QUASI-SIMILAR k-PARANORMAL OPERATORS

B.P. DUGGAL AND C. S. KUBRUSLY

ABSTRACT. It is proved in this paper that k-paranormal operators satisfy (Bishop's) property (β) ; and also that if S and T are k-paranormal contractions such that the completely non-unitary part S_c of S has finite multiplicity, then S is quasi-similar to T if and only if their unitary parts are unitarily equivalent and their completely non-unitary parts are quasi-similar. This generalizes a result of W.W. Hastings [4] on subnormal operators and P.Y. Wu [11] on hyponormal operators.

1. Introduction

Let $B(\mathcal{H})$ denote the algebra of operators on an infinite dimensional complex Hilbert space. An operator $T \in B(\mathcal{H})$ is k-paranormal for some integer $k \geq 1$ if

$$||Tx||^{k+1} \le ||T^{k+1}x||$$

for every unit vector $x \in \mathcal{H}$. Let P(k) denote the class of all k-paranormal operators. $T \in B(\mathcal{H})$ is a quasi-affinity if it is injective and has a dense range; $S, T \in B(\mathcal{H})$ are quasi-similar, $S \sim T$, if there exist quasi-similarities $X, Y \in B(\mathcal{H})$ such that

$$SX = XT$$
 and $TY = YS$.

Let T_u denote the unitary part and T_c denote the cnu (completely non-unitary) part of a contraction $T \in B(\mathcal{H})$. Nagy–Foiaş classes of contractions, C_{00} , C_{01} , C_{10} and C_{11} [8, p. 72] are defined as usual. Let $\sigma(T)$, $\sigma_p(T)$, $\sigma_a(T)$, and $\sigma_e(T)$ stand for spectrum, point spectrum, approximate point spectrum, and essential spectrum (or Fredholm spectrum) of $T \in B(\mathcal{H})$, respectively. Let $\mathbb N$ denote the set of nonnegative integers. The ascent $\operatorname{asc}(T)$ and descent $\operatorname{dsc}(T)$ of $T \in B(\mathcal{H})$ are given by

$$asc(T) = \inf\{n \in \mathbb{N} : T^{-n}(0) = T^{-(n+1)}(0)\}\$$

and

$$dsc(T) = \inf\{n \in \mathbb{N} : T^n(\mathcal{H}) = T^{n+1}(\mathcal{H})\}\$$

(if no such integer n exists, then $\operatorname{asc}(T) = \infty$, respectively $\operatorname{dsc}(T) = \infty$). We say that T has the single valued extension property, or SVEP, at $\lambda \in \mathbb{C}$ if for every open neighborhood U of λ , the only analytic solution f to the equation

$$(T - \mu)f(\mu) = 0$$

for all $\mu \in U$ is the constant function $f \equiv 0$; we say that T has SVEP if T has a SVEP at every $\lambda \in \mathbb{C}$. It is well known that finite ascent implies SVEP; also, an operator has SVEP at every isolated point of its spectrum (as well as at every isolated point of its approximate point spectrum). An operator $T \in B(\mathcal{H})$ satisfies

Date: September 6, 2009.

²⁰⁰⁰ Mathematics Subject Classification. Primary 47A45, Secondary 47B20.

Keywords. Hilbert space operators, k-paranormal operators, quasi-similarity.

(Bishop's) property (β) if, for every open subset U of the complex plane \mathbb{C} and every sequence of analytic functions $f_n: U \to \mathcal{H}$ with the property that

$$(T-\lambda)f_n(\lambda) \to 0$$
 as $n \to \infty$

uniformly on all compact subsets of U, $f_n(\lambda) \to 0$ as $n \to \infty$ locally uniformly on U.

2. Bishop's property (β) for P(k) operators

Recall that operators $S \in P(k)$ are normaloid, i.e., ||S|| = r(S).

Lemma 2.1. ([12, Lemma 2.3 and Corollary 2.6]). If $T \in P(k)$ and $(0 \neq)\lambda \in \sigma_p(T)$, then

$$T = \begin{pmatrix} \lambda & T_{12} \\ 0 & T_{22} \end{pmatrix} \begin{pmatrix} (T - \lambda)^{-1}(0) \\ \{(T - \lambda)^{-1}(0)\}^{\perp} \end{pmatrix},$$

where $T_{22} \in P(k) \cap B(\{(T-\lambda)^{-1}(0)\}^{\perp})$ is such that $\lambda \notin \sigma_p(T_{22})$.

Lemma 2.2. ([3, Corollary 1]). If $T \in P(k)$ is a contraction, then it has a decomposition $T = T_u \oplus T_c$, where $T_c \in C_{.0}$.

Lemma 2.3. Operators $T \in P(k)$ have finite ascent ≤ 1 .

Proof. Since $\operatorname{asc}(T-\lambda)=0$ for every $\lambda\in\sigma(T)\setminus\sigma_p(T)$, we consider points $\lambda\in\sigma_p(T)$. If $\lambda=0$, then the definition of k-paranormality implies that $T^{-(k+1)}(0)\subseteq T^{-1}(0)$; since $T^{-1}(0)\subseteq T^{-2}(0)\subseteq ...$, $T^{-(k+1)}(0)=T^{-1}(0)$. Now let $\lambda\neq 0$. Then

$$T - \lambda = \begin{pmatrix} 0 & T_{12} \\ 0 & T_{22} - \lambda \end{pmatrix} \begin{pmatrix} (T - \lambda)^{-1}(0) \\ \{(T - \lambda)^{-1}(0)\}^{\perp} \end{pmatrix}.$$

Recall, [10, Exercise 7, p. 293], that $\operatorname{asc}(T - \lambda) \leq \operatorname{asc}(0) + \operatorname{asc}(T_{22} - \lambda)$. Since $\operatorname{asc}(T_{22} - \lambda) = 0$, we have that $\operatorname{asc}(T - \lambda) = 1$.

An immediate consequence of Lemma 2.3 is the following:

Corollary 2.4. Operators $T \in P(k)$ have SVEP.

Given an open subset U of \mathbb{C} , let $H(U,\mathcal{H})$ denote the Fréchet space of analytic functions from U to \mathcal{H} . Then $T \in B(\mathcal{H})$ satisfies property (β) precisely when the operator $T_U: H(U,\mathcal{H}) \to H(U,\mathcal{H}), \ (T_U f)(\lambda) := (T - \lambda) f(\lambda)$, (is injective and) has closed range [7, Proposition 3.3.5].

Let $\ell^{\infty}(\mathcal{H})$ denote the space of all bounded sequences of elements of \mathcal{H} , and let $c_0(\mathcal{H})$ denote the space of all null sequences of \mathcal{H} . Endowed with the canonical norm, the quotient space $\mathcal{K} = \ell^{\infty}(\mathcal{H})/c_0(\mathcal{H})$ can be made into a Hilbert space [1], into which \mathcal{H} may be isometrically embedded. The Berberian–Quigley extension theorem, [7, p. 255], says that given an operator $T \in B(\mathcal{H})$ there exists an isometric *-isomorphism $T \to T^o \in B(\mathcal{K})$ preserving order such that $\sigma(T) = \sigma(T^o)$ and $\sigma_a(T) = \sigma_a(T^o) = \sigma_p(T^o)$. Let $[x_n] \in \mathcal{K}$ denote the equivalence class of the sequence $\{x_n\} \subset \mathcal{H}$. If $T \in P(k)$, then

$$||T^{o}[x]||^{k+1} = ||Tx||^{k+1} \le ||T^{k+1}x|| ||x||^{k} = ||T^{ok+1}[x]|| ||[x]||^{k}$$

for each $x \in \mathcal{H}$. Hence the Berberian–Quigley extension T^o of an operator $T \in P(k)$ is again k-paranormal.

Theorem 2.5. Operators $T \in P(k)$ satisfy property (β) .

Proof. Let U be an open subset of \mathbb{C} , and assume that

$$(T-\lambda)f_n(\lambda) \to 0$$
 on $H(U,\mathcal{H})$

for every $\lambda \in U$. Then

$$(T^{o} - \lambda I^{o})[f_{n}(\lambda)] = 0 \text{ on } H(U, \mathcal{K})$$

for every $\lambda \in U$. Since the k-paranormal operator T^o has SVEP, $[f_n(\lambda)] = 0$ (i.e., $\{f_n\} \in c_0(\mathcal{H})$). We claim that $f_n(\lambda) \to 0$ on $H(\underline{U}, \mathcal{H})$. Start by observing that if $D(\lambda; r) = \{\mu \in \mathbb{C} : |\lambda - \mu| < r\}$ is such that $\overline{D(\lambda; r)} \subset U$, then the analytic sequence $\{f_n(\lambda)\}$ is uniformly bounded on $\overline{D(\lambda; r)}$; furthermore, for every $\epsilon > 0$, there exists a natural number N and $0 < \rho < r$ such that

$$||f_n(\mu)|| < \frac{\epsilon}{2}$$
 and $||f_n(\lambda) - f_n(\mu)|| < \frac{\epsilon}{2}$

for all n > N and $\mu \in D(\lambda; \rho)$. Indeed, considering $\frac{f_n}{1+||f_n||}$ instead of f_n if need be, we may assume that $\sup |f_n| = M < \infty$ on $\overline{D(\lambda; r)}$. The function f_n being analytic, $f_n(\mu) - f_n(\lambda) = \sum_{m=1}^{\infty} a_{nm} (\mu - \lambda)^m$, and then $||f_n(\lambda) - f_n(\mu)|| \le \frac{M\rho}{r-\rho}$ for all $\mu \in \overline{D(\lambda; \rho)}$ such that $0 < \rho < r$. Now choose N and ρ such that $|f_n(\lambda)| < \frac{\epsilon}{4}$ (recall that $f_n(\lambda) \in c_0$) and $\frac{M\rho}{r-\rho} < \frac{\epsilon}{4}$. Then

$$||f_n(\mu)|| \le ||f_n(\lambda)|| + ||f_n(\lambda) - f_n(\mu)|| < \frac{\epsilon}{2}$$

for all n > N and $\mu \in D(\lambda; \rho)$. Consequently, $f_n(\lambda) \to 0$ in $H(U, \mathcal{H})$, i.e., T satisfies property (β) .

The conclusion that P(k) operators satisfy property (β) generalizes an observation by Uchiyama and Takahashi [9] that paranormal operators (i.e., P(1) operators) satisfy property (β) . Property (β) has a number of consequences: we list below but a couple of these. Let **D** denote the closed unit disc in \mathbb{C} .

Corollary 2.6. If $S \in P(k)$ is quasi-similar to an operator $T \in B(\mathcal{H})$ satisfying property (β) , then $\sigma_x(S) = \sigma_x(T)$, where $\sigma_x = \sigma$ or σ_e . In particular, if $S \in P(k)$ is quasi-similar to an isometry $V \in B(\mathcal{H})$, then S is a contraction such that $\sigma_x(S) = \sigma_x(V) = \mathbf{D}$.

Proof. That $\sigma_x(S) = \sigma_x(T)$ follows from an application of [7, Theorem 3.7.15]. In the particular case in which T = V, it follows that $\sigma_x(S) = \sigma_x(V) = \mathbf{D}$. Hence, since S is normaloid, r(T) = ||T|| = 1, i.e., S is a contraction.

A number of the commonly considered classes of operators in $B(\mathcal{H})$ (for example, hyponormal, M-hyponormal, p-hyponormal for 0 , w-hyponormal, <math>(p,k)-quasihyponormal operators for $0 and integers <math>k \ge 1$) are known to satisfy property (β) ; Corollary 2.6 applies to operators T belonging to one of these classes. An operator T on a separable Hilbert space \mathcal{H} is said to be supercyclic if the homogeneous orbit $\{\lambda T^n x : \lambda \in \mathbb{C}, \ n \in \mathbf{N} \cup \mathbf{0}\}$ is dense in \mathcal{H} for some $x \in \mathcal{H}$. It is

known that paranormal operators (i.e., operators in P(1)) are not supercyclic [2]. Does this extend to operators in P(k) for $k \ge 2$?

We have a partial result for invertible k-paranormal operators. Recall that the inverse of an invertible paranormal is again paranormal. It is, however, an open question whether the inverse of an invertible k-paranormal operator for $k \geq 2$ is k-paranormal [6].

Corollary 2.7. Operators $T \in P(k)$ such that T^{-1} , whenever it exists, is also a P(k) operator are not supercyclic.

Proof. Suppose that $T \in P(k)$ is supercyclic. The class P(k) being closed under multiplication by non-zero scalars, we may assume that ||T|| = 1. Since the supercyclic contraction T satisfies property (β) , $\sigma(T)$ is contained in the boundary $\partial \mathbf{D}$ of \mathbf{D} [7, Proposition 3.3.18]. Thus T is invertible, and hence (by hypothesis) $T^{-1} \in P(k)$. But then $||T^{-1}|| = 1$ (= ||T||). Consequently, T is a unitary. Since no unitary on an infinite dimensional Hilbert space can be supercyclic, we have a contradiction.

Next, we state a couple of corollaries to Corollary 2.7

Corollary 2.8. Invertible operators in P(k) such that their inverse lies in P(k-1) are not supercyclic.

Proof. [6, Theorem 1] implies that $T^{-1} \in P(k)$; apply Corollary 2.7.

Corollary 2.9. If $T \in P(k)$ is invertible, and if

$$||T^k x||^{k+1} \le ||Tx||^{k+1} ||T^{k+1} x||^{k-1}$$

for every unit vector $x \in \mathcal{H}$, then T is not supercyclic.

Proof. [6, Theorem 2] implies that $T^{-1} \in P(k)$; apply Corollary 2.7.

3. Quasi-similar P(k) operators

The multiplicity μ_T of an operator $T \in B(\mathcal{H})$ is the minimum cardinality of a set $K \subseteq \mathcal{H}$ such that $\mathcal{H} = \bigvee_{n=0}^{\infty} T^n K$. Evidently, if $S, T \in B(\mathcal{H})$ and SX = XT for some operator $X \in B(\mathcal{H})$ with dense range, then $\mu_S \leq \mu_T$; hence, if there exist operators $X, Y \in B(\mathcal{H})$ with dense range such that SX = XT and TY = YS, then $\mu_S = \mu_T$. The following technical lemma will be required.

Lemma 3.1. ([11, Theorem 3.7]). If $X \in B(\mathcal{H})$ has dense range and is in the commutant of a C_1 -contraction $T \in B(\mathcal{H})$, then X is injective.

In the following we shall denote the normal part and the pure part (i.e., completely non-normal part) of an operator $S \in B(\mathcal{H})$ by S_n and S_p , respectively; if S is a contraction, then we shall denote its unitary and cnu parts by S_u and S_c , respectively.

Theorem 3.2. Let $S, T \in B(\mathcal{H})$ be P(k) contractions such that $\mu_{S_c} < \infty$. Then $S \sim T$ if and only if S_u, T_u are unitarily equivalent and $S_c \sim T_c$.

Proof. The "if" part being obvious, we prove the "only if" part. Since S and T have $C_{.0}$ cnu parts by Lemma 2.2,

$$S = S_u \oplus S_c = \begin{pmatrix} S_{11} & 0 & 0 \\ 0 & S_{22} & * \\ 0 & 0 & S_{33} \end{pmatrix} \quad \text{and} \quad T = T_u \oplus T_c = \begin{pmatrix} T_{11} & 0 & 0 \\ 0 & T_{22} & * \\ 0 & 0 & T_{33} \end{pmatrix},$$

where $S_{11}=S_u$, $T_{11}=T_u$, S_{22} and $T_{22}\in C_{00}$, and S_{33} and $T_{33}\in C_{10}$ [8, Chapter II, Theorem 4.1]. Let SX=XT and TY=YS, where $X,Y\in B(\mathcal{H})$ are quasi-affinities. Then X and Y have representations $X=[X_{ij}]_{i,j=1}^3$ and $Y=[Y_{ij}]_{i,j=1}^3$. Observe that $S_{11}X_{12}=X_{12}T_{22}$; since S_{11} is unitary and $T_{22}\in C_{00}$,

$$||X_{12}x|| = ||S_{11}^n X_{12}x|| \le ||X_{12}|| \, ||T_{22}^n x|| \to 0$$

as $n \to \infty$ for all x. Hence $X_{12} = 0$. A similar argument shows that indeed $X_{21} = X_{31} = X_{32} = 0 = Y_{12} = Y_{21} = Y_{31} = Y_{32}$. Thus X_{11} and Y_{11} are injective, and

$$X_0 = \begin{pmatrix} X_{22} & X_{23} \\ 0 & X_{33} \end{pmatrix}$$
 and $Y_0 = \begin{pmatrix} Y_{22} & Y_{23} \\ 0 & Y_{33} \end{pmatrix}$

have dense range. The equalities $S_{11}X_{11} = X_{11}T_{11}$ and $T_{11}Y_{11} = Y_{11}S_{11}$ imply that $\overline{\operatorname{ran}X_{11}}$ reduces S, $\overline{\operatorname{ran}Y_{11}}$ reduces T, T_{11} is unitarily equivalent to $S_{11}|_{\overline{\operatorname{ran}X_{11}}}$ and S_{11} is unitarily equivalent to $T_{11}|_{\overline{\operatorname{ran}Y_{11}}}$. Thus, S_{11} and T_{11} are unitarily equivalent to direct summands of each other. Hence, [5], S_{11} and T_{11} are unitarily equivalent.

By hypothesis, $\mu_{S_c} < \infty$. Since $S_c X_0 = X_0 T_c$ and $T_c Y_0 = Y_0 S_c$, and X_0 and Y_0 have dense range, $\mu_{S_c} = \mu_{T_c} < \infty$; this, since $\mu_{S_{33}} \leq \mu_{S_c}$ and $\mu_{T_{33}} \leq \mu_{T_c}$, implies that both $\mu_{S_{33}}$ and $\mu_{T_{33}}$ are finite. Evidently, $S_{33} X_{33} Y_{33} = X_{33} Y_{33} S_{33}$ and $T_{33} Y_{33} X_{33} = Y_{33} X_{33} T_{33}$, where $X_{33} Y_{33}$ and $Y_{33} X_{33}$ have dense range. Applying Lemma 3.1 it follows that $X_{33} Y_{33}$ and $Y_{33} X_{33}$ are quasi-affinities; hence X_{33} and X_{33} are quasi-affinities. But then X_0 and X_0 are quasi-affinities; hence $X_c \sim T_c$. \square

Theorem 3.2 extends a result on hyponormal contractions of Wu [11, Corollary 3.10], see also [4], to k-paranormal contractions. The following corollary extends [11, Corollary 3.11]. Recall that every isometry $V \in B(\mathcal{H})$ has a decomposition $V = V_u \oplus V_c$, where $V_c \in C_{10}$ is a unilateral shift.

Corollary 3.3. Let $S \in P(k)$ be such that (its pure part) S_p has finite multiplicity. Then $S \sim V$ for some isometry $V \in B(\mathcal{H})$ if and only if S_n is unitarily equivalent to V_u and $S_p \sim V_c$.

Proof. Since every isometry satisfies property (β) , $S \sim V$ implies that $\sigma(S) = \sigma(V) = \mathbf{D}$. Consequently, S is a contraction. Decompose S into its normal and pure parts by $S = S_n \oplus S_p$; then $S_p \in C_{.0}$. Let $V = V_u \oplus V_c$. If SX = XV and VY = YS, $X = [X_{ij}]_{i,j=1}^2$ and $Y = [Y_{ij}]_{i,j=1}^2$, then $S_c X_{21} = X_{21} V_u$ and $V_c Y_{21} = Y_{21} S_n$. Clearly, $X_{21} = 0$. Applying the Putnam–Fuglede theorem to $V_c Y_{21} = Y_{21} S_n$ it is seen that $\overline{\text{ran} Y_{21}}$ reduces V_c and $V_c |_{\overline{\text{ran} Y_{21}}}$ is unitary. Consequently, $Y_{21} = 0$, Y_{11} is injective and $V_u Y_{11} = Y_{11} S_n$. Another application of the Putnam–Fuglede theorem to $V_u Y_{11} = Y_{11} S_u$ now shows that $\overline{\text{ran} Y_{11}}$ reduces V_u and S_n is unitarily equivalent to $V_u |_{\overline{\text{ran} Y_{11}}}$. Hence S_n is unitary (and unitarily equivalent to V_n). Applying Theorem 3.2, $S_p \sim V_c$, and the proof is complete.

References

- 1. S.K. Berberian Approximate proper vectors, Proc. Amer. Math. Soc. 13 (1962), 111-114.
- 2. P.S. Bourdon, Orbits of hyponormal operators, Michigan Math. J. 44 (1997), 345–353.
- 3. B.P. Duggal and C.S. Kubrusly, *Paranormal operators have property PF*, Far East J. Math. Sci. **14** (2004), 237–249.
- 4. W.W. Hastings, Subnormal operators quasi-similar to an isometry, Trans. Amer. Math. Soc. **256** (1979), 145–161.
- R.V. Kadison and I.M. Singer, Three test problems in operator theory, Pacific J. Math. 7 (1957), 1101–1106.
- 6. C.S. Kubrusly and B.P. Duggal, A note on k-paranormal operators, Oper. Matrices 4 (2010), 213–223.
- K.B. Laursen and M.N. Neumann, Introduction to Local Spectral Theory, Clarendon Press, Oxford (2000).
- 8. B. Sz.-Nagy and C. Foiaş, *Harmonic Analysis of Operators on Hilbert Spaces*, North-Holland, Amsterdam (1970).
- 9. K. Tanahashi and A. Uchiyama, Bishop's property (β) for paranormal operators, Oper. Matrices 3 (2009), 517–524.
- A.E. Taylor and D.C. Lay, Introduction to Functional Analysis, John Wiley and Sons, New York (1980).
- P.Y. Wu, Hyponormal operators quasisimilar to an isometry, Trans. Amer. Math. Soc. 291 (1985), 229–239.
- 12. J. Yuan and Z. Gao, Weyl spectrum of class A(n) and n-paranormal operators, Integral Equations Operator Theory 60 (2008), 289–298.

UNIVERSITY OF NIŠ, DEPARTMENT OF MATHEMATICS, P.O. BOX 224, NIŠ, SERBIA $E\text{-}mail\ address:}$ bpduggal@yahoo.co.uk

Catholic University of Rio de Janeiro, 22453-900, Rio de Janeiro, RJ, Brazil $E\text{-}mail\ address:}$ carlos@ele.puc-rio.br