ELEMENTARY OPERATORS, FINITE ASCENT, RANGE CLOSURE AND COMPACTNESS

B.P. DUGGAL, S.V. DJORDJEVIĆ, AND C.S. KUBRUSLY

ABSTRACT. Given Banach space operators $A_i, B_i \in B(\mathcal{X}), 1 \leq i \leq 2$, let $\Phi_{\mathbf{AB}} \in B(B(\mathcal{X}))$ denote the elementary operator $\Phi_{\mathbf{AB}}(X) = A_1XB_1 - A_2XB_2$. Then $\Phi_{\mathbf{AB}}$ has finite ascent ≤ 1 for a number of fairly general choices of the operators A_i and B_i . This information is applied to prove some necessary and sufficient conditions for the range of $\Phi_{\mathbf{AB}}$ to be closed and in deciding conditions on the tuples (A_1, A_2) and (B_1, B_2) so that $\Phi^n_{\mathbf{AB}}(X)$ compact for some integer $n \geq 1$ and operator X implies $\Phi_{\mathbf{AB}}(X)$ compact. This generalizes some well known results of Anderson and Foiaş [4], and Yosun [25]. Also considered is the question: What is a necessary and sufficient condition (on the tuples (A_1, A_2) , (B_1, B_2) and $\Phi_{\mathbf{AB}}$) for $\Phi^n_{\mathbf{AB}}$ to be compact for some integer $n \geq 1$?

1. Introduction

For a Banach space \mathcal{X} , let $B(\mathcal{X})$ denote the algebra of operators, equivalently bounded linear transformations, on \mathcal{X} into itself. Given an operator $T \in B(\mathcal{X})$, the kernel $T^{-1}(0)$ of T is orthogonal, in the sense of G. Birkhoff, to the range $T(\mathcal{X})$ of T, in notation $T^{-1}(0) \perp T(\mathcal{X})$, if $||x|| \leq ||x+y||$ for all $x \in T^{-1}(0)$ and $y \in T(\mathcal{X})$ [8, page 25]. Clearly, $T^{-1}(0) \perp T(\mathcal{X}) \xrightarrow{\Longrightarrow} T^{-1}(0) \cap \overline{T(\mathcal{X})} = \{0\} \xrightarrow{\Longrightarrow} T^{-1}(0) \cap T(\mathcal{X}) = \{0\}$. (Here, as also in the sequel, $\overline{T(\mathcal{X})}$ denotes the closure of $T(\mathcal{X})$.) The range-kernel orthogonality of an operator is related to its ascent. The ascent of $T \in B(\mathcal{X})$, ascT(T), is the least non-negative integer T(T) such that $T^{-n}(T) = T^{-n}(T) = T^{-n}(T)$ (if no such T exists then ascT is known that ascT is known that ascT is and only if $T^{-n}(T) \cap T^{-n}(T) = T^{-n}(T)$ for all integers T in Evidently, $T^{-1}(T) \cap T^{-n}(T)$ implies ascT is a Banach space.

The range–kernel orthogonality $T^{-1}(0) \perp T(\mathcal{X})$ of Banach space operators has been studied by a number of authors over the past few decades. A classical result of Sinclair [23, Proposition 1] says that "if 0 is in the boundary of the numerical range of a $T \in B(\mathcal{X})$, then $T^{-1}(0) \perp T(\mathcal{X})$ ". Anderson [3], and Anderson and Foiaş [4], considered the generalized derivation $\delta_{AB} = L_A - R_B \in B(B(\mathcal{H}))$, $\delta_{AB}(X) = AX - XB$, to prove that if $A, B \in B(\mathcal{H})$ are normal (Hilbert space) operators, then $\delta_{AB}^{-1}(0) \perp \delta_{AB}(B(\mathcal{H}))$. These results have since been extended to a variety of elementary operators $\Phi_{AB}(X) = A_1XB_1 - A_2XB_2$ for a variety of choices of tuples of operators $\mathbf{A} = (A_1, A_2)$ and $\mathbf{B} = (B_1, B_2)$ (see [10, 11, 16, 17, 24] for further references). The range–kernel orthogonality of an operator $T \in B(\mathcal{X})$ does not imply that the range $T(\mathcal{X})$ is closed or that $\mathcal{X} = T^{-1}(0) \oplus \overline{T(\mathcal{X})}$; see [4, Example 3.1

Date: March 2, 2013.

²⁰⁰⁰ Mathematics Subject Classification. Primary 47B47, 47B20; Secondary 47A10, 47A12. Keywords. Banach space; elementary operator; orthogonality; polaroid; range closure; compactness.

and Theorem 4.1] and [23, Remark 2]. Indeed, range–kernel orthogonality neither implies nor is implied by range closure. Thus, every bounded below operator has closed range and satisfies range-kernel orthogonality, an injective compact quasi-nilpotent operator (for example, the Volterra integral operator on $L^2(0,1)$) satisfies range–kernel orthogonality but does not have closed range, and no operator T (whether it has closed range or not) with $\infty > \operatorname{asc}(T) \ge 2$ satisfies range-kernel orthogonality. The implication $T^{-1}(0) \perp T(\mathcal{X}) \Longrightarrow \operatorname{asc}(T) \le 1$ is strictly one way; if $A_i, B_i \in B(\mathcal{H}), 1 \le i \le 2$, are normal Hilbert space operators such that A_1 commutes with A_2 and B_1 commutes with B_2 , then $\operatorname{asc}(\Phi_{\mathbf{A}\mathbf{B}}) \le 1$ [13, Theorem 3.4] but $\Phi_{\mathbf{A}\mathbf{B}}^{-1}(0) \perp \Phi_{\mathbf{A}\mathbf{B}}(B(\mathcal{H}))$ if and only if $(A_1 \oplus B_1^*)^{-1}(0) \cap (A_2 \oplus B_2^*)^{-1}(0) = \{0\}$ [24, Corollary 2.3].

In the following we prove that $\operatorname{asc}(\Phi_{\mathbf{AB}}) \leq 1$ for various choices of the operators A_i and B_i , $1 \leq i \leq 2$. Thus, if $A, B \in B(\mathcal{X})$ are contractions (or, if $A, B \in B(\mathcal{X})$ are normaloid and λ is in the peripheral spectrum of $L_A R_B$), then $\operatorname{asc}(L_A R_B - 1) \leq 1$ (resp., $\operatorname{asc}(L_A R_B - \lambda) \leq 1$); if $B \in B(\mathcal{X})$ is a contraction and $A \in B(\mathcal{X})$ is left invertible by a contraction, then $\operatorname{asc}(L_A - R_B) \leq 1$; and if $A_1, B_1^* \in B(\mathcal{H})$ are w-hyponormal (Hilbert space) operators such that $A_1^{-1}(0) \subseteq A_1^{*-1}(0)$ and $B_1^{*-1}(0) \subseteq B_1^{-1}(0)$, $A_2, B_2^* \in B(\mathcal{H})$ are normal operators, A_1 commutes with A_2 and B_1 commutes with B_2 , then $\operatorname{asc}(\Phi_{\mathbf{AB}}) \leq 1$. This information is then applied to give some necessary and sufficient conditions for the range of $\Phi_{\mathbf{AB}}$ to be closed (generalizing, in the process, a result of Anderson and Foiaş [4]), and in deciding conditions on the tuples \mathbf{A} and \mathbf{B} so that $\Phi_{\mathbf{AB}}^n(X)$ compact for some integer $n \geq 1$ and operator X implies $\Phi_{\mathbf{AB}}(X)$ compact (this generalizes some results of Yusun [25]). Also considered is the question: What is a necessary and sufficient condition (on \mathbf{A} , \mathbf{B} and $\Phi_{\mathbf{AB}}$) for $\Phi_{\mathbf{AB}}^n$ to be compact for some integer $n \geq 1$?

2. FINITE ASCENT, RANGE-KERNEL ORTHOGONALITY

Throughout the following, \mathcal{X} (resp., \mathcal{H}) shall denote an infinite dimensional complex Banach space (resp., Hilbert space). For an operator $A \in B(\mathcal{X})$, $L_A \in B(B(\mathcal{X}))$ (resp., $R_A \in B(B(\mathcal{X}))$) shall denote the operator $L_A(X) = AX$ of left multiplication by A (resp., $R_A(X) = XA$ of right multiplication by A). For $A, B \in B(\mathcal{X})$, we shall denote the generalized derivation $L_A - R_B$ by δ_{AB} , the elementary operator $L_A R_B - 1$ by Δ_{AB} , and d_{AB} shall denote either of δ_{AB} and Δ_{AB} . We shall denote the spectrum (the approximate point spectrum) of T by $\sigma(T)$ (resp., $\sigma_a(T)$), and the isolated points of a subset S of $\sigma(T)$ will be denoted by iso S. The descent S of an operator S of a subset S of S of S is the smallest non-negative integer S such that S of an operator S of S is the smallest non-negative integer S such that S is the single-valued extension property at a complex point S of S

$$(T-\lambda)f(\lambda)=0$$
 for all $\lambda \in \mathcal{D}_{\lambda_0}$

is the function $f \equiv 0$. T has SVEP if it has SVEP at every complex λ . Both T and T^* have SVEP at points in the boundary $\partial \sigma(T)$ of the spectrum of T; also $\operatorname{asc}(T) < \infty$ (resp., $\operatorname{dsc}(T) < \infty$) implies T (resp., T^*) has SVEP at 0, and T^* has SVEP implies $\sigma(T) = \sigma_a(T)$ [1, 18].

For an operator $T \in B(\mathcal{H})$ with polar decomposition T = U|T|, the (first) Aluthge transform \tilde{T} of T is the operator $\tilde{T} = |T|^{\frac{1}{2}}U|T|^{\frac{1}{2}}$. We say that the operator T is w-hyponormal if

$$|(\tilde{T})^*| \le |T| \le |\tilde{T}|.$$

Every hyponormal ($|T^*|^2 \le |T|^2$) operator is w-hyponormal, and it is easily seen that w-hyponormal operators T are paranormal (i.e., $||Tx||^2 \le ||T^2x||$ for all unit vectors $x \in \mathcal{H}$); hence $\operatorname{asc}(T) \le 1$ [9].

Let $A, B \in B(\mathcal{H})$, \mathcal{H} as above a Hilbert space. We say that the pair (A, B) satisfies the PF-property, short for the "Putnam-Fuglede commutativity property", if $d_{AB}^{-1}(0) \subseteq d_{A^*B^*}^{-1}(0)$. For w-hyponormal operators $A, B^* \in B(\mathcal{H})$ with $A^{-1}(0) \subseteq A^{*-1}(0)$ and $B^{*-1}(0) \subseteq B^{-1}(0)$, d_{AB} satisfies the PF-property [9, Lemma 2.4].

Lemma 2.1. If $A, B^* \in B(\mathcal{H})$ are w-hyponormal operators with $A^{-1}(0) \subseteq A^{*-1}(0)$ and $B^{*-1}(0) \subseteq B^{-1}(0)$, then d_{AB} satisfies the PF-property.

Lemma 2.2. If $A \in B(\mathcal{H})$ is a w-hyponormal operator which commutes with a normal operator $B \in B(\mathcal{H})$, then AB is w-hyponormal.

Proof. Since AB = BA implies $AB^* = B^*A$ (by the classical Putnam-Fuglede theorem), [9, Lemma 2.3] implies AB is w-hyponormal. \square

The numerical range $W(B(\mathcal{X}), T)$ of $T \in B(\mathcal{X})$ is the set

$$W(B(\mathcal{X}), T) = \{ f(T) : f \in B(\mathcal{X})^*, ||f|| = f(I) = 1 \},$$

where $B(\mathcal{X})^*$ is the dual space of $B(\mathcal{X})$. $W(B(\mathcal{X}),T)$ is a compact subset of the set \mathbf{C} of complex numbers. If $A,B\in B(\mathcal{X})$ are contractions, then

$$W(B(B(\mathcal{X})), L_A R_B) \subseteq \{\lambda \in \mathbf{C} : |\lambda| \le 1\}, \text{ and } W(B(B(\mathcal{X})), \triangle_{AB}) \subseteq \{\lambda \in \mathbf{C} : |\lambda+1| \le 1\}.$$

This implies that $0 \in \partial W(B(B(\mathcal{X})), \triangle_{AB})$, the boundary of $W(B(B(\mathcal{X})), \triangle_{AB})$, and hence [8, Theorem 6, page 27]

$$||\triangle_{AB}(Y) + X|| \ge ||X|| - \sqrt{8||\triangle_{AB}(X)||||Y||}$$

for all $X, Y \in B(\mathcal{X})$. In particular $\triangle_{AB}^{-1}(0) \perp \triangle_{AB}(B(\mathcal{X}))$ and $\operatorname{asc}(\triangle_{AB}) \leq 1$. Consider now a contraction $A \in B(\mathcal{X})$ and an operator $B \in B(\mathcal{X})$ such that B is right invertible by a contraction $B_r \in B(\mathcal{X})$. Then

$$||\Delta_{AB_r}(YB) + X|| \ge ||X|| - \sqrt{8||\Delta_{AB_r}(X)||||YB||}$$

for all $X, Y \in B(\mathcal{X})$. Since $\triangle_{AB_r}(YB) = \delta_{AB}(Y)$, $||YB|| \le ||B||||Y||$ and $||\triangle_{AB_r}(X)|| \le ||B_r||||\delta_{AB}(X)|| \le ||\delta_{AB}(X)||$,

$$||\delta_{AB}(Y) + X|| \ge ||X|| - \sqrt{8||B||||\delta_{AB}(X)||||Y||}$$

for all $X, Y \in B(\mathcal{X})$. Similarly, if $A \in B(\mathcal{X})$ is left invertible by a contraction A_{ℓ} and $B \in B(\mathcal{X})$ is a contraction, then

$$||\delta_{AB}(Y) + X|| \ge ||X|| - \sqrt{8||A||||\delta_{AB}(X)||||Y||}$$

for $X, Y \in B(\mathcal{X})$. We have proved:

Proposition 2.3. Let $A, B \in B(\mathcal{X})$. (i) If A, B are contractions, then $\triangle_{AB}^{-1}(0) \perp \triangle_{AB}(B(\mathcal{X}))$ and (hence) $asc(\triangle_{AB}) \leq 1$.

(ii) If A is a contraction and B is right invertible by a contraction (resp., A is left invertible by a contraction and B is a contraction), then $\delta_{AB}^{-1}(0) \perp \delta_{AB}(B(\mathcal{X}))$ and (hence) $asc(\delta_{AB}) \leq 1$.

 $T \in B(\mathcal{X})$ is normaloid if ||T|| = r(T), where $r(T) = \lim_{n \to \infty} ||T^n||^{\frac{1}{n}} = \sup\{|\lambda| : \lambda \in \sigma(T)\}$ is the spectral radius of T. A more general result, than the one in Proposition 2.3, is possible for the elementary operator \triangle_{AB} in the case in which A, B are normaloid operators. Given a $T \in B(\mathcal{X})$, let

$$\sigma_{\pi}(T) = \{ \lambda \in \sigma(T) : |\lambda| = r(T) \}$$

denote the peripheral spectrum of T [15, Page 225].

Proposition 2.4. If $A, B \in B(\mathcal{X})$ are normaloid, then $(L_A R_B - \lambda)^{-1}(0) \perp (L_A R_B - \lambda)(B(\mathcal{X}))$ for all $\lambda \in \sigma_{\pi}(L_A R_B)$.

Proof. A, B being normaloid.

$$||(L_A R_B)^n|| = ||L_{A^n} R_{B^n}|| = ||A^n|| ||B^n|| = (||A||||B||)^n = ||L_A R_B||^n$$

for all integers $n \ge 1$. Hence $L_A R_B$ is normaloid, $r(L_A R_B) = r(A)r(B) = ||A|| ||B||$, and

$$\sigma_{\pi}(L_A R_B) = \{ \lambda \in \mathbf{C} : \text{there exist } \mu \in \sigma_{\pi}(A), \nu \in \sigma_{\pi}(B) \text{ such that } \lambda = \mu \nu \}.$$

If we define the contractions A_1 and B_1 by $A_1 = A/||A||$ and $B_1 = B/||B||$, then $L_{A_1}R_{B_1}$ is a contraction and

 $\sigma_{\pi}(L_{A_1}R_{B_1}) = \{\lambda \in \mathbf{C} : \text{there exist } \mu \in \sigma_{\pi}(A_1), \nu \in \sigma_{\pi}(B_1) \text{ such that } \lambda = \mu\nu, |\mu| = |\nu| = 1\}.$

Choose a $\lambda_0 = \mu_0 \nu_0 \in \sigma_{\pi}(L_{A_1} R_{B_1})$; let $A_{10} = A_1/\mu_0$ and $B_{10} = B_1/\nu_0$. Then

$$\left\| \frac{\lambda_0}{n} \sum_{i=0}^{n-1} (L_{A_{10}} R_{B_{10}})^i (L_{A_{10}} R_{B_{10}} - 1)(Z) \right\| = \left\| \frac{\lambda_0}{n} (L_{A_{10}}^n R_{B_{10}}^n - 1)(Z) \right\|$$

$$= \frac{1}{n} ||(L_{A_{10}}^n R_{B_{10}}^n - 1)(Z)|| \longrightarrow 0 \text{ as } n \longrightarrow \infty$$

for all $Z \in B(\mathcal{X})$. Set $\lambda_0 ||A||||B|| = \lambda \in \sigma_\pi(L_A R_B)$. Then $X \in B(\mathcal{X})$ satisfies $(L_{A_{10}} R_{B_{10}})(X) = 0$ if and only if $(L_A R_B)(X) = 0$. An easy calculation shows that $X \in (L_{A_{10}} R_{B_{10}} - 1)^{-1}(0)$ implies $X = \frac{1}{n} \sum_{i=0}^{n-1} (L_{A_{10}} R_{B_{10}})^i(X)$. Hence if $X \in (L_A R_B - 1)^{-1}(0)$ and Y = Z/||A||||B||, then for any $Z \in B(\mathcal{X})$,

$$\begin{aligned} & \left\| X + \frac{\lambda_0}{n} \sum_{i=0}^{n-1} (L_{A_{10}} R_{B_{10}})^i (L_{A_{10}} R_{B_{10}} - 1)(Z) \right\| \\ &= & \left\| \frac{1}{n} \sum_{i=0}^{n-1} (L_{A_{10}} R_{B_{10}})^i (X + \lambda_0 (L_{A_{10}} R_{B_{10}} - 1)(Z)) \right\| \\ &\leq & \left\| |X + \lambda_0 (L_{A_{10}} R_{B_{10}} - 1)(Z) \right\| = \left\| |X + (L_{A_1} R_{B_1} - \lambda_0)(Z) \right\| \\ &= & \left\| |X + (L_{A_1} R_{B_1} - \lambda)(Y) \right\| \end{aligned}$$

for all $Y \in B(\mathcal{X})$ and $\lambda \in \sigma_{\pi}(L_A R_B)$. \square

Remark 2.5. The argument of the proof of Proposition 2.4 seemingly does not work for the operator δ_{AB} , even for normal Hilbert space operators A,B. It is easily seen that if $A,B \in B(\mathcal{X})$ are normal, then δ_{AB} is normal, hence $\delta_{AB}^{-1}(0) \perp \delta_{AB}(B(\mathcal{X}))$ and $\operatorname{asc}(\delta_{AB}) \leq 1$. However, δ_{AB} is not normaloid [4]. Recall from [20] that for operators $A,B \in B(\mathcal{H})$, the numerical range $W(B(B(\mathcal{H})),\delta_{AB}) = W(A) - W(B)$, where $W(T) = \{(Tx,x) : x \in \mathcal{H}, ||x|| = 1\}$ denotes the closure of the usual (spatial) numerical range of the operator $T \in B(\mathcal{H})$. Hence: If $0 \in \partial(W(A) - W(B))$, then $\delta_{AB}^{-1}(0) \perp \delta_{AB}(B(\mathcal{H}))$.

The PF-property implies range-kernel orthogonality: the following proposition is well known for the case in which $d_{AB} = \delta_{AB}$. (Recall: $d_{AB} = \delta_{AB}$ or \triangle_{AB} .)

Proposition 2.6. Let $A, B \in B(\mathcal{H})$. If d_{AB} satisfies the PF-property, then $d_{AB}^{-1}(0) \perp d_{AB}(B(\mathcal{H}))$ (hence $asc(d_{AB}) \leq 1$).

Proof. If $X \in \delta_{AB}^{-1}(0) \subseteq \delta_{A^*B^*}^{-1}(0)$, then $\overline{\operatorname{ran}X}$ reduces A, $\ker^{\perp}X$ reduces B, $A_1 = A|_{\overline{\operatorname{ran}X}}$ and $B_1 = B|_{\ker^{\perp}X}$ are unitarily equivalent normal operators. Furthermore, $\delta_{A_1B_1}(X_1) = 0$, where $X_1 : \ker^{\perp}X \longrightarrow \overline{\operatorname{ran}X}$ is the quasi-affinity defined by setting $X_1x = Xx$ for all $x \in \ker^{\perp}X$. The operators A_1, B_1 being normal, $||X_1|| \le ||\delta_{A_1B_1}(Y_{11}) + X_1||$ for all $X_1 \in \delta_{A_1B_1}^{-1}(0)$ and (bounded linear) operators $Y_{11} : \ker^{\perp}X \longrightarrow \overline{\operatorname{ran}X}$ [4]. Let $A = A_1 \oplus A_2$ with respect to the decomposition $\mathcal{H} = \overline{\operatorname{ran}X} \oplus \overline{\operatorname{ran}X}^{\perp}$, $B = B_1 \oplus B_2$ with respect to the decomposition $\mathcal{H} = \ker^{\perp}X \oplus \ker X$, $X = X_1 \oplus 0$ (: $\ker^{\perp}X \oplus \ker X \longrightarrow \overline{\operatorname{ran}X} \oplus \overline{\operatorname{ran}X}^{\perp}$), and let $Y = [Y_{ij}]_{i,j=1}^2$ (: $\ker^{\perp}X \oplus \ker X \longrightarrow \overline{\operatorname{ran}X} \oplus \overline{\operatorname{ran}X}^{\perp}$) (with Y_{11} as above and some operators Y_{12}, Y_{21} and Y_{22}). A straightforward argument then shows that

$$||X|| = ||X_1|| \le ||\delta_{A_1B_1}(Y_{11}) + X_1|| \le ||\delta_{AB}(Y) + X||$$

for all $X \in \delta_{AB}^{-1}(0)$ and $Y \in B(\mathcal{H})$.

Now let $X \in \triangle_{AB}^{-1}(0) \subseteq \triangle_{A^*B^*}^{-1}(0)$. Then $\overline{\operatorname{ran} X}$ reduces A, $\ker^{\perp} X$ reduces B, and $\triangle_{A_1B_1}(X_1) = \triangle_{A_1^*B_1^*}(X_1)$, where the operators A_1, B_1 and the quasi-affinity $X_1 : \ker^{\perp} X \longrightarrow \overline{\operatorname{ran} X}$ are as defined above. Evidently, A_1 and B_1 are quasi-affinities. Since

$$B_1 X_1^* (A_1 X_1 B_1) = B_1 X_1^* X_1 \iff |X_1|^2 B_1 = B_1 |X_1|^2$$
, and $A_1 X_1 (B_1 X_1^* A_1) = A_1 X_1 X_1^* \iff A_1 |X_1^*|^2 = |X_1^*|^2 A_1$,

it follows that $A_1U_1B_1 = U_1 = A_1^*U_1B_1^*$, where the unitary operator U_1 is as in the polar decomposition $X_1 = U_1|X_1|$. Hence A_1 and B_1^{-1} are unitarily equivalent normal operators. Since $X_1 \in \Delta_{A_1B_1}^{-1}(0)$ if and only if $X_1 \in \delta_{A_1B_1^{-1}}(0)$,

$$||X_1|| \leq ||\delta_{A_1B_1^{-1}}(Y_{10}) + X_1|| = ||\triangle_{A_1B_1}(Y_{11}) - X_1)||$$

for all $Y_{10} = Y_{11}B_1$. As above, this implies $||X|| \le ||\triangle_{AB}(Y) - X)||$ for all $X, Y \in B(\mathcal{H})$. \square

Combining Lemma 2.1 and Proposition 2.4 we have:

Corollary 2.7. If $A, B^* \in B(\mathcal{H})$ are w-hyponormal operators with $A^{-1}(0) \subseteq A^{*-1}(0)$ and $B^{*-1}(0) \subseteq B^{-1}(0)$, then $asc(d_{AB}) \leq 1$.

Proposition 2.6 does not extend to operators $\Phi_{AB}(X) = \sum_{i=1}^{n} A_i X B_i$, $\mathbf{A} =$ (A_1, \dots, A_n) and $\mathbf{B} = (B_1, \dots, B_n)$ n-tuples of mutually commuting operators in $B(\mathcal{H})$, such that $\Phi_{\mathbf{AB}}(X) = 0$ implies $\Phi_{\mathbf{A}^*\mathbf{B}^*}(X) = \sum_{i=1}^n A_i^* X B_i^* = 0$. Thus, if A_i and $B_i \in B(\mathcal{H})$ are normal operators for all $1 \leq i \leq n$, and A_i commutes with A_j and B_i commutes with B_j for all $1 \leq i, j \leq n$, then $\Phi_{\mathbf{AB}}^{-(n-1)}(0) = \Phi_{\mathbf{A}^*\mathbf{B}^*}^{-(n-1)}(0)$ [21, Theorem 5]. (Here we thank the referee for pointing out (i) an error in the original statement $\Phi_{\mathbf{AB}}^{-1}(0) = \Phi_{\mathbf{A^*B^*}}^{-1}(0)$ and (ii) that [22] has a counter example showing that this equality may fail for n > 2.) If n > 2 then there is a $\Phi_{\mathbf{AB}}$ such that $asc(\Phi_{AB}) > 1$ [21]. Obviously, such an operator Φ_{AB} does not satisfy the range-kernel orthogonality property. Recall from [24, Theorem 2.4] that if n=2, $\mathbf{A} = (A_1, A_2)$ and $\mathbf{B} = (B_1, B_2)$ are commuting tuples of normal operators, then $\Phi_{\mathbf{AB}}^{-1}(0) \perp \Phi_{\mathbf{AB}}(B(\mathcal{H}))$ if and only if $(A_1 \oplus B_1)^{-1}(0) \cap (A_2 \oplus B_2)^{-1}(0) = \{0\}.$ Consequently, $\Phi_{\mathbf{AB}}^{-1}(0) \perp \Phi_{\mathbf{AB}}(B(\mathcal{H}))$ may fail even in the case in which n=2. In the following we consider commuting tuples (A_1, A_2) and (B_1, B_2) such that A_2 , B_2 are normal and A_1 , B_1^* are w-hyponormal with $A_1^{-1}(0) \subseteq A_1^{*-1}(0)$ and $B_1^{*-1}(0) \subseteq B_1^{-1}(0)$ to prove that $\operatorname{asc}(\Phi_{\mathbf{AB}}) \leq 1$. We remark here that one can prove the range-kernel orthogonality for such an operator Φ_{AB} under the additional hypothesis that $(A_1 \oplus B_1^*)^{-1}(0) \cap (A_2 \oplus B_2^*)^{-1}(0) = \{0\}$: We leave the detail to the reader, see however the proof of [11, Theorem 2.7].

Proposition 2.8. Let $A_1, B_1^* \in B(\mathcal{H})$ be two w-hyponormal operators, and let $A_2, B_2 \in B(\mathcal{H})$ be two normal operators. Define $\Phi_{\mathbf{AB}} \in B(B(\mathcal{H}))$ by $\Phi_{\mathbf{AB}}(X) = A_1XB_1 - A_2XB_2$. If A_1 commutes with A_2 , B_1 commutes with B_2 , $A_1^{-1}(0) \subseteq A_1^{*-1}(0)$ and $B_1^{*-1}(0) \subseteq B_1^{-1}(0)$, then $asc(\Phi_{\mathbf{AB}}) \leq 1$.

Proof. If we let $\mathcal{H} \oplus \mathcal{H} = \mathcal{H}_0$, $A = A_1 \oplus A_2^*$, $B = B_1 \oplus B_2^*$, $X = \begin{bmatrix} 0 & Y \\ 0 & 0 \end{bmatrix} \in B(\mathcal{H}_0)$ for a $Y \in B(\mathcal{H})$, and define $\phi_{AB} \in B(B(\mathcal{H}_0))$ by $\phi_{AB}(Z) = AZA^* - BZB^*$, then A is w-hyponormal with $A^{-1}(0) \subseteq A^{*-1}(0)$, B is normal, A and B commute and $Y \in \Phi_{\mathbf{AB}}^{-1}(0)$ if and only if $X \in \phi_{AB}^{-1}(0)$. Consequently, to prove $\operatorname{asc}(\Phi_{\mathbf{AB}}) \leq 1$ it would suffice to prove $\operatorname{asc}(\phi_{AB}) \leq 1$. To simplify notation and for convenience, in the following let $A \in B(\mathcal{H})$ be a w-hyponormal operator which satisfies $A^{-1}(0) \subseteq A^{*-1}(0)$ and which commutes with the normal operator $B \in B(\mathcal{H})$. Then either $(a) B^{-1}(0) = \{0\}$, or $(b)(i) B^{-1}(0) \neq \{0\} = A^{-1}(0)$, or $(b)(ii) B^{-1}(0) \neq \{0\}$, $A^{-1}(0) \neq \{0\}$ and $A^{-1}(0) \neq B^{-1}(0)$, or $(b)(iii) B^{-1}(0) = A^{-1}(0) \neq \{0\}$. In the following we start by proving that $\operatorname{asc}(\phi_{AB}) \leq 1$ if (a) holds, and then prove that the proof reduces to this case if any of the other three conditions holds.

Assume $B^{-1}(0) = \{0\}$. For a natural number n, let $\Gamma_n = \{\lambda \in \mathbf{C} : |\lambda| \le 1/n\}$, and let $E_B(\Gamma_n)$ denote the corresponding spectral projection. Set $I - E_B(\Gamma_n) = P_n$; then $P_n \to I$ in the strong topology. Since A, B commute implies A, B^* commute, $P_n \mathcal{H}$ reduces both A and B. Hence $A = A_{1n} \oplus A_{2n}$ and $B = B_{1n} \oplus B_{2n}$ (with respect to the decomposition $\mathcal{H} = (I - P_n)\mathcal{H} \oplus P_n\mathcal{H}$), where A_{in} are w-hyponormal with $A_{in}^{-1}(0) \subseteq A_{in}^{*-1}(0)$ (i = 1, 2), B_{1n} is normal and B_{2n} is invertible normal. For an $X \in \phi_{AB}^{-1}(0)$, let $P_n X P_n = X_n$; then $X_n \longrightarrow X$ weakly (even, strongly). If we now set $B_{2n}^{-1} A_{2n} = C_n$, then Lemma 2.2 implies that C_n is w-hyponormal with $C_n^{-1}(0) \subseteq C_n^{*-1}(0)$. Since

$$P_n \phi_{AB}(X) P_n = P_n (AXA^* - BXB^*) P_n = A_{2n} (P_n X P_n) A_{2n}^* - B_{2n} (P_n X P_n) B_{2n}^*$$

$$= A_{2n} X_n A_{2n}^* - B_{2n} X_n B_{2n}^* = B_{2n} (C_n X_n C_n^* - X_n) B_{2n}^*,$$

 $X_n \in \triangle_{C_n C_n^*}^{-1}(0)$. Hence, Lemma 2.1,

$$||X_n|| \le ||\triangle_{C_n C^*}(T_n) + X_n||$$

for all $T_n \in B(P_n \mathcal{H})$. Choosing $T_n = B_{2n} Z_n B_{2n}^*$, we have

$$||X_n|| \le ||\phi_{A_{2n}B_{2n}}(Z_n) + X_n||$$

for all $Z_n = P_n Z P_n \in B(P_n \mathcal{H})$. Trivially, $||\phi_{A_{2n}B_{2n}}(Z_n) + X_n|| \le ||\phi_{AB}(Z) + X||$. Hence, since $||X_n|| \longrightarrow ||X||$,

$$||X|| \le ||\phi_{AB}(Z) + X||$$
 for all $X \in \phi_{AB}^{-1}(0)$ and $Z \in B(\mathcal{H})$.

This implies $\operatorname{asc}(\phi_{AB}) \leq 1$ in the case in which $B^{-1}(0) = \{0\}$.

Suppose now that (b)(i) is satisfied. Decompose \mathcal{H} by $\mathcal{H} = \ker^{\perp} B \oplus \ker B$. Then $B = B_1 \oplus 0$ and $A = A_1 \oplus A_2$ (recall: A commutes with B). Letting $X \in \phi_{AB}^{-1}(0)$ have the matrix representation $X = [X_{ij}]_{i,j=1}^2$, we then have

$$\phi_{AB}(X) = \left[\begin{array}{cc} \phi_{A_1B_1}(X_{11}) & L_{A_1}R_{A_2^*}(X_{12}) \\ L_{A_2}R_{A_1^*}(X_{21}) & L_{A_2}R_{A_2^*}(X_{22}) \end{array} \right] = 0.$$
 Since A_1 and A_2 are injective, $X_{12} = X_{21} = X_{22} = 0$. Thus, $\phi_{AB}(X) = 0$ if and

only if $\phi_{A_1B_1}(X_{11}) = 0$, where B_1 is injective.

If (b)(ii) is satisfied, then we may assume without loss of generality that $B^{-1}(0) \nsubseteq$ $A^{-1}(0)$. Decompose \mathcal{H} by $\mathcal{H} = \ker^{\perp} B \oplus (\ker B \ominus \ker A_{22}) \oplus \ker A_{22}$, where $A_{22} = A_{22}$ $A|_{\text{ker}B}$. Then $B=B_1\oplus 0\oplus 0$, $A=A_1\oplus A_2\oplus 0$, B_1 and A_2 are injective, and A_1 is w-hyponormal with $A_1^{-1}(0)\subseteq A_1^{*-1}(0)$. Letting $X\in B(\mathcal{H})$ have the representation $X=[X_{ij}]_{i,j=1}^3$, we have $X\in\phi_{AB}^{n-1}(0)$ if and only if

$$\phi_{AB}^{n}(X) = \begin{bmatrix} \phi_{A_{1}B_{1}}^{n}(X_{11}) & (L_{A_{1}}R_{A_{2}^{*}})^{n}(X_{12}) & 0\\ (L_{A_{2}}R_{A_{1}^{*}})^{n}(X_{21}) & (L_{A_{2}}R_{A_{2}^{*}})^{n}(X_{22}) & 0\\ 0 & 0 & 0 \end{bmatrix} = 0.$$

Since w-hyponormal operators have ascent less than or equal to one,

$$(L_{A_1}R_{A_2^*})^n(X_{12}) = 0 \iff L_{A_1}^n X_{12} = 0 \iff L_{A_1}(X_{12}) = 0 \iff L_{A_1}R_{A_2^*}(X_{12}) = 0,$$

$$(L_{A_2}R_{A_1^*})^n(X_{21}) = 0 \iff R_{A_1^*}^n X_{21} = 0 \iff R_{A_1^*}(X_{21}) = 0 \iff L_{A_2}R_{A_1^*}(X_{21}) = 0 \text{ and }$$

$$(L_{A_2}R_{A_2^*})^n(X_{22}) = 0 \iff X_{22} = 0.$$

Hence $\operatorname{asc}(\phi_{AB}) \leq 1 \iff \operatorname{asc}(\phi_{A_1B_1}) \leq 1$, where $B_1^{-1}(0) = \{0\}$.

Finally, if (b)(iii) is satisfied, then upon letting A_2 and $B = B_1 \oplus 0$, where A_1 and B_1 are injective. Letting $X = [X_{ij}]_{i,j=1}^2$ it is then seen that $X \in \phi_{AB}^{-1}(0)$ if and only if $X_{11} \in \phi_{A_1 B_1}^{-1}(0)$. \square

3. Range Closure

An operator $T \in B(\mathcal{X})$ is polar at $\lambda \in \sigma(T)$ if $\operatorname{asc}(T - \lambda) = \operatorname{dsc}(T - \lambda) < \infty$. Clearly, if T is polar at λ , then $\lambda \in \text{iso } \sigma(T)$. We say that T is polaroid if it is polar at every $\lambda \in iso \sigma(T)$. T is left polar at $\lambda \in \sigma_a(T)$ (resp., right polar at $\lambda \in \sigma_s(T), \, \sigma_s(T) = \sigma_a(T^*)$ the surjectivity spectrum of T if $\operatorname{asc}(T - \lambda) = d < \infty$ and $(T-\lambda)^{d+1}(\mathcal{X})$ is closed (resp., $\operatorname{dsc}(T-\lambda)=d<\infty$ and $T^d(\mathcal{X})$ is closed). It can be seen that if T is left polar at $\lambda \in \sigma_a(T)$ (resp., T is right polar at $\lambda \in \sigma_s(T)$), then $\lambda \in \text{iso } \sigma_a(T)$ (resp., $\lambda \in \text{iso } \sigma_s(T)$). We say that T is left polaroid (resp., right polaroid) if it is left polar at every $\lambda \in iso \sigma_a(T)$ (resp., if it is right polar at every $\lambda \in iso \ \sigma_s(T)$). Evidently, T is polar at λ if and only if it is both left and right polar at λ . If $\mathcal{X} = \mathcal{H}$ is a Hilbert space and $T \in B(\mathcal{H})$, then T is left polar at $\lambda \in iso \ \sigma_a(T)$ (resp., right polar at $\lambda \in iso \ \sigma_s(T)$) if and only if there exist T-invariant closed subspaces M_1 and M_2 of \mathcal{H} such that $\mathcal{H} = M_1 \oplus M_2$, $(T - \lambda)|_{M_1}$ is d-nilpotent (for some integer $d \geq 1$) and $(T - \lambda)|_{M_2}$ is bounded below (resp., $(T - \lambda)|_{M_1}$ is d-nilpotent and $(T - \lambda)|_{M_2}$ is surjective) [2, Theorem 3.4]. It is easily seen that T is right polar at $\lambda \in iso \ \sigma_s(T)$ if and only if T^* is left polar at $\lambda \in iso \ \sigma_a(T^*)$. The polaroid property (resp., the left polaroid property) transfers from $A, B \in B(\mathcal{X})$ to $L_A R_B$ and $L_A - R_B$ (resp., from $A, B^* \in B(\mathcal{H})$ to $L_A R_B$ and $L_A - R_B$).

Proposition 3.1. (i) If $A, B \in B(\mathcal{X})$ are polaroid, then $L_A R_B, L_A - R_B \in B(B(\mathcal{X}))$ are polaroid.

(ii) If $A, B^* \in B(\mathcal{H})$ are left polaroid, then $L_A R_B, L_A - R_B \in B(B(\mathcal{H}))$ are left polaroid.

Proof. See [7, Lemma 4.7] and [5, Theorem 3.6] for a proof of (i), and see [6, Theorem 3.4] for the proof of the case L_AR_B of (ii). To prove the case L_A-R_B of (ii), start by observing that L_A-R_B is left polar at $\lambda \in \text{iso } \sigma_a(L_A-R_B)$ if and only if $L_{A-\lambda}-R_B$ is left polar at $0 \in \text{iso } \sigma_a(L_A-R_B-\lambda)$, and that L_A is left polar at $\lambda \in \text{iso } \sigma_a(A)$ if and only if $L_{A-\lambda}$ is left polar at $0 \in \text{iso } \sigma_a(A-\lambda)$. Hence to prove the result it would suffice to consider $0 \in \text{iso } \sigma_a(L_A-R_B)$. Let $0 \in \text{iso } \sigma_a(L_A-R_B) = \text{iso } (\sigma_a(A)-\sigma_s(B)) = (\text{iso } \sigma_a(A)-\text{iso } \sigma_s(B)) \setminus \text{acc} \sigma_a(L_A-R_B)$ (where $\text{acc} \sigma_a(\cdot)$ denotes the accumulation points of $\sigma_a(\cdot)$). Then there exist finite sequences $(\alpha) = \{\alpha_i\}_{i=1}^n \subseteq \text{iso } \sigma_a(A) \text{ and } (\beta) = \{\beta_i\}_{i=1}^n \subseteq \text{iso } \sigma_s(B) \text{ such that } \alpha_i - \beta_i = 0 \text{ for all } 1 \leq i \leq n$. The operator A and B* being left polaroid (Hilbert space) operators, there exist A-invariant (closed) subspaces M_i and B-invariant (closed) subspaces N_i , i = 1, 2, such that the following holds:

$$\mathcal{H} = M_{1} \oplus M_{2} = N_{1} \oplus N_{2}, M_{1} = \bigoplus_{i=1}^{n} M_{1i} = \bigoplus_{i=1}^{n} H_{0}(A - \alpha_{i})$$

$$= \bigoplus_{i=1}^{n} (A - \alpha_{i})^{-d_{i}}(0) \text{ and}$$

$$N_{1} = \bigoplus_{i=1}^{n} N_{1i} = \bigoplus_{i=1}^{n} H_{0}(B - \beta_{i}) = \bigoplus_{i=1}^{n} (B - \beta_{i})^{-c_{i}}(0) \text{ for some integers}$$

$$1 \leq c_{i}, d_{i}(1 \leq i \leq n),$$

$$A_{1} = A|_{M_{1}} = \bigoplus_{i=1}^{n} A|_{M_{1i}} = \bigoplus_{i=1}^{n} A_{1i}, \quad B_{1} = B|_{N_{1}} = \bigoplus_{i=1}^{n} B|_{N_{1i}} = \bigoplus_{i=1}^{n} B_{1i},$$

$$A_{2} = A|_{M_{2}} \text{ and } B_{2} = B|_{N_{2}}, \sigma_{a}(A_{1i}) = \{\alpha_{i}\} \text{ and } \sigma_{s}(B_{1i}) = \{\beta_{i}\}$$

$$\text{for all } 1 \leq i \leq n,$$

$$\sigma_{a}(A_{2}) = \sigma_{a}(A) \setminus \{\alpha_{1}, \cdots, \alpha_{n}\} \text{ and } \sigma_{s}(B_{2}) = \sigma_{s}(B) \setminus \{\beta_{1}, \cdots, \beta_{n}\}.$$

Furthermore, $L_A - R_B$ is bounded below on its closed invariant subspaces $B(N_i, M_j)$, $1 \le i, j \le 2$ with $i = j \ne 1$, and $B(N_{1t}, M_{1k})$, $1 \le t \ne k \le n$. If we let

$$\begin{split} E_1 &= \oplus_{i=1}^n B(N_{1i}, M_{1i}) \text{ and } \\ E_2 &= \oplus_{1 \leq i, j \leq 2, \ i=j \neq 1} B(N_i, M_j) \oplus \{ \oplus_{1 \leq t \neq k \leq n} B(N_{1t}, M_{1k}) \}, \end{split}$$

then $B(\mathcal{H}) = E_1 \oplus E_2$, $(L_A - R_B)|_{E_1}$ is nilpotent and $(L_A - R_B)|_{E_2}$ is bounded below. Hence $L_A - R_B$ is left polar at 0. \square

 $T \in B(\mathcal{X})$ is simply polar at $\lambda \in iso \sigma(T)$ (resp., left simply polar at $\lambda \in iso \sigma_a(T)$) if $asc(T - \lambda) = dsc(T - \lambda) = 1$ (resp., if T is left polar at λ with $asc(T - \lambda) = 1$). Evidently, T left simply polar at λ implies $T - \lambda$ has closed range;

conversely, if $\operatorname{asc}(T - \lambda) \leq 1$ and $(T - \lambda)(\mathcal{X})$ is closed, then (either $\lambda \notin \sigma_a(T)$ or) T is left simply polar at λ . Recall from [12, Corollary 3.3 and Lemma 3.1] that if T is left simply polar at λ and T^* has SVEP at λ , then $T - \lambda$ is Drazin invertible with Drazin index one (i.e., T is simply polar at λ).

Let Ψ_{AB} denote either of the operators (a) \triangle_{AB} with $A, B \in B(\mathcal{H})$ contractions, or (b) δ_{AB} with $A, B^{-1} \in B(\mathcal{H})$ contractions, or (c) $L_A R_B - \lambda$ with $A, B \in B(\mathcal{H})$ normaloid and $\lambda \in \sigma_{\pi}(L_A R_B)$.

Theorem 3.2. If $A, B^* \in B(\mathcal{H})$ are left polaroid, then the following conditions are pairwise equivalent:

```
(i) 0 \in iso \ \sigma_a(\Psi_{AB})
```

- (ii) Ψ_{AB} is left polar at 0.
- (iii) Ψ_{AB} has closed range.
- (iv) There exist finite sequences $(\alpha) = \{\alpha_i\}_{i=1}^n \subseteq \text{iso } \sigma_a(A) \text{ and } (\beta) = \{\beta_i\}_{i=1}^n \subseteq \text{iso } \sigma_s(B) \text{ such that, for all } 1 \leq i \leq n, \ \alpha_i\beta_i 1 = 0 \text{ if } \Psi_{AB} \text{ is as in } (\mathbf{a}), \ \alpha_i \beta_i = 0 \text{ if } \Psi_{AB} \text{ is as in } (\mathbf{b}), \ \text{and } \alpha_i\beta_i \lambda = 0 \text{ if } \Psi_{AB} \text{ is as in } (\mathbf{c}).$
- (v) $B(\mathcal{H}) = \Psi_{AB}^{-1}(0) \oplus \Psi_{AB}(B(\mathcal{H})).$
- (vi) $0 \in iso \ \sigma(\Psi_{AB})$.

Proof. It is straightforward to see that if an invertible operator T is left polar at a point $\lambda(\neq 0)$, then T^{-1} is left polar at λ^{-1} . Thus if, in case (b), B^* is left polaroid, then $C^* = B^{*-1}$ is left polaroid. Since $(L_A R_{B^{-1}} - 1)^{-1}(0) = (L_A - R_B)^{-1}(0)$, $(L_A R_{B^{-1}} - 1)(B(\mathcal{X})) = (L_A - R_B)(B(\mathcal{X}))$ and $0 \in \text{iso } \sigma_a(L_A - R_B) \iff 0 \in \text{iso } \sigma_a(L_A R_{B^{-1}} - 1)$ in the case in which $A, B^{-1} \in B(\mathcal{H})$ are contractions, the proof of the theorem for the case in which Ψ_{AB} is as in (b) follows from that for case (a). Observe that if Ψ_{AB} is the operator of either of the cases (a) and (b), then $asc(\Psi_{AB}) \leq 1$ and $0 \in \partial \sigma(\Psi_{AB})$; furthermore, this follows from our hypothesis that A and B^* are left polaroid, Ψ_{AB} is left simply polaroid.

The implications $(v) \Longrightarrow (vi) \Longrightarrow (i)$ are evident, and the implication $(i) \Longrightarrow (ii)$ is a straightforward consequence of the fact that Ψ_{AB} is left polaroid (hence, left polar at $0 \in \text{iso } \sigma_a(\Psi_{AB})$). Again, $(ii) \Longrightarrow (iii)$ is evident, and if (iii) is satisfied, then $(asc(\Psi_{AB}) \le 1 \text{ and } \Psi_{AB}(B(\mathcal{X}))$ is closed imply) Ψ_{AB} is left simply polar at 0 and hence $0 \in \text{iso } \sigma_a(\Psi_{AB})$. An argument similar to that used in the proof of Proposition 3.1 now gives the existence of the sequences $(\alpha) = \{\alpha_i\}_{i=1}^n \subseteq \text{iso } \sigma_a(A)$ and $(\beta) = \{\beta_i\}_{i=1}^n \subseteq \text{iso } \sigma_s(B) \text{ such that, for all } 1 \le i \le n, \alpha_i\beta_i - 1 = 0 \text{ if } \Psi_{AB} \text{ is as in } (\mathbf{a}), \text{ and } \alpha_i\beta_i - \lambda = 0 \text{ if } \Psi_{AB} \text{ is as in } (\mathbf{c}).$ The implication $(iv) \Longrightarrow (i)$ being evidently true (since iso $\sigma_a(L_AR_B) \subseteq \text{iso } \sigma_a(A) \text{iso } \sigma_s(B)$), we have $(iii) \Longrightarrow (iv) \Longrightarrow (i)$. The point $0 \in \partial \sigma(\Psi_{AB})$ implies Ψ_{AB}^* has SVEP at 0. Hence, as remarked upon above, Ψ_{AB} is polar at 0 (and then $0 \in \text{iso } \sigma(\Psi_{AB})$). Thus $(ii) \Longrightarrow (v)$, and the proof is complete. \square

Remark 3.3. (a). Given normal operators $A, B \in B(\mathcal{X})$, both δ_{AB} and δ_{AB}^* have SVEP everywhere (thus $\sigma(\delta_{AB}) = \sigma(\delta_{AB}^*) = \sigma_a(\delta_{AB})$), $\operatorname{asc}(\delta_{AB} - \lambda) \leq 1$ for all complex λ and δ_{AB} is (simply) polaroid. (Observe, however, that δ_{AB} is not normaloid [4, Example 5.6].) The argument of the proof of Theorem 3.2 gives us the following generalization of [4, Theorem 3.3]. If $A, B \in B(\mathcal{X})$ are polaroid, $\operatorname{asc}(\delta_{AB}) \leq 1$ and δ_{AB}^* has SVEP at 0, then the conditions (i) to (vi) of Theorem 3.2 are mutually equivalent with Ψ_{AB} replaced by δ_{AB} .

(b). We do not know if Proposition 3.1 (ii) extends to left polaroid operators in $B(\mathcal{X})$ (and hence whether one can replace $B(\mathcal{H})$ by $B(\mathcal{X})$ in Theorem 3.2).

It is however straightforward to see that if $A, B \in B(\mathcal{X})$ are polaroid, then the conditions (ii), (iii), (iv), (v) and (vi) of Theorem 3.2 are pairwise equivalent.

(c). If $A, B^* \in B(\mathcal{H})$ are left polaroid and $d_{AB}^{-1}(0) \subseteq d_{A^*B^*}^{-1}(0)$, then conditions (i) to (iv) of Theorem 3.2 are mutually equivalent with Ψ_{AB} replaced by d_{AB} ; if also d_{AB}^* has SVEP at 0, then all six conditions of the theorem are equivalent. Trivially, the operator $\Phi_{\mathbf{AB}}$ of Proposition 2.8 has closed range if and only if $\Phi_{\mathbf{AB}}$ is left polar at 0. We have not been able to prove a result similar to Theorem 3.2 for $\Phi_{\mathbf{AB}}$: However, as we shall see in the following, a satisfactory version of Theorem 3.2 is possible for the operators $\Phi_{\mathbf{AB}}$ if we restrict ourselves to separable Hilbert spaces \mathcal{H} and operators $\Phi_{\mathbf{AB}} \in B(\mathcal{C}_p)$, where $\mathcal{C}_p = \mathcal{C}_p(\mathcal{H})$, 1 , denotes the von Neumann–Schatten <math>p-class.

Let \mathcal{H} be a complex separable Hilbert space and let $\mathcal{C}_p = \mathcal{C}_p(\mathcal{H})$, 1 , denote the von Neumann–Schatten <math>p-class. Then \mathcal{C}_p is a reflexive Banach space with norm $||X||_p = (\sum_j s_j^p(X))^{1/p}$, where $s_j(X)$ are the singular values of $X \in \mathcal{C}_p$. The dual space of \mathcal{C}_p is the space $\mathcal{C}_{p'}$, where 1/p + 1/p' = 1.

Theorem 3.4. If $\Phi_{AB} \in B(\mathcal{C}_p)$ is the operator $\Phi_{AB}(X) = A_1XB_1 - A_2XB_2$, where A_i and B_i , i = 1, 2, are the operators of Proposition 2.8, then the following conditions are mutually equivalent:

- (i) $\Phi_{\mathbf{AB}}(\mathcal{C}_p)$ is closed.
- (ii) $\Phi_{\mathbf{AB}}$ is left simply polar at 0.
- (iii) $\Phi_{\mathbf{AB}}$ is simply polar at 0.
- (iv) $C_p = \Phi_{\mathbf{AB}}^{-1}(0) \oplus \Phi_{\mathbf{AB}}(C_p)$.

Proof. Since $\operatorname{asc}(\Phi_{\mathbf{AB}}) \leq 1$, Proposition 2.8, the implications $(iv) \Longrightarrow (i) \Longrightarrow (ii)$ and $(iii) \Longrightarrow (iv)$ are evidently true. To prove the implication $(ii) \Longrightarrow (iii)$, we prove in the following that the adjoint operator $\Phi_{\mathbf{AB}}^*$ has SVEP at 0. This would then imply (by [12, Corollary 3.3 and Lemma 3.1]) that $\Phi_{\mathbf{AB}}$ is simply polar whenever it is simply left polar at 0. Let $X \in \mathcal{C}_p$ and $Y \in \mathcal{C}_p'$. Then $\operatorname{tr}(\Phi_{\mathbf{AB}}(X)Y) = \operatorname{tr}((A_1XB_1 - A_2XB_2)Y) = \operatorname{tr}(X(B_1YA_1 - B_2YA_2))$, where $\operatorname{tr}(.)$ denotes the trace functional. Hence $\Phi_{\mathbf{AB}}^*$, the adjoint operator of the operator $\Phi_{\mathbf{AB}}$, is the operator $\Phi_{\mathbf{AB}}^* \in B(\mathcal{C}_{p'})$, $\Phi_{\mathbf{AB}}^*(Y) = B_1YA_1 - B_2YA_2$. We prove next that $\operatorname{asc}(\Phi_{\mathbf{AB}}^*) \leq 1$. For $Y \in \mathcal{C}_{p'}$ such that $\Phi_{\mathbf{AB}}^{*2}(Y) = 0$, set $\Phi_{\mathbf{AB}}^*(Y) = Z$. Then, since $0 = \operatorname{tr}(X\Phi_{\mathbf{AB}}^*(Z)) = \operatorname{tr}(\Phi_{\mathbf{AB}}(X)Z)$ for all $X \in \mathcal{C}_p$, we must have Z = 0, i.e., we must have $\operatorname{asc}(\Phi_{\mathbf{AB}}^*) \leq 1$. Consequently, $\Phi_{\mathbf{AB}}^*$ has SVEP at 0. This completes the proof. □

4. Compactness

Let $\Theta_{AB} \in B(B(\mathcal{X}))$ denote either of the elementary operators Ψ_{AB} of Theorem 3.2 (but without the left polaroid hypothesis on A and B^*) and the operator $\Phi_{\mathbf{AB}}$ of Proposition 2.8 but with $A_1, B_1^* \in B(\mathcal{H})$ hyponormal (thus the hypothesis $A_1^{-1}(0) \subseteq A_1^{*-1}(0)$ and $B_1^{*-1}(0) \subseteq B_1^{-1}(0)$ is redundant). Recall from [25, Theorem 3] that if an $A \in B(\mathcal{H})$ is left invertible by a contraction and B is a contraction, then $(\delta_{AB}^n)^{-1}(0) \cap \mathcal{K}(\mathcal{H}) = \delta_{AB}^{-1}(0) \cap \mathcal{K}(\mathcal{H})$, where $\mathcal{K}(\mathcal{H}) \subset B(\mathcal{H})$ denotes the (two sided) ideal of compact operators. This is an easy consequence of our results. Let, for convenience, Υ_{AB} denote either of the operators Θ_{AB} and the operator d_{AB} of Proposition 2.6 (recall: $d_{AB} = \delta_{AB}$ or \triangle_{AB} and $d_{AB}^{-1}(0) \subseteq d_{A^*B^*}^{-1}(0)$). Since $\operatorname{asc}(\Upsilon_{AB}) \leq 1$, $X \in \mathcal{K}(\mathcal{X}) \cap \Upsilon_{AB}^{n-1}(0)$ for some integer $n \geq 1$ if and only if

 $X \in \mathcal{K}(\mathcal{X}) \cap \Upsilon_{AB}^{-1}(0)$. The next problem that we consider is the characterization of the operators $A, B \in B(\mathcal{X})$ (or, A_i and $B_i \in B(\mathcal{H})$, $1 \leq i \leq 2$) such that the operator $\Omega_{AB}^n = (L_A - R_B)^n$ or $(L_A R_B - \lambda)^n$ or Φ_{AB}^n is compact for some integer $n \geq 1$ implies Ω_{AB} is compact? We start however with the following generalization of [25, Theorem 6] to the operator Γ_{AB} . Recall [1] that the (Fredholm) essential spectrum $\sigma_e(T)$ of $T \in B(\mathcal{X})$ is the set $\sigma_e(T) = \{\lambda \in \sigma(T) : T - \lambda \text{ is not Fredholm}\}.$

Theorem 4.1. Let $\Gamma_{AB} = \Theta_{AB}$, or δ_{AB} with $A, B \in B(\mathcal{X})$ normal. If $\Gamma_{AB}^n(X)$ is compact for some integer $n \geq 1$ and operator $X \in B(\mathcal{X})$, then $\Gamma_{AB}(X)$ is compact.

Proof. If $\Pi: B(\mathcal{X}) \longrightarrow B(\mathcal{X}) \setminus \mathcal{K}(\mathcal{X})$, denotes the Calkin map, then, given a $T \in$ $B(\mathcal{X})$, $\sigma(\Pi(T))$ is the (Fredholm) essential spectrum $\sigma_e(T)$ of T, the essential norm $||T||_e = ||\Pi(T)||$ satisfies $||T||_e \le ||T||$ and the essential spectral radius $r_e(T) =$ $r(\Pi(T)) = \sup\{|\lambda| : \lambda \in \sigma_e(T)\}\$ satisfies $r_e(T) \le r(T)$ [19, Section 19].

It is known that if A, B are normal, then δ_{AB} is normal and has finite ascent \leq 1. Since A, B normal implies $\Pi(A), \Pi(B)$ normal, $\delta_{\Pi(A)\Pi(B)}$ is normal. Hence if $\Gamma_{AB} = \delta_{AB}$ with A, B normal, then $\operatorname{asc}(\delta_{\Pi(A)\Pi(B)}) \leq 1$. If $\Gamma_{AB} = \delta_{AB}$, where $B \in B(\mathcal{X})$ is a contraction and $A \in B(\mathcal{X})$ is left invertible by a contraction, then the left inverse A_{ℓ} of A and the operator B being contractions the operators $\Pi(A_{\ell})$ and $\Pi(B)$ are contractions and it follows from the argument of the proof of Proposition 2.3 that $\operatorname{asc}(\delta_{\Pi(A)\Pi(B)}) \leq 1$. If $\Gamma_{AB} = \triangle_{AB}$, A and $B \in B(\mathcal{X})$ contractions, then $\operatorname{asc}(\Delta_{\Pi(A)\Pi(B)}) \leq 1$. Now let $\Gamma_{AB} = L_A R_B - \lambda$, where A, B are normaloid and $\lambda \in \sigma_{\pi}(L_A R_B)$. Then, since $\sigma_e(L_A R_B) = \sigma_e(A)\sigma(B) \bigcup \sigma(A)\sigma_e(B)$, either $|\lambda| > r_e(L_A R_B)$ or $|\lambda| = r_e(L_A R_B)$ (in which case $||L_A R_B|| = r(L_A R_B)$ $r_e(L_A R_B) \leq ||AB||_e \leq ||L_A R_B||$. In either case $\operatorname{asc}(L_{\Pi(A)} R_{\Pi(B)} - \lambda) \leq 1$. Finally, if $\Gamma_{AB} = \Phi_{AB}$, then the operators $\Pi(A_1)$, $\Pi(B_1^*)$ are hyponormal, the operators $\Pi(A_2)$, $\Pi(B_2)$ are normal, $\Pi(A_1)$ commutes with $\Pi(A_2)$ and $\Pi(B_1)$ commutes with $\Pi(B_2)$. Conclusion: $\operatorname{asc}(\Gamma_{\Pi(A)\Pi(B)}) \leq 1$. To conclude the proof, suppose now that $\Gamma^n_{AB}(X)$ is compact. Then $\Gamma^n_{\Pi(A)\Pi(B)}(\Pi(X))=0$ implies $\Gamma_{\Pi(A)\Pi(B)}(\Pi(X))=0,$ and this in turn implies that $\Gamma_{AB}(X)$ is compact.

A proof of the following theorem for the case in which $\Omega_{AB} = L_A - R_B$ appears in [14, Proposition 4]; our proof however is different from that in [14].

Theorem 4.2. (a) The following conditions are mutually equivalent.

- (i) d_{AB}^n is compact for some integer $n \geq 1$. (ii) $A \alpha$ and $B \beta$ are nilpotent for some scalars α , β such that $\alpha = \beta$ if $d_{AB} = \delta_{AB}$ and $\alpha = 1/\beta$ if $d_{AB} = \triangle_{AB}$.
- (iii) d_{AB} is nilpotent.
- (b) If Φ_{AB} is the operator of Proposition 2.8 but with A_1 , B_1^* hyponormal, then $\Phi_{\mathbf{AB}}^n$ is compact for some integer $n \geq 1$ if and only if one of the following conditions is satisfied.
- (i) $\Phi_{\mathbf{AB}} = 0$
- (ii) A_1 and A_2 , or B_1 and B_2 , are compact normal operators

Proof. (a) Case $d_{AB} = \delta_{AB}$. If δ_{AB}^n is compact, then $\sigma_e(\delta_{AB}^n) = \{0\}$ implies (by the spectral mapping theorem for the Fredholm essential spectrum that) $\sigma_e(\delta_{AB}) = \{0\}$ (i.e., δ_{AB} is a Riesz operator). Since $\sigma_e(\delta_{AB}) = \{\sigma_e(A) - \sigma(B)\} \bigcup \{\sigma(A) - \sigma_e(B)\}$, $\sigma(A) = \sigma_e(A) = \{\alpha\} = \sigma_e(B) = \sigma(B)$ for some scalar α and $\sigma(\delta_{AB}) = \sigma(A) - \sigma(B)$ $\sigma(B) = \{0\} = \sigma_e(\delta_{AB})$. The hypothesis $\delta_{AB}^n = \sum_{i=0}^n (-1)^{n-i} \binom{n}{i} L_{A^{n-i}} R_{B^i}$

is compact implies also that A and B are algebraic operators. (Observe that A^i (resp. B^i), $0 \le i \le n$, linearly independent implies B^i (resp., A^i) compact for all $0 \le i \le n$, and this contradicts the fact that the identity operator is not compact.) Hence A and B are polaroid: indeed, since $\sigma(A) = \sigma(B) = \{\alpha\}$, $A - \alpha$ and $B - \alpha$ are nilpotent [1, Theorem 3.83]. Hence δ_{AB} is polaroid (by Proposition 3.1), consequently nilpotent (since $\delta_{AB} = \{0\}$). This proves $(i) \Longrightarrow (ii) \Longrightarrow (iii)$. The implication $(iii) \Longrightarrow (i)$ being evident, the proof follows.

Case $d_{AB} = \triangle_{AB}$. The proof is similar, so we shall be brief. The hypothesis \triangle_{AB}^n is compact implies A, B are algebraic, $\sigma(A) = \sigma_e(A) = \{\alpha\}$, $\sigma(B) = \sigma_e(B) = \{1/\alpha\}$ and $\sigma(\triangle_{AB}) = \sigma_e(\triangle_{AB}) = \{0\}$. Thus $(A - \alpha)$ and $(B - 1/\alpha)$ are nilpotent. Consequently, \triangle_{AB} is (polar, indeed) nilpotent.

(b) The hypotheses imply (by Theorem 4.1) that $\Phi_{\mathbf{AB}}^n(X)$ is compact if and only if $\Phi_{\mathbf{AB}}(X)$ compact for all $X \in B(\mathcal{X})$; equivalently, $\Phi_{\mathbf{AB}}^n$ is compact if and only if $\Phi_{\mathbf{AB}}$ is compact. Suppose that $\Phi_{\mathbf{AB}}$ is compact. We have two possibilities: (a) B_1 and B_2 (resp., A_1 and A_2) are linearly independent; (b) B_1 and B_2 (resp., A_1 and A_2) are linearly dependent. Suppose to start with that B_1 and B_2 (similarly, A_1 and A_2) are linearly independent. Then A_1 and A_2 (resp., B_1 and B_2) are compact [14, Theorem 2]. Since a compact hyponormal operator (indeed, a compact paranormal operator) is normal, A_1 and A_2 (resp., B_1 and B_2) are compact normal operators. Thus, if (a) holds, then either A_1 and A_2 (or B_1 and B_2) are compact normal operators, or, if A_1 (resp., B_1) fails to be either normal or compact, then B_1 and B_2 (resp., A_1 and A_2) are linearly dependent. Consider next (b). If $B_2 = \alpha B_1$ for some scalar α , then B_1 and B_2 are commuting normal operators such that $\Phi_{\mathbf{AB}} = L_{(\alpha A_1 - A_2)} R_{B_1}$ is compact. Since A_1 and A_2 commute,

$$\begin{split} \sigma_e(\Phi_{\mathbf{A}\mathbf{B}}) &= \{\sigma_e(\alpha A_1 - A_2)\sigma(B_1)\} \bigcup \{\sigma(\alpha A_1 - A_2)\sigma_e(B_1)\} \\ &= \{[\alpha \sigma_e(A_1) - \sigma_e(A_2)]\sigma(B_1)\} \bigcup \{[\alpha \sigma(A_1) - \sigma(A_2)]\sigma_e(B_1)\} = \{0\}; \end{split}$$

hence either $\sigma(B_1) = \{0\}$, or, $\alpha\sigma(A_1) - \sigma(A_2) = \{0\}$. Since B_1 is normal, $\sigma(B_1) = \{0\}$ implies $B_1 = 0$ (implies $\Phi_{\mathbf{AB}} = 0$). So assume $\alpha\sigma(A_1) - \sigma(A_2) = \{0\}$. Then $\sigma(A_1) = \{\beta/\alpha\}$ and $\sigma(A_2) = \{\beta\}$ for scalar β . Normal and hyponormal (indeed, paranormal) operators are known to be simply polaroid. Hence $A_1 = (\beta/\alpha)I$ and $A_2 = \beta I$, and then $\Phi_{\mathbf{AB}} = 0$. A similar argument works for the case in which A_1 and A_2 are linearly dependent to prove that $\Phi_{\mathbf{AB}} = 0$. \square

Remark 4.3. (a). The argument of the proof of Theorem 4.2(a) extends to prove that if $d_{AB} = (L_A R_B - \lambda)^n$ is compact for some integer $n \ge 1$ and scalar λ , then the equivalences $(i) \iff (ii) \iff (iii)$ Theorem 4.2(a) hold with $\alpha\beta = \lambda$. Evidently, if $\operatorname{asc}(d_{AB}) \le 1$, then d_{AB} is compact if and only if $d_{AB} = 0$.

(b). For an operator $T \in B(\mathcal{X})$, T^n is Riesz if and only if T is Riesz [1, Theorem 3.113]. Hence the operator d^n_{AB} is Riesz if and only if d_{AB} is Riesz. Suppose that d_{AB} is Riesz. Then $\sigma_e(d_{AB}) = \{0\}$, $\sigma(A) = \sigma(B) = \{\alpha\}$ for some scalar α if $d_{AB} = \delta_{AB}$, and $\sigma(A) = \{\alpha\}$ and $\sigma(B) = \{1/\alpha\}$ for some scalar $\alpha \neq 0$ if $d_{AB} = \Delta_{AB}$. Clearly, $\sigma(d_{AB}) = \{0\}$ and $d_{AB} = Q$ is a quasinilpotent. If we now assume that A and B are polaroid, then d_{AB} is polaroid, and hence nilpotent. Conclusion: If $A, B \in B(\mathcal{X})$ are polaroid operators, then d^n_{AB} is a Riesz operator for some integer $n \geq 1$ if and only if d_{AB} is a nilpotent operator. The same conclusion is valid for $d_{AB} = L_A R_B - \lambda$.

References

- [1] P. Aiena, Fredholm and Local Spectral Theory with Applications to Multipliers, Kluwer, 2004.
- [2] P. Aiena and J. E. Sanabria, On left and right Drazin invertibility, Acta Sci. Math. (Szeged) 74 (2008), 669-687.
- [3] J. Anderson, On normal derivations, Proc. Amer. Math. Soc. 38 (1973), 136–140.
- [4] J. Anderson and C. Foiaş, Properties which normal operators share with normal derivations and related operators, *Pacific J. Math.* 61 (1975), 313-325.
- E. Boasso and M. Amouch, Generalized Browder and Weyl theorems for generalized derivations, pre-print, 2012.
- [6] E. Boasso and B. P. Duggal, Tensor product of left polaroid operators, Acta Sci. Math. (Szeged) 78 (2012), 251–264.
- [7] E. Boasso, B. P. Duggal and I. H. Jeon, Generalized Browder's and Weyl, theorems for left and right multiplication operators, J. Math. Anal. Appl. 370 (2010), 461–471.
- [8] F. F. Bonsal and J. Duncan, Numerical Ranges II, Cambridge Univ. Press, London, 1973.
- [9] M. Chō, S. V. Djordjević, B. P. Duggal and T. Yamazaki, On an elementary operator with w-hyponormal operator entries, *Lin. Algebra Appl.* 433 (2010), 2070–2079.
- [10] B. P. Duggal and R. E. Harte, Range-kernel orthogonality and range closure of an elementary operator, Monatsh. Math. 143 (2004), 179–187.
- [11] B. P. Duggal, Subspace gaps and range-kernel orthogonality of an elementary operator, Lin. Alg. Appl. 383 (2004), 93–106.
- [12] B. P. Duggal, Polaroid operators and generalized Browder-Weyl theorems, Math. Proc. R. Ir. Acad. 108A (2008), 149–163.
- [13] B. P. Duggal, The closure of the range of an elementary operator, Lin. Alg. Appl. 392 (2004), 305–319.
- [14] C. K. Fong and A. R. Sourour, On the operator identity $\sum A_r X B_r = 0$, Canadian J. Math. **XXXI** (1979), 845–857.
- [15] H. G. Heuser, Functional Analysis, John Wiley and Sons, 1982.
- [16] D. Kečkić, Orthogonality of the range and the kernel of some elementary operators, Proc. Amer. Math. Soc. 128 (2000), 3369–3377.
- [17] F. Kittaneh, Operators that are orthogonal to the range of a derivation, J. Math. Anal. Appl. 203 (1996), 868–873.
- [18] K.B. Laursen and M.M. Neumann, Introduction to Local Spectral Theory, Clarendon Press, Oxford, 2000.
- [19] V. Müller, Spectral Theory of Linear Operators, Operator Theory Advances and Applications, Volume 139, Birkhäuser Verlag, 2003.
- [20] A. Seddik, The numerical range of an elementary operator, Integr. Equat. Oper. Th. 43 (2002), 248–252.
- [21] V. S. Shulman, On linear equations with normal coefficients, Sovt. Math. Dokl. 27 (1983), 726–729.
- [22] V. S. Shulman, Multiplication operators and spectral synthesis, Sovt. Math. Dokl. 42 (1990), 1047–1051. (original Russian in Dokl. Akad. Nauk SSSR 313(5) (1990), 1047–1051.)
- [23] A. M. Sinclair, Eigenvalues in the boundary of the numerical range, Pacific J. Math. 35 (1970), 231–234.
- [24] A. Turnšek, Generalized Anderson's inequality, J. Math. Anal. Appl. 263 (2001), 121–134.
- [25] Tong Yosun, Kernels of generalized derivations, Acta Sci. Math. (Szeged) 54 (1990), 159–169.

8 REDWOOD GROVE, NORTHFIELD AVENUE, LONDON W5 4SZ, ENGLAND, U.K *E-mail address*: bpduggal@yahoo.co.uk

BENEMERITA UNIVERSIDAD AUTONOMA DE PUEBLA, PUEBLA, PUE. 72570, MEXICO E-mail address: slavdi@fcfm.buap.mx

Catholic University of Rio de Janeiro, 22453-900, Rio de Janeiro, RJ, Brazil $E\text{-}mail\ address$: carlos@ele.puc-rio.br