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DUAL-SHIFT DECOMPOSITION AND WAVELETS

N. LEVAN AND C.S. KUBRUSLY

ABSTRACT. We introduce the notion of dual-shift decomposition of an arbi-
trary Hilbert space, which is given in terms of two unilateral shifts. After
ensuring conditions for the existence of it, such a decomposition is then con-
structed for the concrete space EQ[O, 1], on which the two unilateral shifts are
parts of the dilation-by-2 and the translation-by-1 on £2(R). Using multireso-
lution analysis of wavelet theory it is shown the existence of a Haar-system-type
orthonormal basis for £2[0, 1], which is combined with the dual-shift decom-
position to yield a refined decomposition for £2[0,1].

1. INTRODUCTION

Throughout this paper H will stand for an arbitrary Hilbert space. By an opera-
tor on H we mean a bounded linear transformation of H into itself (i.e., a continuous
linear transformation of H into itself). If A: H — H is an operator on H, then let
ker(A) denote the kernel of A (i.e., ker(A) = A~'({0}) = {z € H: Az = 0}), which
is a subspace (i.e., a closed linear manifold) of H, and let ran(A) denote the range
of A (i.e., ran(A) = A(H)), which is a linear manifold of H. An isometry is an
operator A such that A*A = I, where A* denotes the adjoint of A, and I stands
for the identity operator. Let S and V be unilateral shifts on H. Recall that H
admits a wandering subspace decomposition in terms of any unilateral shift, say,
H =P, S ker(S*) = @y V¥ ker(V*) — the symbol & stands for orthogonal
direct sum. Is it possible to decompose H into a similar orthogonal decomposition,
involving both S and V simultaneously? In other words, when is it true that

o0 o0
H =P 5" ker(S*) & @ VFker(V*) ?

k=1 k=1
If such a decomposition exists, then we refer to it as a dual-shift decomposition of
the Hilbert space H. It is worth noticing that we can always get a decomposition
similar to the above one, viz., H = @, S* ker(S*) &, V* ker(V*), if we allow
the shifts S and V to act on different Hilbert spaces, say, H1 and Ho, and consider
their orthogonal direct sum H = H; @ Hs. In fact, since H = M & M=+ for any
subspace M of H, where M+ = H © M denotes the orthogonal complement of
M in ‘H, and since M and M are Hilbert spaces, it is enough to consider their
wandering subspace decompositions in terms of a unilateral shift S on M, and of
a unilateral shift V' on M=*. However, our dual-shift decomposition requires that S
and V are unilateral shifts acting on the same Hilbert space H.

First we establish a sufficient condition for the existence of a dual-shift decom-
position for an arbitrary Hilbert space H in Theorem 1. Then we construct in
Theorem 2 such a decomposition for the especial case where H is the function
space £2[0, 1], with respect to two unilateral shifts, denoted by S and V, which
are parts of to the dilation-by-2 and the translation-by-1 bilateral shifts D and T
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on L2(R). Let v be an orthonormal wavelet in £2[0, 1], which comes from a scal-
ing function ¢ € £2[0,1]. We investigate when the orthonormal wavelet functions
Ym.n = D™T™P lie in £2[0, 1] and, with the scaling function ¢, form an orthonormal
basis for £2[0,1]. This is shown by means of the multiresolution analysis (MRA)
associated with ¢ and 1. An example of the above is the Haar system in £2[0, 1].
This system is obtained from the Haar wavelet 15 in £2(R),

1, 0<t<s,
Yut) =< —1, 1 <t<l,
0, t € R\(0,1],

restricted to [0,1], 1mX[o,1], and the associated Haar scaling function ¢ = x[0,1]
where x[o,1] is the characteristic function of the set [0, 1]. We derive from the Haar
system on £2[0,1] similar systems for the subspaces £2[0,1] and £?[$,1]. These
Haar systems will finally be combined with the dual-shift decomposition to yield a
refined decomposition for the function space £2[0, 1] in Theorem 3.

2. DUAL-SHIFT DECOMPOSITION OF H

We begin by supplying an auxiliary result for a pair of isometries on H, which
will be required for establishing the dual-shift decomposition of Theorem 1.

Lemma 1. Let S and V be isometries on a Hilbert space H. The following asser-
tions are pairwise equivalent.

(a) ran(S) = ker(V*).
(b) ran(V) = ker(S*).
(c) SS*+VV*=1.

Proof. The equivalence between (a) and (b) follows at once since ker(A) = ran(A*)+
for every operator A on H, and for every linear manifold M of H (recall that
(M™)+ = M+, where M~ denotes the closure of M, and M*+ = M), and
since isometries have a closed range (see e.g., [16, Problem 4.41 and Proposition
5.76]). Suppose any of the equivalent assertions (a) or (b) holds true and take
an arbitrary z = u+v in H = ran(S) +ran(S)t = ker(V*) +ran(V) so that
u € ran(S) = ker(V*) and v € ran(V') = ker(5*). Thus

(SS* +VV e =855"u+ SS* v+ VV*u4+VV*i =85Sy + VV*Vz = Sy+ Vz,

for some y and z in ‘H such that uw = Sy and v = Vz. Therefore (SS* + VV*)x =
u + v = x; that is, assertion (c) holds true. Conversely, suppose (c) holds true. If
u € ran(S) so that v = Sy for some y € H, then SS*u = SS*Sy = Sy = u, and
hence u = SS*u + VV*u = v + VV*u, so that u € ker(VV*) = ker(V*); that is,
ran(S) C ker(V*). On the other hand, if v € ker(V*), then v = (SS* + VV*)V =
SS5*v € ran(S) and so ker(V*) C ran(S). Hence (c) implies (a). O

Remark 1. It is worth noticing that condition (c) in Lemma 1 is the very Cuntz
condition [7], [4, p.53] for the C* algebra Oy generated by a couple of isometries
on an infinite-dimensional Hilbert space [5] (which is a especial case of partition of
the identity). Along these lines, also see, e.g., [1, 2, 6, 9, 10, 14].
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Theorem 1. If S and V are unilateral shifts on a Hilbert space H such that
SS*+VV* =1, then H admits the dual-shift decomposition

H = @Skker (S™) @V’“ker

k=1

Proof. Recall that a unilateral shift S on a Hilbert space H is an isometry for which
‘H admits the orthogonal decomposition [25, 15]

H =P S ker(5¥),
k=0
where the subspace ker(S*) is called the generating wandering subspace of S, and
its dimension is the multiplicity of S. Then

ran(S) = @Ss’f ker(S™) @SkSker(s*)
k=0 k=0

Since the range of any isometry is closed, ran(.S) is a subspace of H, which is clearly
S-invariant. Therefore, the restriction of S to its range, Sl;an(s): ran(S) — ran(S),
is also a unilateral shift [15, Proposition 6.2] whose wandering subspace is S ker(S*).
Thus, if SS* + VV* = I, then it follows from Lemma 1 (since the above expression
holds for every unilateral shift, and by uniqueness of the orthogonal decomposition)
that this second unilateral shift V together with .S are such that the space H admits
the orthogonal decomposition

H = ran(S) @ ran(S)* = ran(S) @ ker(S*) = ran(S) @ ran(V)
= P Fker(S*) & P V¥ ker(V
k=1 k=1
(cf. [16, Theorem 5.25 and Proposition 5.76]). |

3. DUAL-SHIFT DECOMPOSITION OF £2[0, 1]
The dilation-by-2 operator D on £2(R) is defined by
g=Df with g(t)=v2f(2t),
and its adjoint D* by
g=D"f with g(t) = f(5)
The translation-by-1 operator T on £2(R) is defined by
g=Tf with g(t)=f(t-1),
and its adjoint 7™ by
g=T"f with g(t)=f(t+1).

Both definitions hold for almost all ¢ in R with respect to Lebesgue measure. It
is well known that D: £L2(R) — £2(R) and T': L2(R) — L2(R) are bilateral shifts
(thus unitary operators).

We now construct in Theorem 2 a dual-shift decomposition for the function space
£2]0,1], viewed as a subspace of the function space £2(R). Such a construction
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involves two unilateral shifts on £2[0, 1] obtained from the bilateral shifts D and T
on L2(R). To see how D behaves on £2[0,1], observe that

1
/|f(t)|2dt:/ IV2f(2t)2dt  for every f € £2[0,1].
0 0

Indeed, the restriction of an isometry is again an isometry, and this shows that,
when D: £L%(R) — £2(R) is restricted to £2[0, 1], it acts as an isometry into £2[0, 3].
The subspace £2[0,1] of £2(R) is D-invariant (since D(fxo,17) € £2[0, 3] € £2[0,1])
for every f € L?(R), and since every f € L*[a, (] is identified with fx(a,g for some
f € L%(R)). So we may identify £2[0, 1] with {f € £2[0,1]: f(t) =0 a.e. on [$,1]}.
Thus the part of D on £2[0,1] (i.e., the restriction D|z2j01] of D to the invariant
subspace £2[0,1]) is an isometry whose range is £2[0, 3]. Set

S = Dlgzpo1: £2[0,1] — £2[0,1]; an isometry with ran(S) = £[0, 1].

It is worth recalling that £?(«, ) = L?(a, 8] = L?|a, B) = L?|a, 3], since equality
in these spaces is interpreted in terms of classes of equivalence (i.e., a.e. with respect
to Lebesgue measure).

Proposition 1. The opemtor S: £2[0,1] — £2]0,1] is a unilateral shift on £2]0,1],
with wandering subspace L2[1,1]. Thus £2[0,1] admits the decomposition

£%0,1] EBS’“EZ 3.1]

Proof. 1t is readily verified that this part S of the bilateral shift D is a unilateral
shift [15, Lemma 2.14]. Moreover, ker(S*) = ran(S)* = £2[0, 3]+ = £%[3,1]. O

Corollary 1. Set " = S|p2(0,1) = D|2(0,1)- This is a unilateral shift on £210, 5]

with wandering subspace CQ[% %] Moreover, ker(S*) = £2[1,1], and
220, 51 = P *L2[5, 11 = P 5" L[, 3]
k=1 k=0

Proof. That S" = Dl2(g 1) is a unilateral shift on £2[0, 3] follows by the same
argument in the proof of Proposition 1. Now observe from Proposition 1 that

£2[0, 1] = 5(£*[0,1)) @S’““EQ% @Skg? 11
Since S(L£2[%,1]) = L3[4, 1], it follows that

@Sk+1£2 1 1 @Sk £2 % :@Sk£2[i7%],
k=0
which Completes the proof. O

Next we construct a second unilateral shift which, together with .S, will yield a
dual-shift decomposition for £2[0, 1]. Recall that

DT?=TD

or, equivalently, since T is unitary,
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DT =TDT*

which means that DT is unitarily equivalent to the bilateral shift D of infinite
multiplicity through the unitary operator T' (cf. [8, 17]), and therefore DT is also
a bilateral shift on £2(R) of infinite multiplicity (see e.g., [15, Proposition 2.10]).
Again, to see how DT behaves on £2]0, 1], observe that

1 1
[ iswra= [ Ware- e
0 3

This shows that DT (which is an isometry on £2(R), since composition of isome-
tries is again an isometry) acts as an isometry of £2[0,1] into £2[%,1] (i.e., when
restricted to £2[0,1], DT': £2(R) — L%(R) acts as an isometry into £?[1,1]). Us-
ing the same argument put forward in the case of the bilateral shift D, the subspace
£2]0,1] of L2(R) is (D T)-invariant as well. Also, as in the case of the unilateral
shift S = D|z2[0,1], we identify £2[%,1] with {f € £2[0,1]: f(t) =0 a.e. on [0, 1]}.

]
Thus the part of DT on £2[0,1] (i.e., the restriction (DT)|z2p0,1) of DT to the
invariant subspace £2[0,1]) is an isometry whose range is £2[3, 1]. Set

V =(DT)|z20,1: £2[0,1] — £%[0,1]; an isometry with ran(V) = ,CZ[%, 1].

Proposition 2. The operator V: £2[0,1] — L£2[0,1] is a unilateral shift on £2[0,1],
with wandering subspace £2[0, 3]. Thus £2[0,1] admits the decomposition

£’0,1] = P vhero, 4.
k=0
Proof. The same argument in the proof of Proposition 1 applies to this case. O

Corollary 2. Set V' = V| oq1 3y = (DT)|2(3,1)- This is a unilateral shift on
L£%[%,1] with wandering subspace L[5, 3]. Moreover, ker(V*) = £2[0, 3], and

£25.1) = PV 51 =Py gl
k=1 k=0
Proof. This follows by Proposition 2 as Corollary 1 follows by Proposition 1. O

Theorem 2. The space L£L2[0,1] admits the following dual-shift decomposition with
respect to the unilateral shifts S and V.

S*e2L 1o @ Ve, 4

P

£2[07 1] = EQ[Oa %] @‘62[%7 1] =

k=1 k=1
= D s sl e P VL 4.
k=0 k=0

Proof. Since ran(V) = £2[1,1] with ker(V*) = ran(V)* = £2[0, 3] and ran(S) =
£2]0, ] with ker(S*) = ran(S)*+ = £2[$,1], it follows that ran(V') = ker(5*), and
so SS5* +VV* =1 by Lemma 1. Thus Theorem 2 is a consequence of Theorem 1
together with Corollaries 1 and 2. O
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Corollary 3. The space £2[0,1] admits the following orthogonal decomposition
oo [oe]
£200,1] = ) L2l 7] & @D £211 — g1 — ]
k=0 k=0

Proof. S*C7[4 4] = Lk, ] and VEL[ 3] = L1 - 1= ] O

4. APPLICATION TO WAVELETS

The dual-shift decomposition will be applied in Theorem 3 to yield a refined
decomposition of £2[0,1] in terms of a Haar system. To begin with, we consider
the following classical setup for an arbitrary Hilbert space H, which will be required
in the sequel. Let Z denote the set of all integers. Recall that a bilateral shift U
on H is a unitary operator for which there exists a generating wandering subspace
W (which is not unique) such that, for every pair of distinct integers m,n € 7Z,

umw LU™W,

and, since it is generating, H admits the orthogonal decomposition [25, 15, 17]
H= P vrw.

An alternate definition of bilateral shifts is given below (see e.g., [3, 17]). This is

actually the Lax—Phillips [18] definition of outgoing and incoming subspaces for a

unitary operator U.

Definition 1. A bilateral shift U: H — H is a unitary operator for which there is
subspace V of H (called outgoing subspace) satisfying the following conditions.

(i) Uy cv,
(i) ez U™V = {0},
(i) (UpezU™V) " = 1.
Equivalently, a bilateral shift can also be defined in terms of its adjoint U* = U~}

as follows. A bilateral shift U: H — H is a unitary operator for which there is
subspace V' of H (called incoming subspace) satisfying the following conditions.

(i) v cuy,
(i) ez UV = {0},
(ili") (UpezU™V') =H.

Proposition 3. If V is an outgoing subspace of a unitary operator U, then V =
D U™W, and H=6D,,__ . U™W, where W=V & UV is a generating wan-
dering subspace for U. Hence, U is a bilateral shift operator on H. Moreover, V is
a nonreducing invariant subspace of U. Conwversely, if a subspace M of H is in-

variant but nonreducing for a bilateral shift U, then there is a wandering subspace

W for U so that M =@, _,U™W.
Proof. [13, 18]. O
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Corollary 4. LetV (V') be a subspace of H and set V,, = U™V (V! = U*"V’)

for every m € Z, where U is a unitary operator on H. Then,
(i) V41 CVie  (V5, CVI.4q)  for every m € Z,
(i) Nmez Vm = {0} (Minez Vin = {0}),
(iii) (Umez Ume)_ =N ((Umez umy lm)_ = 'H),
if and only if V is an outgoing (V' is an incoming) subspace for U.

Proof. Straightforward by Definition 1 and Proposition 3. O

Now, for the concrete case of H = £L?(R), consider the MRA definition [24].

Definition 2. A function ¢ € £L2(R) and a family {V,,(¢)}mez of subspaces of
L2%(R) are called a scaling function and a multiresolution analysis — MRA (respec-
tively, and with respect to each other) if the following conditions hold true.

(i) {#(- —n)}nez is an orthonormal basis of the subspace Vo(¢),
(i) Vim(®) C Vimsi1(d)  (or, Vimy1(9) C Vim(¢)) for every m € Z,
(i) (Vpez Vm(9) = {0},

(iv) (UmezVm(9)) = L2(R),

(V) vEVm(d) & v(2) €Vni1(9) (or vEVn(9) & v(5 ") € Vims1(9))
for every m € Z.

Definition 2(v) is related to the bilateral shift D (i.e., to the dilation-by-2 op-
erator) by the expression Vy,41(¢) = D* Vi (9) (or Vin(¢) = D Viq1(¢)) for every
m € Z [19], while Definition 2(i) is native only to MRA, and has nothing to do with
the fact that D is a bilateral shift (for a detailed discussion along this line, and also
for generalizations, see e.g., [20, 21, 22, 23]).

Corollary 5. A MRA is a sequence of decreasingly-nested subspaces {Vi(d)}mez
of L2(R) (i.e., Vi (®) C Vins1(¢)) generated from an incoming subspace Vo(¢) for
the bilateral shift D by V() = D*™Vo(¢) for every m € Z, where Vo(¢) is, in
turn, generated by a scaling function ¢ € L2(R) (i.e., Vo(¢) = span{o(- — n)tnez)-

Proof. Straightforward from Corollary 4 and Definition 2. O

Consider again the dilation-by-2 and the translation-by-1 operators D and T on
L2(R), and recall the following of definition of an orthonormal wavelet in £(R).

Definition 3. An element ¢ of £2(R) is an orthonormal wavelet if
lv|=1 and (- —m) L (- —n) for every m,n € Z such that m #n
(i.e., ¥(- —m) is orthogonal to ¥ (- — n) for every m # n in Z), and the subspace
W(y) = span{y(- —m)}mez

is a generating wandering subspace of the unitary operator D.

It follows at once from this definition that, corresponding to an orthonormal
wavelet 1, the space £?(R) admits the orthogonal decomposition
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LR = @ DWW

For every m,n € Z, set

The set {¥m.n}mnez is a double indexed orthonormal basis for £2(R), referred
to as a wavelet orthonormal basis for £?(R), and each ), is called a wavelet
(orthonormal) function generated from the wavelet ¢. Let {Vi,(4) }mez be a MRA
with scaling function ¢ such that (cf. Definition 2)

Vm<¢) C Vm+1 (¢)

Let Wi, = Vint1(¢) © V() be the orthogonal complement in V,,11(¢) of Vp,(¢),
so that, for every m € Z,

Vm+1(¢) = Vm(¢) S Wi
It can be verified [24] that there exists a wavelet 1 such that, for every m € Z,
Win(¥) = Wi = D" Wo = Wo(¥),
with
Wo(¥) =Wo = W(¥) =span{v (- — m)}mez,
so that Wy(v)) is a generating wandering subspace of the bilateral shift D. Thus

o0

L2R)= P D" Wo(¥) =Vo(d) & @D Wn(¥).

m=—0o0

Lemma 2. If an orthonormal wavelet ¢ lies in £2[0, 1], then the wavelet functions
Ymn—1 = D™T" 1 lie in £2[0,1] if and only if m >0 and 1 <n < 2™

Proof. Consider the above setup. If an orthonormal wavelet ¢ in £2(R) lies in
£2]0,1] (considered as a subspace of £2(RR)), then it is plain that

YeL0,1]] = T el?n—1,n] forevery n>1.
This, in turn, implies that

Ymn1=DmT" 1) € 52["2:}, 5] forevery m>0,n>1

Therefore, 1y, »—1 lies in £2[0,1] if and only if m >0 and 1 <n < 2™ O

The orthonormal set {t,nn—1} m>0,1<n<2= of Lemma 2 is not a basis for £2[0, 1]

it does not span £2[0, 1]. This is shown in the next lemma. Let ¢ € £2[0,1] be a
scaling function which results in an orthonormal wavelet 1 € £2[0,1]. Let Z,, (1)
be the finite-dimensional subspace of £2[0,1] defined, for each m > 0, by

Z (V) = span{¥m n—1}1<n<om = span{ D" T" 'Y} <pcom.

Lemma 3. The set {¢, D™T" 1} m>0,1<n<2m 5 an orthonormal basis for the
Hilbert space £2]0,1], so that

£210,1] = span{o} & € Zm(¥),
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Proof. Let {V,,(¢)}mez be the MRA with scaling function ¢ which results in the
wavelet 1. Recall that

LA(R) = Vo(¢) © D Wi ().
m=0

Let P: £2(R) — L£?(R) be the orthogonal projection onto the subspace £2[0, 1] (i.e.,
ran(P) = £2[0,1]), so that

£2[0,1] = P(L%(R)) = P0Vo(6)) & @D PWm ().

Recall that Vo(¢) = span{¢(- — n)}nez, ¢(- —n) € £2[0,1] if and only if n = 0, and
Zm € L20,1] for every m > 0. Therefore, P(Vo(¢p)) = P(span{¢(- —n)}nez) =

span{d)}, and P(Wm(w)) = P(Spﬁ{w - m)}mel) = Span{¢m,n71}1gng2m =
Zm(¥), according to Lemma 2. d

Lemma 3 gives a simple proof of the interesting fact that the orthogonal comple-
ment in £2]0, 1] of the set of orthonormal wavelet functions v, ,_1, generated from
an orthonormal wavelet 1/ in £2[0,1] is the subspace spanned by the associated
scaling function ¢ — also in £2[0,1]. An example of this is the Haar system.

The most well-known, and the very first, orthonormal wavelet in £2(R) is the
Haar wavelet 1 [24], defined by

1, 0<t<s,
Yu(t) =4 -1, t<t<,
0, t € R\(0,1].

Let xjo1] € £2(R) denote the characteristic function of the closed interval [0, 1].
For every f in £L*(R) we shall identify the product fxp1 € £*(R) with the re-
striction fljo1] € £2[0,1] of f to [0,1], and write fx[o,1) € £2[0,1]. For the par-
ticular case of the Haar wavelet ¢y, we shall write ¥z for ¥l = YrXo,
(a suggestive abuse of notation). Recall that the Haar system [11, 12] is the set
{h1, hamin}tm>0,1<n<2m of functions in £2[0,1] defined a.e. in [0,1] (i.e., for al-
most all ¢ € [0, 1] with respect to Lebesgue measure) by

h1 = X[0,1),

and, for every m > 0 and 1 <n < 2™,
hom n(t) = V2 (h1 (271 — 20 4 2) — by (271 — 20+ 1)).

The Haar system {hi, homin}tm>0,1<n<2m is & (Schauder) basis for the Banach
spaces LP[0,1] for every p > 1. In particular, it is an orthonormal basis for the
Hilbert space £2[0,1]. (It was shown in [1] that the Haar system is also eigenbasis
of the Time Operator of Statistical Physics).

Lemma 4. The Haar system {h1, hom pn}m>0,1<n<2m in L£2[0,1] is the orthonor-
mal basis for L£2[0,1] consisting of the constant function X[o,1] and the Haar wavelet
orthonormal functions ¢g7n_1 = DT Yy for m >0 and 1 <n < 2™ so that
wgl 1s the Haar wavelet Y.
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Proof. The functions hgm, can be rewritten in terms of the operators D and T as
follows. First recall that D T? = T'D, which means that D T?™ = T™D for every

m € Z [17] or, equivalently, D T?"~2 = T"~1D for every n € Z. Therefore,

hom yn, = %((Dm+1T2n72 hy) — (DerlTanl hl))

= (DT YD = DT)) X0

for every m > 0 and 1 < n < 2™ Thus, for m = 0, and so n = 1, it follows that ho

is precisely the Haar wavelet on [0, 1]:
<t
<t

IN

ha(t) = Z5(D = DT)x(o.)(t) = ¥ (t) =

= O

1
PR
~1, 1

IN

Therefore, we can infer that hom,, can be written in terms of ¥y as

homn = D™T" Yy for every m >0 and 1 <n < 2™,

Thus, by Lemma 2, {h1, hom {n}m>0, 1<n<om consists of xjo.1) (Which is the con-
stant function 1 on [0,1]) and D™T" Yy for m >0 and 1 < n < 2™ Now, the
Haar scaling function ¢y associated with the Haar wavelet ¢y is the characteristic

function xo 1) [24]. Hence, by Lemma 3, the Haar system
{¢H = X[0,1] » 1#5,7%1 = DmT"_1¢H}mzo,1§n§2m
is an orthonormal basis for £2[0, 1].
Corollary 6. Set ;z;f,{m_l = D™T" Yy for every m >0 and 1 <n < 2™,
(a) The Haar system for L2[0, 1] is the set of orthonormal functions

H
{X[o,%] ’ wm,n—lx[oé]}mzl ,1<n<2m-1"

(b) The Haar system for L£%[3,1] is the set of orthonormal functions

H
{X[é,l] ) d’mm—lxléﬂ]}ma,2m—1+1gn§2m'

Proof. A consequence of Lemmas 3 and 4, since £2[0,1] = £2[0, 3] & £?[3,1].

Returning to the dual-shift decomposition of £2[0, 1] in Theorem 2.

Theorem 3. Every f € L£2[0,1] admits the orthogonal expansion

gm— 1

k, ) H
Z akﬂn’nS wm,nflx%,l]
n=1

hE

o0
[ = Zak,o,o Skx[%,u +
k=1

Il
—

m

]2 HNgE:

gm
§ k, H

6’9’”%”‘/ wm,n71X[O,%]'
1 p=2m-141

]2

+ ) Broo VX1 +
k=1

=
Il

1

3
[

Proof. By Theorem 2, each f € £2[0, 1] admits the orthogonal expansion

o0 o0

[= Zskgk + kahkv
k k=1

=1

|
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where g € £2[%,1] and hi € £2[0,1] for every k > 1, with Y77 [|gx/|* < oo and
> re IIhk|[? < co. The Fourier series expansion of the functions gi and hy, in terms
of the orthonormal bases for EQ[%, 1] and for £2[0, %] comprising the Haar systems
given in Corollary 6 (which come from Lemmas 2, 3, and 4) leads to

00 2171—1

9k = Qk,0,0X[3,1] T Z Z Qk,m,n ¢g,n—1X[%,1]>

m=1 n=1

S 2m
hi = Br,0,0 X[0,4] + Z Z Brmn Vrnn—1X[0,3]-

m=1 n:21n—1+1

Thus we get the claimed orthogonal expansion for f, since each S* and each V* is
a continuous linear transformation. O

Remark 2. Observe that Lemma 1 and Theorem 1 deal with an abstract Hilbert
space. However our construction starting with Proposition 1 throughout the paper
deals with the concrete functions space £2[0, 1]. It is plain that the closed domain
[0, 1] can be replaced with any compact subset of R; in particular, with any compact
set with no isolated points (i.e., with any perfect bounded set — for instance, any
finite intersection of closed nondegenerate bounded intervals). It does not matter
whether the argument of the functions are interpreted as “time”, or “frequency”,
or “space”. Along these lines, consider the Shannon wavelet ¥g € £2(R) defined as
1

the characteristic function of the set [—1, —3] U [4, 3] C R (see, e.g., [14]),

Ys(w) = X3 ,-41013.41 (@)
for every w € R. As before, we may identify the 1/g € £2(R) with the restriction of it
to[—3,—3]U[L, 1], so that ¢s: [-3,—1]U[1, 4] = Rin £2[-1, -] U [4,1]. This
will lead to a similar example, where the previous Haar wavelet 1z is replaced with
the Shannon wavelet g, yielding similar results (on a different domain) regarding
our concrete construction of Section 4; in particular, for the especial examples

considered from Lemma 4 to Theorem 3.

5. CONCLUSION

We have introduced the concept of a dual-shift decomposition of a Hilbert space.
In particular, we have constructed such a decomposition for the function space
£2[0,1] by using the two bilateral shifts of wavelet theory: the dilation-by-2 and
translation-by-1 operators. Moreover, we have derived Haar-like systems on £2|0, %]
and £? %, 1] from the celebrated Haar system on £2[0,1] and, simultaneously, we
have shown that a multiresolution analysis (MRA) of wavelet theory is actually
generated from an outgoing or an incoming subspace (a concept of the Lax—Phillips
scattering theory) of the bilateral shift dilation-by-2 operator. Moreover, using the
MRA, we have shown that any wavelet living in £2[0,1] together with its scaling
function do indeed generate a Haar-like system for the space £2[0, 1].
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