4] that if $L_A R_B$ is a normaloid meromorphic operator, then $\operatorname{asc}(L_A R_B - \lambda) \leq 1$ for all $\lambda \in \sigma_{\pi}(L_A R_B)$. Such an operator $L_A R_B$ being polaroid, we conclude: If $A, B \in B(\mathcal{X})$ are normaloid meromorphic operators, then $L_A R_B - \lambda$ has closed range for every $\lambda \in \sigma_{\pi}(L_A R_B)$. The following proposition is a generalization of this result.

Proposition 2.11. If $A, B \in B(\mathcal{X})$ are normaloid operators, then the following assertions are mutually equivalent for all $\lambda \in \sigma_{\pi}(L_A R_B)$:

- (i) $L_A R_B \lambda$ has closed range.
- (ii) $L_A R_B \lambda$ is left polar at 0.
- (iii) $L_A R_B \lambda$ is polar at 0.

Proof. The proof of the proposition depends upon the known fact, [8, Proposition 2.4], that $\operatorname{asc}(L_A R_B - \lambda) \leq 1$ for all $\lambda \in \sigma_{\pi}(L_A R_B)$: we include a proof here for completeness.

If A, B are normaloid, then $L_A R_B$ is normaloid, $r(L_A R_B) = r(A) r(B) = ||A|| ||B||$, and

$$\sigma_{\pi}(L_A R_B) = \{ \lambda \in \mathbf{C} : \lambda = \mu \nu, \mu \in \sigma_{\pi}(A), \nu \in \sigma_{\pi}(B) \}.$$

If we define the contractions A_1 and B_1 by $A_1=A/||A||$ and $B_1=B/||B||$, then $L_{A_1}R_{B_1}$ is a contraction and

$$\sigma_{\pi}(L_{A_1}R_{B_1}) = \{\lambda \in \mathbf{C} : \lambda = \mu\nu, \mu \in \sigma_{\pi}(A_1), \nu \in \sigma_{\pi}(B_1), |\mu| = |\nu| = 1\}.$$

Choose a $\lambda_0 = \mu_0 \nu_0 \in \sigma_{\pi}(L_{A_1} R_{B_1})$; let $A_{10} = A_1/\mu_0$ and $B_{10} = B_1/\nu_0$. Then

$$\left\| \frac{\lambda_0}{n} \sum_{i=0}^{n-1} (L_{A_{10}} R_{B_{10}})^i (L_{A_{10}} R_{B_{10}} - 1)(Z) \right\| = \left\| \frac{\lambda_0}{n} (L_{A_{10}}^n R_{B_{10}}^n - 1)(Z) \right\|$$

$$= \frac{1}{n} \left\| (L_{A_{10}}^n R_{B_{10}}^n - 1)(Z) \right\| \longrightarrow 0 \text{ as } n \longrightarrow \infty$$

for all $Z \in B(\mathcal{X})$. Set $\lambda_0||A||||B|| = \lambda \in \sigma_\pi(L_A R_B)$. Then $X \in B(\mathcal{X})$ satisfies $(L_{A_{10}}R_{B_{10}})(X) = 0$ if and only if $(L_A R_B)(X) = 0$. An easy calculation shows

that $X \in (L_{A_{10}}R_{B_{10}}-1)^{-1}(0)$ implies $X = \frac{1}{n}\sum_{i=0}^{n-1}(L_{A_{10}}R_{B_{10}})^{i}(X)$. Hence if $X \in (L_{A}R_{B}-1)^{-1}(0)$ and Y = Z/||A||||B||, then for all $Z \in B(\mathcal{X})$,

$$||X + \frac{\lambda_0}{n} \sum_{i=0}^{n-1} (L_{A_{10}} R_{B_{10}})^i (L_{A_{10}} R_{B_{10}} - 1)(Z)||$$

$$= ||\frac{1}{n} \sum_{i=0}^{n-1} (L_{A_{10}} R_{B_{10}})^i (X + \lambda_0 (L_{A_{10}} R_{B_{10}} - 1)(Z))||$$

$$\leq ||X + \lambda_0 (L_{A_{10}} R_{B_{10}} - 1)(Z)|| = ||X + (L_{A_1} R_{B_1} - \lambda_0)(Z)||$$

$$= ||X + (L_A R_B - \lambda)(Y)||$$

for all $Y \in B(\mathcal{X})$ and $\lambda \in \sigma_{\pi}(L_A R_B)$.

The two way implication (i) \iff (ii) is evident. Observe that if $L_A R_B$ is normaloid and $\lambda \in \sigma_{\pi}(L_A R_B)$, then λ is in the boundary of $\sigma(L_A R_B)$. Hence $(L_A R_B - \lambda)^*$ has SVEP (at 0), and so $L_A R_B$ is left polar at λ if and only if it is polar at λ . Hence (ii) \iff (iii). \square

References

- [1] P. Aiena, Fredholm and Local Spectral Theory with Applications to Multipliers, Kluwer, 2004.
- [2] J. Anderson, On normal derivations, Proc. Amer. Math. Soc. 38 (1973), 136–140.
- [3] J. Anderson and C. Foiaş, Properties which normal operators share with normal derivations and related operators, *Pacific J. Math.* **61** (1975), 313–325.
- [4] E. Boasso, Drazin spectra of Banach space operators and Banach algebra elements, J. Math. Anal. Appl. 359 (2009), 48–55.
- [5] E. Boasso, B. P. Duggal and I. H. Jeon, Generalized Browder's and Weyl, theorems for left and right multiplication operators, J. Math. Anal. Appl. 370 (2010), 461–471.
- [6] F. F. Bonsal and J. Duncan, Numerical Ranges II, Cambridge Univ. Press, London, 1973.
- [7] M. Chō, S. Djordjević and B. P. Duggal, Bishop's property (β) and an elementary operator, Hokkaido Math. J. XL(3) (2011), 337–356.
- [8] B. P. Duggal, S. Djordjević and C. S. Kubrusly, Elementary operators, finite ascent, range closure and compactness, Linear Alg. Appl. 449 (2014), 334–349.
- [9] B. P. Duggal and R. E. Harte, Range-kernel orthogonality and range closure of an elementary operator, *Monatsh. Math.* 143 (2004), 179–187.
- [10] B. P. Duggal, R. E. Harte and A. H. Kim, Weyl's theorem, tensor products and multiplication operators II, Glasg. Math. J. 52 (2010), 705-709.
- [11] B. P. Duggal, Subspace gaps and range-kernel orthogonality of an elementary operator, Linear Alg. Appl. 383 (2004), 93-106.
- [12] B. P. Duggal, The closure of the range of an elementary operator, Linear Alg. Appl. 392 (2004), 305–319.
- [13] J. Eschmeier, Tensor products and elementary operators, J. Reine Angew. Math. 390(1988), 47–66.
- [14] D. Kečkić, Orthogonality of the range and the kernel of some elementary operators, Proc. Amer. Math. Soc. 128 (2000), 3369–3377.
- [15] F. Kittaneh, Operators that are orthogonal to the range of a derivation, J. Math. Anal. Appl. 203 (1996), 868–873.
- [16] C. K. Fong and A. R. Sourour, On the operator identity $\sum A_r X B_r = 0$, Canadian J. Math. **XXXI** (1979), 845–857.
- [17] H. G. Heuser, Functional Analysis, John Wiley and Sons, (1982).
- [18] V. S. Shulman, On linear equations with normal coefficients, Sovt. Math. Dokl. 27 (1983), 726–729
- [19] A. M. Sinclair, Eigenvalues in the boundary of the numerical range, Pacific J. Math. 35 (1970), 231–234.
- [20] A. Turnšek, Generalized Anderson's inequality, J. Math. Anal. Appl. 263 (2001), 121-134.

8 Redwood Grove, Northfield Avenue, London W
5 $4{\rm SZ},$ England, U.K $E\text{-}mail\ address:\ bpduggal@yahoo.co.uk}$

FCFM, BENEMERITA UNIVERSIDAD AUTONOMA DE PUEBLA, RÍO VERDE Y AV. SAN CLAUDIO, SAN MANUEL, PUEBLA, PUE. 72570, MEXICO

 $E\text{-}mail\ address: \verb|slavdj@fcfm.buap.mx|$

Catholic University of Rio de Janeiro, 22453-900, Rio de Janeiro, RJ, Brazil

 $E ext{-}mail\ address: carlos@ele.puc-rio.br}$