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S-MATRIX INVERSION LEMMA

NHAN LEVAN AND CARLOS S. KUBRUSLY

ABSTRACT. It is shown that a state-feedback time-invariant linear system has
its built-in s-Matrix Inversion Lemma which results directly in the system
transfer matrix — without using the standard Matrix Inversion Lemma itself.

1. INTRODUCTION

This note deals with the well-known Matrix Inversion Lemma (see e.g., [5, Section
5.1], [7, Appendix A], [4], [3], and the references therein). This is a classical and
extremely useful result, with an elementary proof, which, in its simplest form, reads
as follows. Let L and T be linear transformations of a linear space into itself. If
I — LT is invertible, then so is I — T'L. Moreover, in this case,

(I-TL) ' '=I1+TU-LT)'L.

In fact, this holds in any ring with identity (see e.g., [6, Problem 2.32]). The above
relation can be easily extended as follows. Let X and ) be linear spaces (over the
same field), and let S: X — X, T: Y — X, and L: X — ) be linear transformations
(in particular, let S be a square matrix and 7' and L be matrices with compatible
dimensions). If S and S — T'L are invertible (so that I — LS~!T is invertible), then

(S—-TL)y ' =8t +S7'7(I - LS™'T)"'LS™.

The proof is essentially the same as that of the simplest form, consisting of mere
algebraic manipulations. Indeed and tautologically, by setting S = I above, we get
the former simplest form. Conversely, by setting L = L’S™! in the former simplest
form and multiplying it from the left by S—! we get the latter form — and there-
fore, as the invertibility of I — LT implies the invertibility I — T'L, then so the
invertibility of S and S — T'L together imply the invertibility of I — LS~'T.

The Matrix Inversion Lemma (MIL) has been used in many problems including
calculation of the transfer matrix of a state-feedback system (see e.g., [2]). Tt is
not the purpose of this note to offer manipulations on how to compute, for a finite-
dimensional linear system, the closed loop transfer matrix after static state feedback
and static output feedback, nor to offer another proof of the well-known Matrix
inversion Lemma, whose all proofs are certainly very elementary. The aim of this
note is to show that a state-feedback system has its own built-in Matrix Inversion
Lemma (called s-MIL), which readily results in an expression for its transfer matrix
without using the original MIL. This is shown in Theorem 1 (Section 2): a state-
feedback time-invariant linear system generates a version of the Matrix Inversion
Lemma (the s-MIL). Consequences of Theorem 1 on the transfer matrix of state
and output feedback systems are considered in Corollaries 1 and 2 (Section 3).

In other words, the outcome of the forthcoming Theorem 1 is a version of the
Matrix Inversion Lemma whose proof was carried out, of course, without using
the original Matrix Inversion Lemma. Actually, what Theorem 1 offers is quite
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near the original Matrix Inversion Lemma (with respect to the matrices under
consideration). The forthcoming Remark 1 exhibits the original Matrix Inversion
Lemma (again with respect to the matrices under consideration), which trivially
leads to the result of Theorem 1 (by multiplying the expression of Remark 1 on the
right by B). The converse holds in the sense that if B is, for instance, invertible,
then the expression of Theorem 1 leads to the expression in Remark 1. Section 3
presents a couple of results that are obtained via Theorem 1. Therefore, and unlike
the usual practice, these results in Corollaries 1 and 2 are now verified without
requiring the original Matrix Inversion Lemma.

Summing up: In Section 2 we derive an alternate form of the Matrix Inversion
Lemma for time-invariant linear systems (whose proof does not use the original
Matrix Inversion Lemma), and in Section 3 this is applied to recover a couple of
results by presenting new (and still elementary) verifications that use Theorem 1
instead of using the original Matrix Inversion Lemma.

2. S-MATRIX INVERSION LEMMA

From now on we proceed formally. Consider the state-space description of a
time-invariant linear system S,

(2.1) z(t) = Az(t) + Bu(t), y(t) = Cx(t),

for t > 0, where z(-), u(-), and y(-) are state, input and output, vector-valued func-
tions, respectively (in an appropriate space of finite-dimensional-valued functions
on [0,00)), while A is a square matrix, B and C are possibly rectangular with
compatible dimensions. The transfer matrix G(-) of S is given by (see e.g., [2])

G(s)=C(sI - A)™'B

for every s ¢ o(A) — equivalently for every s € p(A) — where o(A) stands for the
set of all eigenvalues of A (i.e., for the spectrum of the finite-dimensional operator
A), and p(A) = C\o(A) is the resolvent set of A, so that sI — A is invertible if
and only if s € p(A). (Extensions to systems acting on infinite-dimensional normed
spaces with bounded linear transformations are straightforward.)

A closed-loop (full) state-feedback system Sk is derived from S by setting its
input u(-) to be of the feedback form,

u(t) = r(t) — Kz(t),

for t > 0, where r(-) is an arbitrary reference input to Sk, and K is a given state-
feedback gain matrix. Thus, plugging this feedback input u(-) into (2.1), we get the
following state-space description for Sk.

(2.2) #(t) = Az(t) + Br(t) — BKxz(t) = (A— BK)z(t) + Br(t),
y(t) = Ca(t),
for every ¢ > 0. The transfer matrix G (-) of Sk is then [2]

Gr(s)=ClsI — (A— BK)|™'B,
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for every s ¢ o(A — B) (i.e., for every s € p(A — BK)). This is the place where, in
general, the original Matrix Inversion Lemma can be used to compute the matrix
[sI — (A — BK)]~!. However, as we now show, this is not necessary.

Let the Laplace transform of a function f(-) be denoted by F'(-), so that X (-)
and R(-) stand for the Laplace transforms of x(-) and r(-). Set, for every s € C,

A(s) = s — A,
and take the Laplace transforms of (2.2), with z(0) = 0, so that
A(s)X(s) = (sI — A)X(s) = BR(s) - BKX(s)
or, equivalently,
[A(s) + BK]X(s) = [sI — (A — BK)]X(s) = BR(s).
Thus, if s € p(A), then
(2.3) X(s) = A(s)"'BR(s) — A(s) 'BK X (s),
and, if s € p(A — BK), then
X(s) = [A(s) + BK]"'BR(s).
Therefore, if s € p(A) N p(A — BK) (ie., if s ¢ 0(A) Uo(A — BK)), then
(2.4) [A(s) + BK]"'BR(s) = A(s)"'BR(s) — A(s) 'BK X (s).

The above equation will yield an identity for [A(s) + BK]~! B, as soon as the vector
K X (s) on the right can be expressed in terms of the vector R(s).

Theorem 1. The state-feedback system Sk with state-space description
i(t) = (A= BK)xz(t) + Br(t),  y(t) = Cx(t),
for every t > 0, has its own built-in s-Matrixz Inversion Lemma, viz.,

[sI — A+ BK|™'B
= (s = A)7'B—(s] — A)T'BI + K(sI — A)7'B] 7' K (s — A)7'B;

equivalently, by setting A(s) = sI — A for every s € C,

[A(s) + BK]|™'B = A(s)"'B — A(s)"'B[I + KA(s)"'B] 'K A(s) "' B;
for every s ¢ o(A) and s ¢ 0(A — BK) (i.e., for every s € p(A) N p(A — BK)).
Proof. First, acting K on both sides of (2.3) we obtain, for s ¢ o(A),

KX (s) = KA(s) "' BR(s) — KA(s)"'BK X (s),

Therefore, if s ¢ 0(A) and s ¢ 0(A — BK), then
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KX(s)=[I + KA(s)"'B|"' K A(s) "' BR(s),

where the invertibility of I + K.A(s)~!B is ensured by the invertibility of A(s) and
A(s) + BK, as we saw in Section 1. The preceding expression and (2.4) lead to

[A(s) + BK| ' BR(s)
= A(s)"'BR(s) — A(s)"'B[I + KA(s) ' B] 'K A(s) "' BR(s).

Since the above expression holds for every admissible reference input signal r(-),
and since we may choose it such that R(s) = I, we get the claimed result. O

Remark 1. If A(s) and A(s) + BK are invertible (i.e., if s € p(A) N p(A — BK)),
then the original Matrix Inversion Lemma of Section 1 ensures that

[A(s) + BK]™' = A(s)™' — A(s) " 'B[I + KA(s) !B 'K A(s) !,

which leads to the identity stated in Theorem 1 (by multiplying the above identity
on the right by B). Conversely, if B is well-behaved (e.g., if B is invertible), then
the identity that was deduced in Theorem 1 without using the original Matrix
Inversion Lemma leads to the above identity, which is precisely the original Matrix
Inversion Lemma (for the matrices under consideration). It is in this sense that we
say: a state-feedback time-invariant linear system generates a version of the Matriz
Inversion Lemma (the so-called s-Matrix Inversion Lemma of Theorem 1).

3. CONCLUDING REMARKS

Straightforward consequences of Theorem 1 are stated in Corollaries 1 and 2
below. Thus, as applications of Theorem 1, we can get new (and still elementary)
verifications of them, following directly from Theorem 1, and so not requiring the
use of the original Matrix Inversion Lemma.

Corollary 1. The transfer matriz of the state-feedback system Sk is
Gr(s) = C[sI — (A — BK)]™'B,
— G(s) = G(s)[I + K(sI — A)"'B] "' K(sI — A)~'B.

The above suggests the existence of a feedback-like set-up behind the MIL. In-
deed, consider the following set-up.

Ax = Bu, u=r—Kuz.

Thus

(3.1) Az = Br — BKz,
and so,

(3.2) (A+ BK)x = Br.

If A and (A + BK) are invertible, then (3.1) leads to,

(3.3) t=A"'Br—-A"'BKz



and, from (3.2),
(3.4) r=(A+ BK) 'Br.

Hence, as in the proof of Theorem 1, equating (3.3) and (3.4) we get
(3.5) (A+BK) 'Br=A"'Br - A"'BKu.

The final step is, as before, to substitute for Kx on the right by that obtained from
acting K on both sides of (3.3). That is,

Kr=KA 'Br—- KA 'BKz,

so that

(I+KA'B)Kz = Ko+ KA"'BK2z = KA~ 'Br,
and hence
(3.6) Kr=(I+KA'B)"'KA 'Br.

We finally get the MIL from (3.5) and (3.6), as expected:

(A+BK) 'B=A"'B-A'B(I+ KA™'B)"'KA™'B.

We now consider the output-feedback via state-feedback. Given an open-loop
system S with the input-output description in the s-domain [2],

for s € C, where, as before, U(-) and Y(-) denote the Laplace transform of the
input u(-) and output y(-), respectively, while G(-) is the system transfer matrix.
The associated closed-loop output-feedback system Sg is characterized by

(3.7) Y(s) = Gr(s)R(s),  R(s)—EY(s) =Ul(s),

for s € C, where R(-) the Laplace transform of a reference input r(-) to Sg, and
E is a feedback gain matrix, while Gg(-) is the transfer matrix of Sg. Now since
the open-loop system S also has a state-space description characterized by (2.1),
we have, in addition to (3.7),

Y(s) =CX(s).
for s € C. This and (3.7) result in a state-feedback characterization in the s-domain,
U(s) = R(s) — ECX(s)
for s € C or, equivalently, in the time-domain,
u(t) =r(t) — ECxz(t)
for t > 0. Comparing this with the input in the feedback form of Section 2, namely,

u(t) =r(t) — Kz(t)
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for t > 0, we conclude that an output-feedback system — with the feedback gain
matrix £ — is also a state-feedback system — with the feedback gain matrix
K = EC. The next result then follows easily from Theorem 1.

Corollary 2. (i) The s-MIL resulting from an output-feedback system Sg with
the gain matric E 18

[sI —(A—BEC)™'B = (s —A)™'B—(s[ - A)™'B-

=[I+EC(sI - A 'B]7'EC(s] — A)™'B.

(ii) The transfer matriz Gg(s) of Sg is therefore

Gp(s) = C[sI — (A= BEC)]"'B = G(s) — G(s)[[ + EG(s)] ' EG(s),

where

G(s)=C(sI - A)'B
is the transfer matriz of the open-loop system S.

We have shown that a state-feedback system has an s-Matrix Inversion Lemma
which results directly in the transfer matrix of the system — without using the
original Matrix Inversion Lemma. There are various proofs of the Matrix Inversion
Lemma, all of them rather elementary. However, only Boyd and Vandenberghe [1]
consider the following set-up for deriving it for the matrix A + BC.

(A+ BC)x =, y=Cuz.
This can be identified with the following output-feedback setup.

Ax = u, y=Cz, u =b— By.
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