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ELEMENTARY OPERATORS, FINITE ASCENT, RANGE
CLOSURE AND COMPACTNESS

B.P. DUGGAL, S.V. DJORDJEVIC, AND C.S. KUBRUSLY

ABSTRACT. Given Banach space operators A;,B; € B(X), 1 < i < 2, let
Pap € B(B(X)) denote the elementary operator ®ap(X) = A1 XB; —
A2 X Bs. Then ®ap has finite ascent < 1 for a number of fairly general
choices of the operators A; and B;. This information is applied to prove some
necessary and sufficient conditions for the range of ®aog to be closed and in
deciding conditions on the tuples (A1, A2) and (B1, B2) so that ®% 5(X) com-
pact for some integer n > 1 and operator X implies ®Aog(X) compact. This
generalizes some well known results of Anderson and Foiag [4], and Yosun [25].
Also considered is the question: What is a necessary and sufficient condition
(on the tuples (A1, A2), (B1, B2) and ®aB) for ®; 5 to be compact for some
integer n > 17

1. INTRODUCTION

For a Banach space X, let B(X) denote the algebra of operators, equivalently
bounded linear transformations, on X into itself. Given an operator T € B(X), the
kernel T~1(0) of T is orthogonal, in the sense of G. Birkhoff, to the range T'(X) of
T, in notation T=1(0) L T(X), if ||z|| < ||z+y]| for all z € T~1(0) and y € T(X) [8,
page 25]. Clearly, T=%(0) L T(X) = T Y0)NT(X) ={0} = T (0)NT(X) =
{0}. (Here, as also in the sequel, T(X) denotes the closure of T(X).) The range -
kernel orthogonality of an operator is related to its ascent. The ascent of T € B(X),
asc(T), is the least non-negative integer n such that 7-"(0) = T-(*+1(0) (if no
such n exists then asc(T) = oo). It is known that asc(T) < m < oo if and only if
T="(0)NT™(X) = {0} for all integers n > m. Evidently, T=1(0) L T(X) implies
asc(T) < 1.

The range-kernel orthogonality 7-'(0) L T'(X) of Banach space operators has
been studied by a number of authors over the past few decades. A classical result
of Sinclair [23, Proposition 1] says that “if 0 is in the boundary of the numerical
range of a T € B(X), then T=1(0) L T(X)”. Anderson [3], and Anderson and Foias
[4], considered the generalized derivation d45 = Ly — Rp € B(B(H)), dap(X) =
AX — X B, to prove that if A, B € B(H) are normal (Hilbert space) operators,
then §,5(0) L §45(B(H)). These results have since been extended to a variety of
elementary operators ®ap(X) = A1 X By — A3 X B for a variety of choices of tuples
of operators A = (A, A2) and B = (By, By) (see [10, 11, 16, 17, 24] for further
references). The range—kernel orthogonality of an operator T' € B(X') does not

imply that the range T'(X) is closed or that X = T—1(0)®&T(X); see [4, Example 3.1
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and Theorem 4.1] and [23, Remark 2]. Indeed, range—kernel orthogonality neither
implies nor is implied by range closure. Thus, every bounded below operator has
closed range and satisfies range-kernel orthogonality, an injective compact quasi-
nilpotent operator (for example, the Volterra integral operator on L?(0, 1)) satisfies
range-kernel orthogonality but does not have closed range, and no operator 7'
(whether it has closed range or not) with co > asc(T) > 2 satisfies range-kernel
orthogonality. The implication T~1(0) L T(X) = asc(T) < 1 is strictly one way;
if A;,B; € B(H), 1 < i < 2, are normal Hilbert space operators such that A;
commutes with Ay and By commutes with By, then asc(®ap) < 1 [13, Theorem
3.4] but ®,5(0) L ®ap(B(H)) if and only if (4, & B;)~'(0)N(A.@Bj)~1(0) = {0}
[24, Corollary 2.3].

In the following we prove that asc(®ap) < 1 for various choices of the operators
A; and B;, 1 < i < 2. Thus, if A, B € B(X) are contractions (or, if A, B € B(X) are
normaloid and A is in the peripheral spectrum of Ly Rpg), then asc(LaRp —1) <1
(resp., asc(LyRp — A\) < 1); if B € B(X) is a contraction and A € B(X) is
left invertible by a contraction, then asc(Lq — Rp) < 1; and if Ay, B € B(H)
are w-hyponormal (Hilbert space) operators such that A;'(0) € Ai~'(0) and
B;~'(0) € B;'(0), Ay, Bf € B(H) are normal operators, A; commutes with Ay
and B; commutes with Bs, then asc(®ap) < 1. This information is then applied
to give some necessary and sufficient conditions for the range of ®ap to be closed
(generalizing, in the process, a result of Anderson and Foiag [4]), and in deciding
conditions on the tuples A and B so that ®% 5(X) compact for some integer n > 1
and operator X implies ®op(X) compact (this generalizes some results of Yusun
[25]). Also considered is the question: What is a necessary and sufficient condition
(on A, B and @) for &35 to be compact for some integer n > 17

2. FINITE ASCENT, RANGE-KERNEL ORTHOGONALITY

Throughout the following, X (resp., H) shall denote an infinite dimensional
complex Banach space (resp., Hilbert space). For an operator A € B(X), Ly €
B(B(X)) (resp., R4 € B(B(X))) shall denote the operator L4(X) = AX of left
multiplication by A (resp., R4(X) = X A of right multiplication by A). For A, B €
B(X), we shall denote the generalized derivation L4 — Rp by dap, the elementary
operator LyRp — 1 by Asp, and dap shall denote either of 45 and A . We
shall denote the spectrum (the approximate point spectrum) of 7' by o(T) (resp.,
04(T)), and the isolated points of a subset S of o(7T") will be denoted by iso (S). The
descent dsc(T') of an operator T' € B(X) is the smallest non-negative integer n such
that T7(X) = T™1(X) (if no such n exists, then dsc(T) = oo). It is well known,
see [1, 15], that if both asc(T") and dsc(T) are finite then asc(T) = dsc(T) = p < o0
for some integer p > 0, X =T?(0) @ T?(X) and 0 € iso o(T). T € B(X), has the
single-valued extension property at a complex point \g, SVEP at A\ for short, if for
every open disc D), centered at Ao the only analytic function f : Dy, — X which

satisfies
(T—XN)f(A) =0 forall XeD,y,

is the function f = 0. T has SVEP if it has SVEP at every complex A. Both T
and T have SVEP at points in the boundary 0o(T') of the spectrum of T’ also
asc(T) < oo (resp., dsc(T') < oo) implies T (resp., T*) has SVEP at 0, and T™* has
SVEP implies o(T) = 0,(T) [1, 18].
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For an operator T € B(H) with polar decomposition T' = U|T|, the (first)
Aluthge transform T of T is the operator T = |T|2U|T|Z. We say that the operator
T is w-hyponormal if

(M) < [T < |T].

Every hyponormal (|7*|? < |T'|?) operator is w—hyponormal, and it is easily seen
that w-hyponormal operators T are paranormal (i.e., ||Txz||?> < ||T%x|| for all unit
vectors © € H); hence asc(T) <1 [9].

Let A, B € B(H), H as above a Hilbert space. We say that the pair (4, B)
satisfies the PF-property, short for the “Putnam-Fuglede commutativity property”,
if d35(0) € d!5.(0). For w-hyponormal operators A, B* € B(H) with A~'(0) C
A*71(0) and B*~1(0) C B~1(0), dp satisfies the PF-property [9, Lemma 2.4].

Lemma 2.1. If A, B* € B(H) are w-hyponormal operators with A=*(0) € A*~1(0)
and B*~1(0) € B~(0), then dap satisfies the PF-property.

Lemma 2.2. If A € B(H) is a w-hyponormal operator which commutes with a
normal operator B € B(H), then AB is w-hyponormal.

Proof. Since AB = BA implies AB* = B*A (by the classical Putnam-Fuglede
theorem), [9, Lemma 2.3] implies AB is w-hyponormal. [

The numerical range W (B(X),T) of T € B(X) is the set
W(B(X),T) ={f(T): f € BX)"|Ifl| = f(I) =1},
where B(X)* is the dual space of B(X). W(B(X),T) is a compact subset of the
set C of complex numbers. If A, B € B(X) are contractions, then
W(B(B(X)), LaRs) C {A€ C: A <1}, and
W(B(B(X)),Aap) C{ e C:|A+1]| <1}

This implies that 0 € OW(B(B(X)), Aap), the boundary of W(B(B(X)),Aag),
and hence [8, Theorem 6, page 27|

1245(Y) + X[ > [|1X]] = V8[[Aas(OIIY]]

for all X,Y € B(X). In particular A 5(0) L Aap(B(X)) and asc(Aap) < 1.
Consider now a contraction A € B(X) and an operator B € B(X) such that B is
right invertible by a contraction B, € B(X). Then

1845, (YB) + X|| = [|X]| = /8[| Aap, (XY B

forall X,Y € B(X). Since Aap, (YB) =3d4Y), ||YB]|| <||B||||Y]] and ||Aap,. (X)|] <

1B [[[16.48(X)] < [[6a5(X)]I;
1645(Y) + X > [|1X]| = /8[| BI[[|045 (X)[[Y]]

for all X,Y € B(X). Similarly, if A € B(X) is left invertible by a contraction A,
and B € B(X) is a contraction, then

1845(Y) + X[| > |IX]| = V/BIA[[[l6a5 (X)I]Y]]
for X,Y € B(X). We have proved:
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Proposition 2.3. Let A, B € B(X). (i) If A, B are contractions, then A 5(0) L
Aap(B(X)) and (hence) asc(Aap) < 1.

(i) If A is a contraction and B is right invertible by a contraction (resp., A is left
invertible by a contraction and B is a contraction), then §;5(0) L dap(B(X)) and
(hence) asc(dap) < 1.

T € B(X) is normaloid if ||T|| = r(T), where r(T) = limp oo ||T™||% = sup{|A| :
A € o(T)} is the spectral radius of T. A more general result, than the one in
Proposition 2.3, is possible for the elementary operator A 4p in the case in which
A, B are normaloid operators. Given a T € B(X), let

ox(T) ={A€a(T): |\ =r(T)}
denote the peripheral spectrum of T [15, Page 225].

Proposition 2.4. If A, B € B(X) are normaloid, then (LaRg—\)"1(0) L (LaRg—
AN (B(X)) for all X € ox(LaRB).

Proof. A, B being normaloid,
I(LaRB)"|| = [[LanRpn|| = [[A"[[[|B"]] = (I|A[[[|BI[)" = [[LaRBI|"

for all integers n > 1. Hence L4 Rp is normaloid, r(LaRp) = r(A)r(B) = ||A|||| B,
and

0x(LaRp) = {\ € C: there exist p € 0:(A),v € 0,(B) such that X\ = pv}.

If we define the contractions A; and By by Ay = A/||A|| and B; = B/||B||, then
L, Rp, is a contraction and

ox(La,Rp,) = {X € C: there exist u € 0,(A1),v € 0,(B1) such that A\ = uv, |u| = |v| = 1}.
Choose a Ao = povo € ox(La, Rp,); let A1g = A1/po and Big = By /vp. Then

&n_l 1 _ _ & n n _
172 3" (B Rin) (B R = D)(2)|| = || 2225, RE,, - 1(2) |
=0

1
= g||(LArleRB?O - 1)(Z)|]| — 0 as n —

for all Z € B(X). Set X\o||A||||B|| = A € 0x(LaRp). Then X € B(X) satisfies
(La,,RB,,)(X) = 0 if and only if (L4Rp)(X) = 0. An easy calculation shows
that X € (La,,Rp,, — 1)7(0) implies X = 1S V(L4 Rp,,)(X). Hence if
X € (LaRp —1)71(0) and Y = Z/||A||||B||, then for any Z € B(X),

n—1

HX + % Z (LaywwRB,o) (LR, — 1)(Z)H
=0

H% nz:; (LawRey0) (X + Xo(LayRey, — 1)(2))H

< X+ 2o(LayRe, = D) = X + (La, B, = 20)(2)]|
I X+ (LaRp — N)(Y)]

for all Y € B(X) and A € ox(LaRp). O
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Remark 2.5. The argument of the proof of Proposition 2.4 seemingly does not
work for the operator d4p, even for normal Hilbert space operators A, B. It is
easily seen that if A, B € B(X) are normal, then §4p is normal, hence 6 5(0) L
dap(B(X)) and asc(d4p) < 1. However, d4p is not normaloid [4]. Recall from
[20] that for operators A, B € B(H), the numerical range W (B(B(H)),045) =
W(A) — W(B), where W(T) = {(Tz,z) : x € H,||z|| = 1} denotes the closure
of the usual (spatial) numerical range of the operator T' € B(H). Hence: If 0 €
O(W(A) — W(B)), then §,5(0) L ap(B(H)).

The PF-property implies range-kernel orthogonality: the following proposition
is well known for the case in which dup = dap. (Recall: dap = dap or Aup.)

Proposition 2.6. Let A, B € B(H). Ifdag satisfies the PF-property, then d ;5 (0) L
dap(B(H)) (hence asc(dap) <1).

Proof. If X € 6,5(0) C 0,1 5.(0), then ranX reduces A, kert X reduces B, A; =
Al and By = By, L x are unitarily equivalent normal operators. Furthermore,
§4,B,(X1) =0, where X : ker- X — ranX is the quasi-affinity defined by setting
Xz = Xz for all z € ker'X. The operators Ay, B; being normal, ||X;|| <
[164,8,(Y11) + X3|| for all X; € 521131 (0) and (bounded linear) operators Y7y :
kert X — ranX [4]. Let A = A; ® A, with respect to the decomposition H =
ranXEBranXl7 B = B; ® B, with respect to the decomposition H = ker+X @kerX,
X = X;®0 (- kert X @ kerX — ranX @ranXl), and let Y = [Yy]7,-, (:
kert X @kerX — ranX @&ranX l) (with Y77 as above and some operators Yia, Yo1
and Yas). A straightforward argument then shows that

X = 11X < 1104, 8, (Vi) + Xa || < [l0ap(Y) + X]

for all X € 6,5(0) and Y € B(H).

Now let X € A3 5(0) € ALl5.(0). Then ranX reduces A, kert X reduces B,
and A g, B, (X1) = Aasp: (X1), where the operators A;, By and the quasi-affinity
X, : kert X — ranX are as defined above. Evidently, A; and B; are quasi-
affinities. Since

B1 X7 (A1 X1B)) = B1X; X, <= |X1*B; = B| X%, and
Ale(BlXTAl) = AleXik < A1|XT|2 = |XT|2A1,

it follows that A,U1 By = Uy = AjU; B, where the unitary operator U; is as in
the polar decomposition X; = Uy|X;|. Hence A; and By L are unitarily equivalent
normal operators. Since X; € AZ}BI (0) if and only if X € 6, 5-1(0),

IXall < 1104, g (Yi0) + Xl = [|A 4,8, (Y1) — X

for all Y19 = Y11B;. As above, this implies || X|| < ||[Aap(Y) — X)|| for all X, Y €
B(H). O

Combining Lemma 2.1 and Proposition 2.4 we have:

Corollary 2.7. If A,B* € B(H) are w-hyponormal operators with A='(0) C
A*7H0) and B*71(0) € B~1(0), then asc(dap) < 1.
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Proposition 2.6 does not extend to operators ®ag(X) = Z:.Lzl A;XB;, A =
(A1,--+ ,A,) and B = (By,- -+, By,) n-tuples of mutually commuting operators in
B(H), such that ®ag(X) = 0 implies ®p-p-(X) = > | A;X B = 0. Thus, if
A; and B; € B(H) are normal operators for all 1 <4 < n, and A; commutes with
A; and B; commutes with B; for all 1 < 4,5 < n, then @;gfl)(O) = @;g%:l)(O)
[21, Theorem 5]. (Here we thank the referee for pointing out (i) an error in the
original statement ®,5(0) = ®,'p.(0) and (ii) that [22] has a counter example
showing that this equality may fail for n > 2.) If n > 2 then there is a ®ap such
that asc(®Pap) > 1 [21]. Obviously, such an operator ®ap does not satisfy the
range-kernel orthogonality property. Recall from [24, Theorem 2.4] that if n = 2,
A = (A1, Ay) and B = (B, By) are commuting tuples of normal operators, then
®Lp(0) L ®ap(B(H)) if and only if (4; @ By)~'(0) N (A2 @ Bz)~'(0) = {0}.
Consequently, ®,5(0) L ®ap(B(H)) may fail even in the case in which n = 2.
In the following we consider commuting tuples (A1, A2) and (B, B2) such that
Ay, By are normal and A;, Bf are w-hyponormal with A7'(0) € A;~'(0) and
B;~1(0) € B;'(0) to prove that asc(®ag) < 1. We remark here that one can
prove the range-kernel orthogonality for such an operator ® o5 under the additional
hypothesis that (A; @ Bf)~1(0)N (A2 @ B3)~1(0) = {0}: We leave the detail to the
reader, see however the proof of [11, Theorem 2.7].

Proposition 2.8. Let Ay, Bf € B(H) be two w-hyponormal operators, and let
As, By € B(H) be two normal operators. Define ®ap € B(B(H)) by ®ap(X) =
A1 X By — Ay XBy. If Ay commutes with Ay, By commutes with Bs, Al_l(()) C
A371H0) and By 71(0) € By 1(0), then asc(®aB) < 1.

0 Y
Proof. If welet HOH =Ho, A= A1 ® A5, B=B1®B;, X = 00 | € B(Ho)
for a Y € B(H), and define ¢pap € B(B(Ho)) by ¢pap(Z) = AZA* — BZB*, then
A is w-hyponormal with A=(0) € A*~(0), B is normal, A and B commute and
Y € ®,5(0) if and only if X € ¢, 5(0). Consequently, to prove asc(®ap) < 1 it
would suffice to prove asc(¢pap) < 1. To simplify notation and for convenience, in
the following let A € B(H) be a w—hyponormal operator which satisfies A=1(0) C
A*71(0) and which commutes with the normal operator B € B(H). Then either
(a) B-1(0) = {0}, or (B)(3) B~'(0) # {0} = A~(0), or (8)(ii) B~'(0) # {0},
A=Y(0) # {0} and A=1(0) # B~1(0), or (b)(iii) B=1(0) = A=1(0) # {0}. In the
following we start by proving that asc(éap) < 1 if (a) holds, and then prove that
the proof reduces to this case if any of the other three conditions holds.

Assume B~1(0) = {0}. For a natural number n, let T',, = {\ € C : |\| < 1/n},
and let E5(T,,) denote the corresponding spectral projection. Set I —Eg(I'y,) = Py;
then P, — I in the strong topology. Since A, B commute implies A, B* commute,
P, ’H reduces both A and B. Hence A = Ay, ® Ay, and B = By, ® Ba, (with
respect to the decomposition H = (I — P,)H ® P,H), where A;,, are w—hyponormal
with A;1(0) € A%, ~'(0) (i = 1,2), By, is normal and By, is invertible normal.
For an X € ¢, 5(0), let P,XP, = X,,; then X,, — X weakly (even, strongly). If
we now set Bz_nl Agy, = C, then Lemma 2.2 implies that C), is w—hyponormal with
C1(0) € C*71(0). Since

Poban(X)Py = Pu(AXA* — BXB*)Py = Aon(PyXPo) AL, — Bon(PuX Po) B,
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X, € Aaic* (0). Hence, Lemma 2.1,
I Xall < l|Ac,c; (Tn) + Xal|
for all T;, € B(P,H). Choosing T, = Bs,Z,B3,,, we have
| Xl < (|04, B2, (Zn) + Xa|

for all Z, = P,ZP,, € B(P,H). Trivially, ||¢a,, B, (Zn) + Xnll < |l¢an(Z) + X]||.
Hence, since || X, || — || X]],

1X|| < |l¢pap(Z) + X|| for all X € ¢,5(0) and Z € B(H).

This implies asc(¢ap) < 1 in the case in which B=1(0) = {0}.

Suppose now that (b)(4) is satisfied. Decompose H by H = ker+ B @ kerB. Then
B=B;®0and A= A; ® Ay (recall: A commutes with B). Letting X € ¢)Z}3(O)
have the matrix representation X = [Xj;]7;_,, we then have

_ | ¢4, (X11)  La,Raz(Xi2)

dap(X) = L, Ra:(X21) La,Ra;(Xo2)

Since A; and A, are injective, X195 = X971 = Xa9 = 0. Thus, ¢4p5(X) = 0 if and
only if ¢4, p,(X11) =0, where By is injective.

If (b)(ii) is satisfied, then we may assume without loss of generality that B=1(0) €
A~1(0). Decompose H by H = kert B @ (kerB © kerAss) @® ker Ay, where Agy =
Alkers. Then B=B1® 0300, A= A; ® A, ®0, By and A, are injective, and A; is
w-hyponormal with A7'(0) C A%71(0). Letting X € B(H) have the representation
X =[X;;]3 we have X € ¢ 5~ '(0) if and only if

1,7=1» )
%5, (X11)  (La,Rag)"(Xi2) 0
Pup(X) = | (LayRa;)"(X21) (La,Raz)"(X22) 0
0 0 0

Since w—hyponormal operators have ascent less than or equal to one,

=0.

=0.

(LAIRAE)TL(Xu) =0« Llelg =0 LAl(X12> =0« LAlRA; (Xlg) =0,
(LA2RA*1«)TL(X21> =0« RZ’{Xﬂ =0« RAT (X21) =0« LA2RA*1« (Xgl) =0 and
(LA2RA§)TL(X22> =0<= X9 =0.

Hence asc(pap) < 1 <= asc(da,p,) < 1, where By *(0) = {0}.

Finally, if (b)(i4i) is satisfied, then upon letting As and B = B; @ 0, where A;
and By are injective. Letting X = [X;;]7 ,_, it is then seen that X € ¢, 5(0) if and
only if X11 € ¢4, (0). O

3. RANGE CLOSURE

An operator T € B(X) is polar at A € o(T) if asc(T — A) = dsc(T — \) < oc.
Clearly, if T is polar at A, then A € iso o(T). We say that T is polaroid if it is
polar at every A € iso o(T). T is left polar at A € o,(T) (resp., right polar at
A€ 04(T), 05(T) = 04(T*) the surjectivity spectrum of T) if asc(T' — ) = d < o0
and (T — A\)®1(X) is closed (resp., dsc(T — \) = d < co and T4(X) is closed). It
can be seen that if T is left polar at A € 0, (T") (resp., T is right polar at A € o4(T)),
then A € iso 04(T) (resp., A € iso o5(T)). We say that T is left polaroid (resp.,
right polaroid) if it is left polar at every A € iso o4(T) (resp., if it is right polar
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at every A € iso 04(T)). Evidently, T is polar at A if and only if it is both left
and right polar at A\. If X = H is a Hilbert space and T' € B(H), then T is left
polar at A € iso 0,(T) (resp., right polar at A € iso 04(T")) if and only if there exist
T-invariant closed subspaces M; and My of H such that H = My & Ma, (T — M|,
is d-nilpotent (for some integer d > 1) and (T' — A)|ps, is bounded below (resp.,
(T — X)|a, is d-nilpotent and (T — A)|as, is surjective) [2, Theorem 3.4]. Tt is
easily seen that T is right polar at A € iso o4(7T) if and only if T™* is left polar at
A € is0 04(T*). The polaroid property (resp., the left polaroid property) transfers
from A,B € B(X) to LyRp and L4 — Rp (resp., from A, B* € B(H) to LsRp
and Ly — Rp).

Proposition 3.1. (i) If A, B € B(X) are polaroid, then LyRp,Ls—Rp € B(B(X))
are polaroid.

(i) If A, B* € B(H) are left polaroid, then LaRp,La — Rp € B(B(H)) are left
polaroid.

Proof. See [7, Lemma 4.7] and [5, Theorem 3.6] for a proof of (i), and see [6,
Theorem 3.4] for the proof of the case L4sRp of (ii). To prove the case Ly — Rp
of (ii), start by observing that L4 — Rp is left polar at A € iso o,(Ls — Rp) if
and only if Ly, — Rp is left polar at 0 € iso 04,(La — Rp — \), and that L4 is
left polar at A € iso o,(A) if and only if L4_» is left polar at 0 € iso g,(A — A).
Hence to prove the result it would suffice to consider 0 € iso 0,(Ls — Rp). Let 0 €
is0 04(La—Rp) = is0 (04(A)—04(B)) = (iso 04,(A)—iso o5(B))\acco,(Ls — Rp)
(where acco,(-) denotes the accumulation points of o, (-)). Then there exist finite
sequences (o) = {a;}", C iso 0,(A) and (8) = {B;}~, C iso o5(B) such that
a; — B; = 0 for all 1 <4 < n. The operator A and B* being left polaroid (Hilbert
space) operators, there exist A-invariant (closed) subspaces M; and B-invariant
(closed) subspaces N;, i = 1,2, such that the following holds:

H =DM &My =N, & Noy My = &]_ My; = &} Ho(A — o)
= 614 (4 — a) 7 (0) and
N1 =& Ny = &L Ho(B — 3;) = @i (B — £;)”“(0) for some integers
1<e,di(1<i<n),
Ar = Ay, = O Al = @214, By = By, = 6L Bln,, = @i Bu,
As = Alym, and B = B|n,,04(A41:) = {a;} and o4(B1;) = {0}
for all 1 <i<mn,
0a(Az) = 04(A)\{a1, - ,an} and 0s(B2) = 0s(B) \ {B1, -+, Bn}-
Furthermore, L 4—Rp is bounded below on its closed invariant subspaces B(N;, M;),
1<i,j<2withi=j#1,and B(Ny, Mig), 1 <t #k <n. If we let
Ey = &7, B(Ny;, My;) and
By = ®1<ij<o, i=jz1 B(Nis Mj) © {@1<izk<n B(N1g, Mig)},

then B(H) = E1 @ Es, (La — Rp)|E, is nilpotent and (L4 — Rp)|g, is bounded
below. Hence L4 — Rp is left polar at 0. O

T € B(X) is simply polar at A € iso o(T) (resp.,left simply polar at \ €
iso 04(T)) if asc(T — A\) = dsc(T — A) = 1 (resp., if T is left polar at A\ with
asc(T — A) = 1). Evidently, T left simply polar at A implies 7'— X has closed range;
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conversely, if asc(T' — A) < 1 and (T — A)(X) is closed, then (either A ¢ o,(T) or)
T is left simply polar at A. Recall from [12, Corollary 3.3 and Lemma 3.1] that if
T is left simply polar at A and T has SVEP at A, then T' — X is Drazin invertible
with Drazin index one (i.e., T' is simply polar at A).

Let W 4 g denote either of the operators (a) Ap with A, B € B(H) contractions,
or (b) 45 with A, B=! € B(H) contractions, or (c) LaRp — X\ with A, B € B(H)
normaloid and A € o,.(LaRB).

Theorem 3.2. If A, B* € B(H) are left polaroid, then the following conditions are
pairwise equivalent:

(i) 0 € is0 04 (U aB)

(i) U ap is left polar at 0.

(iii) W ap has closed range.

() There exist finite sequences () = {a;}_; C iso 04(A) and (B) = {Bi}1=; C
iso 0s(B) such that, for all1 <i<n, a;0;—1 =014 Vap isasin(a), o;,—F; =0
if Uap is as in (b), and a;0; — A =0 if Uap is as in (c).

(0) B(H) = a5~ (0) & Wap(B(H)).

(vi) 0 € iso (¥ 4p).

Proof. 1t is straightforward to see that if an invertible operator T is left polar at a
point A(# 0), then ! is left polar at A=!. Thus if, in case (b), B* is left polaroid,
then C* = B*~! is left polaroid. Since (LaRp-1 — 1)~1(0) = (L4 — Rg)~*(0),
(LaRg-1 — 1)(B(X)) = (La — Rp)(B(X)) and 0 € iso 04(L4a — Rp) < 0 €
is0 0,(LaRg-1 — 1) in the case in which A, B~! € B(H) are contractions, the
proof of the theorem for the case in which U4 is as in (b) follows from that
for case (a). Observe that if W4p is the operator of either of the cases (a) and
(b), then asc(Pap) < 1 and 0 € Jo(V¥4p); furthermore, this follows from our
hypothesis that A and B* are left polaroid, ¥ 4 is left simply polaroid.

The implications (v) = (vi) = (i) are evident, and the implication (i) => (%)
is a straightforward consequence of the fact that U,4p is left polaroid (hence, left
polar at 0 € iso 0,(Vap)). Again, (it) = (4i3) is evident, and if (4i7) is satisfied,
then (asc(¥4p) <1 and ¥yp(B(X)) is closed imply) U 45 is left simply polar at
0 and hence 0 € iso 0,(¥4p). An argument similar to that used in the proof of
Proposition 3.1 now gives the existence of the sequences () = {a;}7; Ciso 0,(A)
and (8) = {8}, C iso 05(B) such that, for all 1 <i < mn, a;08; —1 =0if Uyp
is as in (a), and a;8; — A = 0 if U4p is as in (c). The implication (iv) = (4)
being evidently true (since iso o,(LaRp) C iso 0,(A)iso os(B)), we have (iii) =
(iv) = (i). The point 0 € do(¥4p5) implies U* 5 has SVEP at 0. Hence, as
remarked upon above, ¥ 45 is polar at 0 (and then 0 € iso 6(¥ 45)). Thus (i1) =
(v), and the proof is complete. [

Remark 3.3. (a). Given normal operators A,B € B(X), both dap and 6%z
have SVEP everywhere (thus o(dap) = 0(8%5) = 04(04B)), asc(dap — ) < 1
for all complex A and d4p is (simply) polaroid. (Observe, however, that d4p is
not normaloid [4, Example 5.6].) The argument of the proof of Theorem 3.2 gives
us the following generalization of [4, Theorem 3.3]. If A, B € B(X) are polaroid,
asc(dap) < 1 and 6% 5 has SVEP at 0, then the conditions (i) to (vi) of Theorem
3.2 are mutually equivalent with U op replaced by d 4.

(b). We do not know if Proposition 3.1 (ii) extends to left polaroid operators
in B(X) (and hence whether one can replace B(H) by B(X) in Theorem 3.2).
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It is however straightforward to see that if A, B € B(X) are polaroid, then the
conditions (i), (i44), (iv), (v) and (vi) of Theorem 3.2 are pairwise equivalent.

(c). If A, B* € B(H) are left polaroid and d;(0) C d!5.(0), then conditions
(i) to (iv) of Theorem 3.2 are mutually equivalent with U 4p replaced by dap; if
also d% p has SVEP at 0, then all six conditions of the theorem are equivalent.
Trivially, the operator ® o of Proposition 2.8 has closed range if and only if ®ap
is left polar at 0. We have not been able to prove a result similar to Theorem 3.2 for
®ap: However, as we shall see in the following, a satisfactory version of Theorem
3.2 is possible for the operators ®ap if we restrict ourselves to separable Hilbert
spaces H and operators ®ap € B(C,), where C, = C,(H), 1 < p < 00, denotes the
von Neumann—Schatten p-class.

Let H be a complex separable Hilbert space and let C, = C,(H), 1 < p < oo,
denote the von Neumann-Schatten p-class. Then C, is a reflexive Banach space
with norm || X||, = (Z] s;’(X))l/p, where s;(X) are the singular values of X € C,.
The dual space of C, is the space C,/, where 1/p+1/p’ = 1.

Theorem 3.4. If ®ap € B(C,) is the operator Pap(X) = A1 XBy — A2 X By,
where A; and B;, i = 1,2, are the operators of Proposition 2.8, then the following
conditions are mutually equivalent:

(1) ®aB(Cp) is closed.

(ii) Pap is left simply polar at 0.
(iii) ®ap is simply polar at 0.
(iv) Cp = @35 (0) ® PaB(Cy).

Proof. Since asc(®ag) < 1, Proposition 2.8, the implications (iv) = (i) = (4i)
and (ii1) = (iv) are evidently true. To prove the implication (i) = (ii3),
we prove in the following that the adjoint operator ®} 5 has SVEP at 0. This
would then imply (by [12, Corollary 3.3 and Lemma 3.1]) that ®ap is simply
polar whenever it is simply left polar at 0. Let X € C, and Y € C,. Then
tI‘((I)AB(X)Y) = tI‘((AlXBl — AQXBQ)Y) = tr(X(31YA1 — BQYAQ)), where tI‘()
denotes the trace functional. Hence ®3, g, the adjoint operator of the operator
®aB, is the operator @35 € B(Cp), Pip(Y) = B1Y A; — BoY Ay. We prove next
that asc(®3g) < 1. For Y € Cp such that ®325(Y) = 0, set 4 5(Y) = Z. Then,
since 0 = tr(X @4 g(2)) = tr(®aB(X)Z) for all X € C,, we must have Z = 0, i.e.,
we must have asc(® 5) < 1. Consequently, ®% 5 has SVEP at 0. This completes
the proof. O

4. COMPACTNESS

Let © 45 € B(B(X)) denote either of the elementary operators ¥ 45 of Theorem
3.2 (but without the left polaroid hypothesis on A and B*) and the operator ® g of
Proposition 2.8 but with A, Bf € B(H) hyponormal (thus the hypothesis A7 *(0) C
A3710) and B;~*(0) € By '(0) is redundant). Recall from [25, Theorem 3] that
if an A € B(H) is left invertible by a contraction and B is a contraction, then
(6%5) " (0)NK(H) = 65 5(0)NK(H), where K(H) C B(H) denotes the (two sided)
ideal of compact operators. This is an easy consequence of our results. Let, for
convenience, Y 4p denote either of the operators © 45 and the operator dap of
Proposition 2.6 (recall: dap = dap or Aap and d;g(O) - d;lB*(O)). Since
asc(Yap) < 1, X € K(X) N Y%z (0) for some integer n > 1 if and only if
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X € K(X)NT,5(0). The next problem that we consider is the characterization
of the operators A, B € B(X) (or, A; and B; € B(H), 1 < ¢ < 2) such that the
operator Q% 5 = (La — Rg)" or (LARg — A\)" or ®% 5 is compact for some integer
n > 1 implies Q4 p is compact? We start however with the following generalization
of [25, Theorem 6] to the operator I'y 5. Recall [1] that the (Fredholm) essential
spectrum oo(T) of T € B(X) is the set 0.(T) = {\ € o(T) : T — X is not Fredholm}.

Theorem 4.1. Let I'yp = Oap, or dap with A, B € B(X) normal. IfI' 5(X) is
compact for some integer n > 1 and operator X € B(X), then T'4p(X) is compact.

Proof. If I : B(X) — B(X) \ K(X), denotes the Calkin map, then, given a T €
B(X), o(II(T")) is the (Fredholm) essential spectrum o.(T') of T, the essential norm
[IT)|e = ||TI(T)|| satisfies ||T||e < ||T|| and the essential spectral radius r.(T) =
r(II(T)) = sup{|A| : A € 0.(T)} satisfies r.(T) < r(T') [19, Section 19].

It is known that if A, B are normal, then d4p is normal and has finite ascent
< 1. Since A, B normal implies II(A), II(B) normal, dr(4)m(p) is normal. Hence
if Py = dap with A, B normal, then asc(aﬂ(A)H(B)) <1. IfTsp = dap, where
B € B(X) is a contraction and A € B(X) is left invertible by a contraction,
then the left inverse Ay of A and the operator B being contractions the operators
II(A;) and II(B) are contractions and it follows from the argument of the proof
of Proposition 2.3 that asc(draynpy) < 1. If Tap = Aap, A and B € B(X)
contractions, then asc(Arnayn(p)) < 1. Now let 'ap = LaRp — A, where A, B are
normaloid and A € 0,(LaRp). Then, since 0.(LaRg) = 0.(A)o(B)|Jo(A)oe(B),
either |A| > r.(LaRp) or |\| = re(LaRp) (in which case ||LaRp|| = r(LaRp) =
re(LaRp) < ||AB|le < |[LaRB||). In either case asc(Lya)Rmp)y —A) < 1. Finally,
if Typ = ®aB, then the operators II(A4;), II(B7) are hyponormal, the operators
II(Asg), II(B2) are normal, II(A;) commutes with II(Ay) and II(B;) commutes with
II(Bsy). Conclusion: asc(I'r(aym(p)y) < 1. To conclude the proof, suppose now that
I p(X) is compact. Then I'fy 4y p)(II(X)) = 0 implies Iiyayns) (IL(X)) = 0,
and this in turn implies that I" 4 5(X) is compact. O

A proof of the following theorem for the case in which Q5 = L4 — Rp appears
in [14, Proposition 4]; our proof however is different from that in [14].

Theorem 4.2. (a) The following conditions are mutually equivalent.

(i) d% g is compact for some integer n > 1.

(ii) A — « and B — B are nilpotent for some scalars o, [ such that « = [ if
dAB = 5AB and o« = 1/,6 ifdAB = AAB‘

(iii) dap is nilpotent.

(b) If ®ap is the operator of Proposition 2.8 but with Ay, BY hyponormal, then
O g 15 compact for some integer n > 1 if and only if one of the following conditions
1s satisfied.

(i) ap = 0.

(ii) A1 and Ag, or By and By, are compact normal operators

Proof. (a) Case dsap = dap. If 8% 5 is compact, then o. (8% 5) = {0} implies (by the
spectral mapping theorem for the Fredholm essential spectrum that) o.(d45) = {0}
(i.e., dap is a Riesz operator). Since 0.(dap) = {0.(A) —a(B)} U{c(A4) — 0.(B)},
o(A) = 0.(A) = {a} = 0.(B) = o(B) for some scalar a and c(d4p5) = 0(A) —

o(B) = {0} = 0.(0ap). The hypothesis 6% = > (=1)""¢ ( 7; >LAniRBi
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is compact implies also that A and B are algebraic operators. (Observe that A?
(resp. BY), 0 < i < n, linearly independent implies B® (resp., A*) compact for all
0 < i < n, and this contradicts the fact that the identity operator is not compact.)
Hence A and B are polaroid: indeed, since 0(4) = o(B) = {a}, A — a and
B — « are nilpotent [1, Theorem 3.83]. Hence d4p is polaroid (by Proposition 3.1),
consequently nilpotent (since 45 = {0}). This proves (i) => (i) = (¢4i). The
implication (iii) = () being evident, the proof follows.

Case dap = A ap. The proof is similar, so we shall be brief. The hypothesis A} 5 is
compact implies A, B are algebraic, 0(A) = 0.(A4) = {a}, 0(B) = 0.(B) = {1/a}
and 0(Aap) = 0e(Aap) = {0}. Thus (A — «) and (B — 1/«) are nilpotent.
Consequently, A 4p is (polar, indeed) nilpotent.

(b) The hypotheses imply (by Theorem 4.1) that ®% 5(X) is compact if and only
if ®AB(X) compact for all X € B(X); equivalently, ®3 5 is compact if and only if
D ap is compact. Suppose that ®ap is compact. We have two possibilities: (a) By
and By (resp., A1 and A,) are linearly independent; (b) By and B (resp., A; and
Ay) are linearly dependent. Suppose to start with that By and By (similarly, A; and
Az) are linearly independent. Then A; and As (resp., By and Bg) are compact [14,
Theorem 2]. Since a compact hyponormal operator (indeed, a compact paranormal
operator) is normal, A; and Ay (resp., By and Bsy) are compact normal operators.
Thus, if (a) holds, then either A; and As (or By and Bs) are compact normal
operators, or, if A; (resp., By) fails to be either normal or compact, then B; and
By (resp., A1 and As) are linearly dependent. Consider next (b). If By = aB;
for some scalar «, then By and By are commuting normal operators such that
®AB = L(qa,—a,) B, is compact. Since A; and Ay commute,

0c(PaB) = {oc(ad; — AQ)O’(Bl)}U{O'(OéAl — As)o.(B1)}
= {laoe(A1) = 0c(A2)]o(B1)}H J[{lao(A1) — o(As)loe(B1)} = {0};

hence either o(By) = {0}, or, ac(A1) —o(As) = {0}. Since Bj is normal, o(B;) =
{0} implies B; = 0 (implies ®ap = 0). So assume ao(A;) — o(A2) = {0}. Then
o(A1) = {B/a} and o(As) = {B} for scalar 5. Normal and hyponormal (indeed,
paranormal) operators are known to be simply polaroid. Hence 4; = (5/a)I and
Ay = I, and then ®ag = 0. A similar argument works for the case in which Ay
and As are linearly dependent to prove that ®ag =0. O

Remark 4.3. (a).The argument of the proof of Theorem 4.2(a) extends to prove
that if dap = (LaRp—\)™ is compact for some integer n > 1 and scalar A, then the
equivalences (i) <= (i) <= (i4i) Theorem 4.2(a) hold with a3 = A. Evidently, if
asc(dap) < 1, then dap is compact if and only if d4ap = 0.

(b). For an operator T' € B(X), T™ is Riesz if and only if T is Riesz [1, Theorem
3.113]. Hence the operator d%p is Riesz if and only if dap is Riesz. Suppose
that dap is Riesz. Then o.(dap) = {0}, 0(A) = o(B) = {a} for some scalar
a if dap = dap, and o(4) = {a} and o(B) = {1/a} for some scalar o # 0 if
dap = Aap. Clearly, o(dap) = {0} and dap = @ is a quasinilpotent. If we
now assume that A and B are polaroid, then d4p is polaroid, and hence nilpotent.
Conclusion: If A, B € B(X) are polaroid operators, then d’ 5 is a Riesz operator for

some integer n > 1 if and only if dap is a nilpotent operator. The same conclusion
is valid for dAB = LARB -\
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