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REGULAR LATTICES OF TENSOR PRODUCTS

C.S. KUBRUSLY

ABSTRACT. It is proved that the collection of all regular invariant subspaces
of tensor products of operators is a lattice. Further characterization of regular
lattices are considered for injective operators. The approach is carried out
keeping pace with the results on intrinsic invariant subspaces of direct sums,
extending them to regular invariant subspaces of tensor products.

1. INTRODUCTION

Let H be a nonzero Hilbert space (either finite or infinite-dimensional, not nec-
essarily separable). Let B[H] denote the normed algebra of all operators on H (i.e.,
B|H] is the normed algebra of all bounded linear transformation of H into itself),
and let A/(A) and R(A) stand for kernel and range of A € B[H]. By a subspace M
of H we mean a closed linear manifold of H, which is nontrivial if {0} # M # H (for
dim M > 1), invariant for an operator A (A-invariant) if A(M) C M, and reducing
for A (or M reduces A) if both M and M* are A-invariant (where M+ =H & M
stands for the orthogonal complement of M); equivalently, if M is invariant for
both A and A* (where A* € B[H] denotes the adjoint of A € B[H]). An operator
A is reducible if it has a nontrivial reducing subspace, otherwise it is called irre-
ducible. If M is A-invariant, then let A|rq € B[M)] denote the restriction of A to
M. It {H;}2, is a finite collection of Hilbert spaces, then their orthogonal direct
sum, denoted by @~ , H;, is the Hilbert space made up of all m-tuples z = {z;},,
denoted by x = @Z’;l x;, with each x; in H;, where sum and scalar multiplication
are defined componentwise, whose inner product is given by (z,y) = > (z;,y;)
for every z = @, z; and y = @, y; in P, H,. If {A;}7, is a finite collection
of operators with A; in B[H;], then their direct sum, denoted by @;", A;, is the
operator in B[@.", H;| given by @, Az = @, A;z; for every z = @~ z; in
D", H;. Recall that || @ar, Ai” = maxi<;<m || 4]/, and (@21 Ai) (@21 A;) .
(B, AiA) if {AS}™ is a collection of m operators with each A} also in B[H,].

We consider the concept of tensor product space in terms of the single tensor
product of two vectors as a conjugate bilinear functional on the Cartesian product
of a pair of nonzero Hilbert spaces H and K (see, e.g., [2], [10], [11] and [12]; for
an abstract approach see, e.g., [1], [9] and [14].) The single tensor product of a
pair of vectors (z,y), with  in H and y in K, is a conjugate bilinear functional
z®y: H x K — C defined by (z ® y) (u,v) = (z;u) (y;v) for every (u,v) € H x K.
The tensor product space H ® K is the completion of the inner product space
consisting of all (finite) sums of single tensors zj ® yi with zx € H and y; € K,
which is a Hilbert space with respect to the inner product
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OCrzk @y s Dopwe @ z0) = D1 > (we s we) (yk ; ze)

forevery >, xp @ ypand Y, wy ® 2, in H ® K. The tensor product of two operators
A in B[H] and B in B[K] is the transformation A ® B: H ® K — H ® K defined by

(AR B)Y 2 Quyr = Az, @ Byy forevery Y, z,@yr € HR®K,

which is an operator in B[H ® K]. For an expository paper on tensor product
along these lines the reader is referred to [5]. The tensor product of a pair of
Hilbert spaces and of a pair of operators can be naturally extended to a finite
collection of Hilbert spaces and to a finite collection of operators, as follows. For any
integer m > 2, let {H;}, be a finite collection of Hilbert spaces. The single tensor
product of an m-tuple of vectors (x1, -+, &), with each z; in H,, is the conjugate
multilinear functional @, z;: []~, H; — C defined by (®Q:~; ;) (u1, -+, um) =
[T% (x5 u;) for every (ui, -+, um) € [[i~; H;. The tensor product space @, H;
is the completion of the inner product space of all (finite) sums of single tensor
products ®:’;1 x;,, with x; , € H;, which is again a Hilbert space with respect to
the inner product

<Ek®£1xi,k ; Ze®£1wil> = ZkZZH:’il (i 5 Wi e)

for every >, Qiv i and Y, @, wie in @, H;. The tensor product of a
finite collection {A;}™, of operators, with each A; in B[H;], is given by

(®£1Ai)zk®?;1mi7k => QR Az forevery >, Qit ik € Qi Hi.

This defines an operator in B[~ H;] with the following properties: (@, A;) f=
X", Af, and (®:’;1 Ai)f1 =Qi, Ai_1 if each A; is invertible. Also H®:’;1 AZH =
[T 14sll, and (@2 Ai) (Ri2; A7) = (®i2; Aidy) in B2, Hil if {Aj}2, is

a collection of m operators with each A} in B[H,].

The (orthogonal) direct sum €.~ M; of subspaces M; of H; is a subspace of
the direct sum space @, Hi. (Indeed, @;"; M; = (X7, M) =>7 M,
see, e.g., [4, Theorem 5.10 and Proposition 5.24]). The tensor product counterpart
is also readily verified. Indeed, this comes from the fact that if {e; -, },.er, is an
orthonormal basis for each H;, then {®:’l1 €5, }(71’,,, )€l T, 1s an orthonormal
basis for @, H; (see, e.g., [14, Theorem 3.12(b)]). Thus the tensor product
X, M, of subspaces M; of H; is a subspace of the tensor product space @, H;.

2. REGULAR SUBSPACES

It is clear that the direct sum @, M; of subspaces M; of H; is invariant
(reducing) for the direct sum €.~ A; of operators A; on H; if and only if each
M, is invariant (reducing) for A;. Here the tensor product counterpart is quite
different, as it will be seen in the forthcoming Lemma 1.

We borrow the following definitions, and also the next result, from [6]. Consider
a finite collection {H;}7, of Hilbert spaces. A subspace of the orthogonal direct
sum @@, H; is intrinsic if it is of the form @;-, M, where each M, is a subspace
of H;. Otherwise it is said to be extrinsic. This notion can be brought to tensor
product spaces yielding the concept of regular subspaces. A subspace of a tensor
product space @, H; is regular if it is of the form )", M,, where each M; is a
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subspace of H;. Otherwise it is irregular. Regular invariant and reducing subspaces
are characterized as follows.

Lemma 1. Take any integer m > 2. For each integer i € [1,m] let A; be an op-
erator on a Hilbert space H; and let M; be a subspace of H;. Consider the tensor
product @, A; of {A;}™, on the tensor product space @, H;.

a1) If each M; is invariant (reducing) for A;, then KT, M; is an invariant
1=1
(reducing) subspace for @, A;.
(ag) If @I*, M, is invariant for @, A;, then one of the subspaces M; is in-
variant for A;.
(ag) If @2y M; reduces Q- Ai, then one of the subspaces M; reduces A;, or

one of the subspaces M; is invariant for A; and the orthogonal complement
./\/ljl of another subspace M; with j # i is invariant for A;.

(ag) If @*, M, is invariant (reducing) for Q.-, A; and if each M; € N(A;),

then each M; is invariant (reducing) for A;. Particular case:

(ah) If @:*, M, is nonzero and invariant (reducing) for @i-, A; and if
every A; is injective, then each M; is invariant (reducing) for A;.

(b) One of the subspaces M; is nontrivial and the others {M;}7,;_; are nonzero
if and only if @, M; is nontrivial.

(c1) If each M; is A;-invariant, then
(®£1Ai)’®glmi = ®£1Ai|/\4r

(c2) If @i*, M, is nonzero and Q.- A;-invariant, and if each A; is injective,

then
(®£1Ai) |®;';1 M; Qi Al

Proof. [6, Theorem 1]. O

Consider the direct sum €.", A; and the tensor product @)~ A; of operators act-
ing in B[@]", H;] and B[, H;|, respectively. The existence of intrinsic invariant
subspaces of direct sums is trivial; the existence of regular invariant subspaces of
tensor products is discussed in Lemma 1. The existence of extrinsic and irregu-
lar invariant subspaces is exhibited in Remark 1 and Corollary 1 from [6] (see also
[7]). We restrict our attention to direct sums or tensor products of operators. Thus
operators in B[@."; H;] or in B[~ , H;] that are not direct sums or tensor prod-
ucts of operators (i.e., operators in B[@;-, H;] or in B[Q;~, H;] that are not of
the form @@, 4; or @, A;) will not be discussed here.

3. REGULAR LATTICES

Let {H;}!™, be a finite collection of Hilbert spaces. Take the Hilbert space
@B, H; of their orthogonal direct sum, and also the Hilbert space @~ H; of
their tensor product. Let Lat(A) denote lattice of all invariant subspaces for a given
operator A. Consider a collection of operators {4;}7, with each A; in B[H;].
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Intrinsic Lattices: Let @), Lat(A;) denote the collection of all intrinsic sub-
spaces @7;1 M; C @7;1 ‘H; made up of A;-invariant subspaces M;,

@ Lat(A;) = {@:’ll./\/ll Ch” Hi: M; € Lat(AZ-)},

and let ILat (€], A;) denote the collection of all intrinsic invariant subspaces for
the direct sum ., 4; on B, H;,

Lat (P, 4i) = {@L Mi € B2 Hi: @2 M € Lat(Bi2, Ai) |,

which is a lattice itself. In fact, take the lattice Lat (@:11 Hi) of all subspaces of the
direct sum @;" | H;. Let ILat(€D;", H;) denote the subcollection of Lat (€D;" | H;)
of all intrinsic subspaces of @, H;. It is readily verified that ILat(€D;", H;) is
sublattice of Lat (€D, H;). Observing that

ILat (P, A;) = ILat(;~,H;) N Lat(P;~, A;),
we infer that ILat (@], A;) is a sublattice of Lat(€D;~; A;). Indeed, as we had
noticed before, an intrinsic subspace Z = @~ ;, M, lies in ILat (@:Zl Ai) if and only

if Z € @, Lat(4;). Thus, since there exist extrinsic subspaces in Lat (€]~ 4;)
[6, Remark 1], it follows that

ILat(@;~, 4:) = @], Lat(4;) C Lat (D], A:),
where the above inclusion may be proper.

Regular Lattices: It is convenient to exclude zero subspaces when defining the
tensor product space counterpart. In fact, since {0} € Lat(A;) for every i € [1,m], it
follows that if M;, = {0} for some iy € [1,m], then M,, € Lat(4;,) and @~ M; =
{0} = @~ ,{0} is a regular subspace consisting of A;-invariant subspaces even if
M, ¢ Lat(A;) for every i # ig. Thus let @~ Lat(A;) denote the collection of all
nonzero regular subspaces ®."; M; C Q;~, H;, where each M; is A;-invariant,

@ Lat(4:) = {{0} # @, M: € @, Hi: {0} # M; € Lat(4;)},

and let RLat (®Zz1 Ai) denote the collection of all regular invariant subspaces for
the tensor product operator @, A; on @, Hi,

RLat(@l‘zlAi) = {®Z1Mz < ®;‘11Hi: ®ZZ1M1 € Lat(@?;Ai)}'

Note that, if 4;, = O for some iy € [1,m], then @, A; = O, and so every regular
subspace @, M, of @, H,; lies in Lat (®:’;1 Ai) independently of the operators
A; for every i # ig. If M;, C N (4;,) for some ig € [1,m] (and so M,, € Lat(A4;,)),
then ®;"; M; C N(Q;", 4;) so that @;", M; lies in RLat();", 4;) indepen-
dently of the subspaces M, of H,; for every i # ig.

Theorem 1. RLat(@ZlAi) is a lattice. If each A; is injective, then
RLat(®;%,4:) \{0} = @2 Lat(4;) € Lat(Q®;Z; 4:)\{0},
and the inclusion may be proper even though every A; is injective.

Proof. (a) Consider the lattice Lat (@);~,H;) of all subspaces of the tensor product
®.", H;. Recall that, if £ and &’ are subspaces of @."; H;, then their inf and
sup in Lat(Q@)", H;) are given by EAE =ENE and EVE =(£+E')". Now
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let RLat(®);~;H;) be the subcollection of Lat(@®):~;H;) consisting of all regular
subspaces of @~ H;. f R = @~ M; and R' = Q" M) are regular subspaces
of @:~, H;, then their inf and sup are given by RAR' = @~ M; N M), and
RVR = Qi (M; + M})~, which lie in RLat();",H;). Thus, in this sense,
RLat(@ZlHi) is sublattice of Lat(®;’;1Hi). Therefore, by its very definition,

RLat(®;~, A;) = RLat(®;,H:) N Lat(®i~, A:),

so that, being an intersection of latices, RLat (®:11 Ai) is a lattice itself (actually,
a sublattice of Lat(@;", 4;)).

(b) Next observe by Lemma 1(aj) that, if each A; is injective, then

RLat(®!", 4;)\{0} € ®",Lat(A;)

(i.e., for every {0} # R = @i~ M; in RLat(®;-; A;) it follows that R lies in
®:", Lat(4;)). Conversely, by Lemma 1(a1), we get that

®;~Lat(4;) € RLat(®;2;4:) \{0} € Lat(®;~, 4:) \{0}
(ie., if {0} # R = @~ M; lies in @]~ Lat(A;), then R lies in Lat(®;"; A;)).

Therefore, if each A; is injective, then

RLat (Q™, A;)\{0} = @, Lat(4;) C Lat(Q®", 4;)\{0}.

(c) Finally set H; = £? and A; = S, for all 4, where S, is the canonical unilateral
shift of multiplicity 1 acting on ¢?, which is injective and irreducible. Recall that
&®:", S, is again a unilateral shift, now of higher multiplicity acting on @~ (2,
the tensor product of m copies of (f [6, Theorem 2]. Since the multiplicity of the
unilateral shift Q" S, is greater than 1, it is reducible (in fact, the tensor product
of m copies of a injective operator always is reducible [6, Corollary 1(b)]. Thus,
since S, is injective and irreducible, it follows by Lemma 1(a) that all nontrivial
reducing subspaces of @S, are irregular. Therefore,

®, Lat(S.) = RLat(®", 5.)\{0} € Lat(®[,S.)\ {0},

where the inclusion is proper. [l

Example 1. A tensor product A ® B is an isometry if and only if both vA and
4~1B are isometries for some nonzero scalar v [13, Theorem 2.4]; a tensor product
A ® B is a unilateral shift ifand only if AQ B=V ® S, or A® B=S, ® V where
S, is a unilateral shift and V' is an isometry [8, Lemma 1]. Let H and K be infinite-
dimensional Hilbert spaces, and let V' be an isometry on a ‘H and S, a unilateral
shift of multiplicity 1 on I, so that V ® S, is a unilateral shift of multiplicity grater
than 1 on H ® K, thus reducible. Since isometries are injective,

RLat(V ® S, )\{0} = Lat(V) ® Lat(S,)

by Theorem 1. Therefore, if M and A are nonzero subspaces of H and K, then
M@ N is (V ® S, )-invariant if and only if M is V-invariant and A is S -invariant.
Since V' ® S, is reducible, V and S, are injective, and S, is irreducible, Lemma 1(a)
ensures that the tensor product V ® S, is reducible whose all nontrivial reducing
subspaces are irregular, so that M ® A never reduces V ® S, . Then every nonzero
reducing subspace R for V.® S, is irregular; that is, R ¢ RLat(V®JS,). Therefore,
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R € Lat(V ® S,)\Lat(V) ® Lat(S, ).

4. A FURTHER CHARACTERIZATION

Let {H;}72, and {/;}7~, be finite collections of Hilbert spaces. Take the Hilbert
spaces made up of their orthogonal direct sum and of their tensor product, @:-, H;
and @, K;. Take A; € B[H;] and B; € B|K;]. Consider the definition of ILat and
RLat, and define IRLat and RILat as follows.
and

RILat(@inilAi D Bl) = ®;111Lat(141 &) BZ),
on @:’ll H; ® K; and on ®:r;1 H; & K;, respectively.
Proposition 1. Consider the previous setup.

If each A; and B; is injective, then
and
(d) IRLat(€;",A; ® B;) = @, Lat(4;) ® Lat(B;).
Proof. Tdentities in (a) and (b) are straightforward by the very definition of ILat:
and
RILat (@, A; & B;) = ®;~,Lat(4;) @ Lat(B;).
If each A; and each B; are injective, then we get (¢) and (d),
and
IRLat(@inilAi & Bl) = @ZlLat(Ai) (9 Lat(Bi),

according to Theorem 1. O

Let @, C; be the tensor product operator on the tensor product space Q.- X;,
consisting of m operators taken from the collection {A;, B;}/; such that C'is either
A or B and, accordingly, X is either H or K. Order these by lexicographic order-
ing (so that there are 2™ tensor products where @.", A; on .-, H; is the first
and @;~, B; on @~ K; is the last). Let X and C denote the classes of all ten-
sor products @, X; and ., C;, respectively, equipped with the lexicographic
ordering. Take the operators

QL (A ®B) on QL (H:i®Ky)
and

D (®1.C) on B (R, ),
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where the direct suns @jzl are taken over all elements of C and of X, respectively.
For instance, if m = 2, then take the operators

(A1®Bl)®(A2@Bg) on (Hl @Kl)@(HQ@’CQ)
and
(A1 X Ag) &) (A1 &® Bg) D (AQ & B1) (5] (Bl ® BQ)
on

(Hi1®H2)®d (H1 ®@K2)® (Ha ® K1) & (K1 @ Ka).

Corollary 1. Consider again the previous setup.

m

(a) The operators @, (A; ® B;) and @j;l (Q7~,C;) are unitarily equivalent.
(b) Thus the latices Lat(@;",(A; ® B;)) and Lat (@3:1 (®:,C;)) are unitarily
equivalent as well.

(¢) Moreover, if each A; and B; is injective, then

m

Qm_y (Lat(A;) ® Lat(B;)) and @, (Q;~,Lat(C;))

are unitarily equivalent.

Proof. First consider the case of m = 2. Thus let H;, Hs, K1 and Ky be Hilbert
spaces, and take arbitrary operators A; € B[H1], Az € B[Hz|, B; € B[K1] and
By € B[Ks]. The operators

(A1 ®B1)® (A2 ® By) and (A1 ®@ A2) @ (A1 ® Be) @ (B1 ® A2) & (B1 ® Ba),
which act on
(H1®oK1) Q@ (Ha@K2) and (H1 @ Ha) ® (H1 @ K2) ® (K1 @ Ks) ® (K1 ® K2),

are unitarily equivalent. Indeed, as is readily verified,

<A1 O)®<A2 0)2 Ao (dg) 0
o B)%\0o B)Z 0 Bio(%2)

A1 ® Ay 9, 9, 0

N 0O A B, 0 0

- 0 O  BioA o |
0 0 O  B®B

and recalling that for any operators S and T their tensor products S ® T and T'® S
are unitarily equivalent (i.e., tensor product is unitarily equivalent commutative),
it follows that

(A1 ®B1)® (A28 Bs) = (A1 ® A) ® (41 ® B) & (A2 ® B1) & (B1 ® Ba)
and
(Hie K1) @ (H2 @ K2) 2 (H1®@Hz) & (H1 ®K2) & (H2 ® K1) & (K1 @ Ka),

where 2 denotes unitary equivalence. So the lattices Lat[(A; & B1) ® (Az & By)]
and Lat[(A; ® A2) ® (41 ® By) @ (A2 ® By) @ (B ® Bsy)] are unitarily equivalent
(invariant subspaces are preserved by unitary equivalence):

Lat[(A1 ® B) ® (A2 ® By)] = Lat[(A; ® A2) @ (A1 ® By) @ (A2 ® B1) @ (B ® Ba)].
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Moreover, if A;, Ay, By and Bs are injective, then by Proposition 1(b,d),
RILat[(A1®B1)®(A2®Bs)] 2 IRLat[(A1 ® A3) B (A1 ®B2)®(A3@ B1) ®(B1®B2)],
Therefore (cf. Proposition 1(b,d) again),

[Lat(A;) @ Lat(B;)] ® [Lat(Az) @ Lat(Bz2)]

[Lat(A;) ® Lat(As)] @ [Lat(A41) ® Lat(Bz)]
@ [Lat(A2) ® Lat(B;)] @ [Lat(B;) ® Lat(Bs)],

which completes the proof for m = 2. If m > 3 then, for any j € [2,m — 1],
m —1 m
Qi Ci=QiZ,Ci® 0 @ iz 1Ci

and
m 1—1 m
Rt i = QL 0 X @ Qe ji1Xis

so that the result for m = 2 extends by induction to any integer m > 3. O

Example 2. Set m=2, H=K = EE, Ay = By =1, the identity operator, and
Ay = By = S, the canonical unilateral shift of multiplicity 1 on (f. In this case,

I'eS =Iel)®(S,®S5,)=(A1&B1)® (4 By)
~ (A1 ® Ay) @ (A1 ® By) ® (By ® A2) & (By ® Bs)

=(Ies)e(les)e(les,)e(®s,)=0,0S,),

where I’ is the identity, and S’ is canonical unilateral shift of multiplicity 2, both
acting on (2 @ (2. Note that Lat(I") ® Lat(S},) = ({2 ® £?) @ Lat(S, & S,). Also
note that both Lat(S’ ) and Lat (@?:1(1 ® S,)) have been fully characterized in [3]
because S’, and @?:1(1 ® S, ) are unilateral shifts (I ® S, and so @?:1(1 ®5S5,),
are unilateral shifts of infinite multiplicity). Thus, since all operators involved in
this example are injective, Corollary 1(c) shows that

(Lat(I) @ Lat(I)) ® (Lat(S,) @ Lat(S,)) = (¢2 @ £?) ® (Lat(S,) @ Lat(S,))
is unitarily equivalent to

@D, (Lat(l) ® Lat(S,)) = @;_, (¢2 @ Lat(S,)),

where regular subspaces have been considered; irregular subspaces as in Example 1
are not characterized by the above equivalence, but require an independent analysis.
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