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QUASI-SIMILAR k-PARANORMAL OPERATORS

B.P. DUGGAL AND C. S. KUBRUSLY

ABSTRACT. It is proved in this paper that k-paranormal operators satisfy
(Bishop’s) property (8); and also that if S and T are k-paranormal contrac-
tions such that the completely non-unitary part S. of S has finite multiplicity,
then S is quasi-similar to 7' if and only if their unitary parts are unitarily
equivalent and their completely non-unitary parts are quasi-similar. This gen-
eralizes a result of W.W. Hastings [4] on subnormal operators and P.Y. Wu
[11] on hyponormal operators.

1. INTRODUCTION

Let B(H) denote the algebra of operators on an infinite dimensional complex
Hilbert space. An operator T' € B(H) is k-paranormal for some integer k > 1 if

T2+ < |7 a

for every unit vector z € H. Let P(k) denote the class of all k-paranormal operators.
T € B(H) is a quasi-affinity if it is injective and has a dense range; S,T € B(H)
are quasi-similar, S ~ T, if there exist quasi-similarities X,Y € B(H) such that

SX =XT and TY =YS.

Let T, denote the unitary part and 7. denote the cnu (completely non-unitary)
part of a contraction T € B(H). Nagy—Foiag classes of contractions, Cpg, Co1, C1g
and C11 [8, p. 72] are defined as usual. Let o(T), 0,(T), 04(T), and o.(T') stand
for spectrum, point spectrum, approximate point spectrum, and essential spectrum
(or Fredholm spectrum) of T' € B(H), respectively. Let N denote the set of non
negative integers. The ascent asc(T') and descent dsc(T') of T'€ B(H) are given by

asc(T) = inf{n € N: T7"(0) = T~ "+1(0)}
and
dsc(T) = inf{n € N: T"(H) = T" " (H)}

(if no such integer n exists, then asc(T") = oo, respectively dsc(T) = c0). We say
that T has the single valued extension property, or SVEP, at A € C if for every
open neighborhood U of A, the only analytic solution f to the equation

(T —p)f(p)=0

for all y € U is the constant function f = 0; we say that T has SVEP if T has
a SVEP at every A € C. It is well known that finite ascent implies SVEP; also,
an operator has SVEP at every isolated point of its spectrum (as well as at every
isolated point of its approximate point spectrum). An operator T € B(H) satisfies
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(Bishop’s) property (0) if, for every open subset U of the complex plane C and

every sequence of analytic functions f, : U — H with the property that
(T=XNfn(A) =0 as n— o0

uniformly on all compact subsets of U, f,,(A)—0 as n— oo locally uniformly on U.

2. BISHOP’S PROPERTY () FOR P(k) OPERATORS

Recall that operators S € P(k) are normaloid, i.e., ||S|| = r(S5).

Lemma 2.1. ([12, Lemma 2.3 and Corollary 2.6]). If T € P(k) and (0 #)\ €

op(T), then
(N T (T —A)~H0)
T( 0 Ty ) ( {(T —X)~10)}+ )’
where Tys € P(k) N B({(T — A\)~1(0)}1) is such that X ¢ o,(Tas).

Lemma 2.2. ([3, Corollary 1]). If T € P(k) is a contraction, then it has a decom-
position T =T, & T,., where T, € C.

Lemma 2.3. Operators T € P(k) have finite ascent < 1.

Proof. Since asc(T — A\) = 0 for every A € o(T) \ 0,(T), we consider points A €
0,(T). If A = 0, then the definition of k-paranormality implies that 7~(*+1)(0) C
T-1(0); since T=1(0) C T~2(0) C ..., T-*+1(0) = T~'(0). Now let A # 0. Then

T-x= ( 8 %z—A ) ( {((TT—_AA)EE)(;)}L )

(
Recall, [10, Exercise 7, p. 293], that asc(T — A) < asc(0) 4 asc(T2 — A). Since
asc(Taa — A) = 0, we have that asc(T — \) = 1. |

An immediate consequence of Lemma 2.3 is the following:
Corollary 2.4. Operators T € P(k) have SVEP.

Given an open subset U of C, let H(U, H) denote the Fréchet space of analytic
functions from U to H. Then T € B(H) satisfies property () precisely when the
operator Ty : H(U,H) — H(U,H), (Tuf)(A) := (T =) f(N), (is injective and) has
closed range [7, Proposition 3.3.5].

Let ¢*°(H) denote the space of all bounded sequences of elements of H, and
let co(H) denote the space of all null sequences of H. Endowed with the canoni-
cal norm, the quotient space K = £>°(H)/co(H) can be made into a Hilbert space
[1], into which H may be isometrically embedded. The Berberian—Quigley exten-
sion theorem, [7, p. 255], says that given an operator T' € B(H) there exists an
isometric *-isomorphism 7" — T° € B(K) preserving order such that o(T") = o(7T°)
and 0,(T) = 04(T°) = 0,(T°). Let [z,] € K denote the equivalence class of the
sequence {z,} C H. If T € P(k), then

) ok
T[] ** = [T+ < T a|fle)* = |75 2] | [2]))*
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for each « € H. Hence the Berberian—Quigley extension 7 of an operator T' € P(k)
is again k-paranormal.

Theorem 2.5. Operators T € P(k) satisfy property (3).
Proof. Let U be an open subset of C, and assume that
(T —=Nfn(A) — 0 on H(U,H)
for every A € U. Then
(T° = X°)[fn(A)] =0 on H(U,K)

for every A € U. Since the k-paranormal operator T° has SVEP, [f,()\)] = 0 (i.e.,
{fn} € co(H)). We claim that f,(A) — 0 on H(U,H). Start by observing that
it D(A;r) = {peC : |A—u|<r} is such that D(\;r) C U, then the analytic

sequence {f,(A)} is uniformly bounded on D(A;r); furthermore, for every e > 0,
there exists a natural number N and 0 < p < r such that

Ifa)l <5 and  [fa(h) = fal)ll < 5

for all n > N and p € D()\;p). Indeed, considering % instead of f, if need

be, we may assume that sup|f,| = M < oo on D(A;r). The function f, being
analytic, fo (1) = fa(A) = Ym_y @nm(u =A™, and then || fo(X) = fa(u)]| < 724

r—p
for all 4 € D(A; p) such that 0 < p < r. Now choose N and p such that [f,(\)| < §
(recall that fn()) € o) and 722 < . Then

€
[£n (Il < 1Fa NI+ 1n(X) = falw)ll < 5

for alln > N and p € D(A; p). Consequently, f,(A) — 0in H(U, H), i.e., T satisfies
property (53). O

The conclusion that P(k) operators satisfy property (3) generalizes an observa-
tion by Uchiyama and Takahashi [9] that paranormal operators (i.e., P(1) oper-
ators) satisfy property (). Property (8) has a number of consequences: we list
below but a couple of these. Let D denote the closed unit disc in C.

Corollary 2.6. If S € P(k) is quasi-similar to an operator T € B(H) satisfying
property (8), then 0,(S) = 0,(T), where o, = o or o.. In particular, if S € P(k) is
quasi-similar to an isometry V € B(H), then S is a contraction such that 0,(S) =
0.(V)=D.

Proof. That 0,(S) = 0,(T") follows from an application of [7, Theorem 3.7.15]. In
the particular case in which T' = V, it follows that ¢,(S) = (V) = D. Hence,
since S is normaloid, »(T) = ||T|| = 1, i.e., S is a contraction. O

A number of the commonly considered classes of operators in B(H) (for example,
hyponormal, M-hyponormal, p-hyponormal for 0 < p < 1, w-hyponormal, (p, k)-
quasihyponormal operators for 0 < p < 1 and integers k > 1) are known to satisfy
property ((); Corollary 2.6 applies to operators 7' belonging to one of these classes.
An operator T on a separable Hilbert space H is said to be supercyclic if the
homogeneous orbit {A\T"z : A € C, n € NUO} is dense in H for some z € H. It is
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known that paranormal operators (i.e., operators in P(1)) are not supercyclic [2].
Does this extend to operators in P(k) for k > 27

We have a partial result for invertible k-paranormal operators. Recall that the
inverse of an invertible paranormal is again paranormal. It is, however, an open
question whether the inverse of an invertible k-paranormal operator for k£ > 2 is
k-paranormal [6].

Corollary 2.7. Operators T € P(k) such that T, whenever it exists, is also a
P(k) operator are not supercyclic.

Proof. Suppose that T' € P(k) is supercyclic. The class P(k) being closed under
multiplication by non-zero scalars, we may assume that ||T|| = 1. Since the su-
percyclic contraction T' satisfies property (3), o(T') is contained in the boundary
0D of D [7, Proposition 3.3.18]. Thus T is invertible, and hence (by hypothesis)
T-! € P(k). But then |T71|| =1 (= ||T||). Consequently, T is a unitary. Since
no unitary on an infinite dimensional Hilbert space can be supercyclic, we have a
contradiction. O

Next, we state a couple of corollaries to Corollary 2.7

Corollary 2.8. Invertible operators in P(k) such that their inverse lies in P(k—1)
are not supercyclic.

Proof. [6, Theorem 1] implies that T—! € P(k); apply Corollary 2.7. O

Corollary 2.9. If T € P(k) is invertible, and if

1T %"+ < (| T MY T ] B
or every unit vector x € H, then T is not supercyclic.
[ y percy

Proof. [6, Theorem 2] implies that T-! € P(k); apply Corollary 2.7. O

3. QUASI-SIMILAR P(k) OPERATORS

The multiplicity ur of an operator T' € B(H) is the minimum cardinality of a
set K C H such that H = \/,_,7"K. Evidently, if S,T € B(H) and SX = XT
for some operator X € B(H) with dense range, then pg < pr; hence, if there exist
operators X,Y € B(H) with dense range such that SX = XT and TY =Y S, then
s = pr. The following technical lemma will be required.

Lemma 3.1. ([11, Theorem 3.7]). If X € B(H) has dense range and is in the
commutant of a Cy -contraction T € B(H), then X is injective.

In the following we shall denote the normal part and the pure part (i.e., com-
pletely non-normal part) of an operator S € B(H) by S, and S, respectively; if
S is a contraction, then we shall denote its unitary and cnu parts by S, and S,
respectively.

Theorem 3.2. Let S,T € B(H) be P(k) contractions such that pus, < oco. Then
S ~ T if and only if Sy, T, are unitarily equivalent and S, ~ T,.
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Proof. The “if” part being obvious, we prove the “only if” part. Since S and T
have C g cnu parts by Lemma 2.2,

Sll 0 0 T11 0 0
S=5,85.= 0 Soo * and T=T,6T,= 0 Too * ,
0 0 S33 0 0 T33

where S11 = Su, T =Ty, Soo and Thy € Coo, and S33 and 133 € Cqp [8, Chapter
IT, Theorem 4.1]. Let SX = XT and TY =Y S, where X,Y € B(H) are quasi-
affinities. Then X and Y have representations X = [X;;]?,_; and Y = [Yj;]?,_;.
Observe that S11X12 = X127T52; since S is unitary and The € Coo,

[ Xugzl| = |57 Xaaz|| < [[Xaall | T352] — 0

as n—oo for all z. Hence X152 = 0. A similar argument shows that indeed X9, =
X371 = X320 =0=Y12 =Y = Y3 =Y35. Thus X;; and Yj; are injective, and

- X22 X23 o }/22 Y23
Xo( 0 X33 ) and Y()( 0 }/33 )

have dense range. The equalities S11 X117 = X11711 and T11Y71 = Y11.511 imply that
ranX1; reduces S, ranY7; reduces T, T1; is unitarily equivalent to 511|m and
S11 is unitarily equivalent to T11|m. Thus, S11 and 777 are unitarily equivalent
to direct summands of each other. Hence, [5], S11 and T3; are unitarily equivalent.

By hypothesis, us, < oco. Since S.Xo = X071, and T.Yy = ¥pS,, and Xy and
Yo have dense range, pg, = pr, < oo; this, since pg,, < ps, and pr, < pr,
implies that both HS33 and HTy3 ATE finite. Evidently, 533X33Y33 = X33Y33S33 and
T33Y33X33 = Y},ngngg, where X33Y},3 and Y33X33 have dense range. Applying
Lemma 3.1 it follows that X33Y33 and Y33.X33 are quasi-affinities; hence X33 and
Y33 are quasi-affinities. But then Xy and Yy are quasi-affinities; hence S, ~ T,. O

Theorem 3.2 extends a result on hyponormal contractions of Wu [11, Corollary
3.10], see also [4], to k-paranormal contractions. The following corollary extends
[11, Corollary 3.11]. Recall that every isometry V € B(H) has a decomposition
V =V, ®V,, where V. € C}g is a unilateral shift.

Corollary 3.3. Let S € P(k) be such that (its pure part) Sy, has finite multiplicity.
Then S ~V for some isometry V € B(H) if and only if S, is unitarily equivalent
to V, and S, ~ Ve.

Proof. Since every isometry satisfies property (8), S~V implies that o(S) =
(V) = D. Consequently, S is a contraction. Decompose S into its normal and
pure parts by S = S, ® Sp; then S, € Cp. Let V =V, @ V.. If SX = XV
and VY = YS, X = [Xij]z 1 and Y = [}/;j]z then SCXgl = X21Vu and

1,0= 1,j=1°
V.Y51 = Y51S,. Clearly, Xo1 = 0. Applying the Putnam—Fuglede theorem to
VoY1 = Y915, it is seen that ranYs; reduces V. and Vc|m is unitary. Conse-

quently, Y51 = 0, Y71 is injective and V, Y11 = Y11.5,. Another application of the
Putnam—Fuglede theorem to V, Y71 = Y715, now shows that ranY;; reduces V,, and
Sy, is unitarily equivalent to Vy |5 Hence S, is unitary (and unitarily equivalent
to V,,). Applying Theorem 3.2, S, ~ V,, and the proof is complete. O
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