ON THE a-BROWDER AND a-WEYL SPECTRA OF TENSOR PRODUCTS

B.P. DUGGAL, S.V. DJORDJEVIĆ, AND C.S. KUBRUSLY

ABSTRACT. Given Banach space operators $A \in B(\mathcal{X})$ and $B \in B(\mathcal{Y})$, let $A \otimes B \in B(\mathcal{X} \otimes \mathcal{Y})$ denote the tensor product of A and B. Let σ_a , σ_{aw} and σ_{ab} denote the approximate point spectrum, the Weyl approximate point spectrum and the Browder approximate point spectrum, respectively. Then $\sigma_{aw}(A \otimes B) \subseteq \sigma_a(A)\sigma_{aw}(B) \cup \sigma_{aw}(A)\sigma_a(B) \subseteq \sigma_a(A)\sigma_{ab}(B) \cup \sigma_{ab}(A)\sigma_a(B) = \sigma_{ab}(A \otimes B)$, and a sufficient condition for the (a-Weyl spectrum) identity $\sigma_{aw}(A \otimes B) = \sigma_a(A)\sigma_{aw}(B) \cup \sigma_{aw}(A)\sigma_a(B)$ to hold is that $\sigma_{aw}(A \otimes B) = \sigma_{ab}(A \otimes B)$. Equivalent conditions are proved in Theorem 1, and the problem of the transference of a-Weyl's theorem for a-isoloid operators A and B to their tensor product $A \otimes B$ is considered in Theorem 2. Necessary and sufficient conditions for the (plain) Weyl spectrum identity are revisited in Theorem 3.

1. Introduction

Given Banach spaces \mathcal{X} and \mathcal{Y} , let $\mathcal{X} \otimes \mathcal{Y}$ denote the completion (in some reasonable uniform cross norm) of the tensor product of \mathcal{X} and \mathcal{Y} . For Banach space operators $A \in B(\mathcal{X})$ and $B \in B(\mathcal{Y})$, let $A \otimes B \in B(\mathcal{X} \otimes \mathcal{Y})$ denote the tensor product of A and B. Recall that for an operator S, the Browder spectrum $\sigma_b(S)$ and the Weyl spectrum $\sigma_w(S)$ of S are the sets

$$\sigma_b(S) = \{\lambda \in \sigma(S) : S - \lambda \text{ is not Fredholm or } \operatorname{asc}(S - \lambda) \neq \operatorname{dsc}(S - \lambda)\},\$$

 $\sigma_w(S) = \{\lambda \in \sigma(S) : S - \lambda \text{ is not Fredholm or } \operatorname{ind}(S - \lambda) \neq 0\}.$

(All our notation is explained in the following section). In the case in which \mathcal{X} and \mathcal{Y} are Hilbert spaces, two of the authors proved in [8] that

if
$$\sigma_b(A) = \sigma_w(A)$$
 and $\sigma_b(B) = \sigma_w(B)$, then $\sigma_b(A \otimes B) = \sigma_w(A \otimes B)$
if and only if $\sigma_w(A \otimes B) = \sigma(A)\sigma_w(B) \cup \sigma_w(A)\sigma(B)$.

In other words, if A and B satisfy Browder's Theorem, then their tensor product satisfies Browder's theorem if and only if the Weyl spectrum identity holds true. The same proof still holds in a Banach space setting, and a new equivalent condition is added in Theorem 3 below.

The current paper considers the Browder approximate point spectrum σ_{ab} ,

$$\sigma_{ab}(S) = \{ \lambda \in \sigma_a(S) : \lambda \notin \Phi_+(S) \text{ or } \operatorname{asc}(S - \lambda) = \infty \},$$

and the Weyl approximate point spectrum σ_{aw} ,

$$\sigma_{aw}(S) = \{ \lambda \in \sigma_a(S) : \lambda \notin \Phi_+(S) \text{ or ind}(S - \lambda) > 0 \}.$$

Here σ_a denotes the approximate point spectrum and

Date: Feb 9, 2010.

²⁰⁰⁰ Mathematics Subject Classification. Primary 47A80; Secondary 47A53.

 $[\]it Keywords.$ Browder and Weyl approximate point spectrum, SVEP, tensor product.

$$\Phi_+(S) = \{ \lambda \in \sigma(S) \colon S - \lambda \text{ is upper semi-Fredholm} \}.$$

It is proved that

$$\sigma_{aw}(A \otimes B) \subseteq \sigma_a(A)\sigma_{aw}(B) \cup \sigma_{aw}(A)\sigma_a(B)$$

$$\subseteq \sigma_a(A)\sigma_{ab}(B) \cup \sigma_{ab}(A)\sigma_a(B) = \sigma_{ab}(A \otimes B),$$

and that,

if
$$\sigma_{ab}(A) = \sigma_{aw}(A)$$
 and $\sigma_{ab}(B) = \sigma_{aw}(B)$, then $\sigma_{ab}(A \otimes B) = \sigma_{aw}(A \otimes B)$
if and only if $\sigma_{aw}(A \otimes B) = \sigma_a(A)\sigma_{aw}(B) \cup \sigma_{aw}(A)\sigma_a(B)$,

which extends the above displayed result from [8] to Browder and Weyl approximate point spectrum.

Let $\Pi_0^a(S) = \{\lambda \in \text{iso } \sigma_a(S) : 0 < \dim(S - \lambda)^{-1}(0) < \infty\}$. We prove that if $\sigma_a(A) \setminus \sigma_{aw}(A) = \Pi_0^a(A)$ and $\sigma_a(B) \setminus \sigma_{aw}(B) = \Pi_0^a(B)$, the isolated points of $\sigma_a(A)$ (also, of $\sigma_a(B)$) are eigenvalues of A (resp. B), and $\sigma_{aw}(A \otimes B) = \sigma_a(A)\sigma_{aw}(B) \cup \sigma_{aw}(A)\sigma_a(B)$, then $\sigma_a(A \otimes B) \setminus \sigma_{aw}(A \otimes B) = \Pi_0^a(A \otimes B)$.

2. Notation and Complementary Results

For a bounded linear operator $S \in B(\mathcal{X})$, let $\sigma(S)$, $\sigma_p(S)$, $\sigma_a(S)$ and iso $\sigma(S)$ denote, respectively, the spectrum, the point spectrum, the approximate point spectrum of S and the isolated points of $\sigma(S)$. Let $\alpha(S)$ and $\beta(S)$ denote the nullity and the deficiency of S, defined by

$$\alpha(S) = \dim S^{-1}(0)$$
 and $\beta(S) = \operatorname{codim} S(\mathcal{X})$.

If the range $S(\mathcal{X})$ of S is closed and $\alpha(S) < \infty$ (resp. $\beta(S) < \infty$), then S is called an $upper\ semi-Fredholm$ (resp. a $lower\ semi-Fredholm$) operator. If $S \in B(\mathcal{X})$ is either upper or lower semi-Fredholm, then S is called a semi-Fredholm operator, and ind(S), the index of S, is then defined by $ind(S) = \alpha(S) - \beta(S)$. If both $\alpha(S)$ and $\beta(S)$ are finite, then S is a Fredholm operator. The ascent, denoted asc(S), and the ascent, denoted asc(S), are given by

$$\operatorname{asc}(S) = \inf\{n : S^{-n}(0) = S^{-(n+1)}(0)\}, \quad \operatorname{dsc}(S) = \inf\{n : S^{n}(\mathcal{X}) = S^{n+1}(\mathcal{X})\}\$$

(where the infimum is taken over the set of non-negative integers); if no such integer n exists, then $asc(S) = \infty$, respectively $dsc(S) = \infty$. Let

$$\begin{split} &\Phi_+(S) = \{\lambda \in \mathbb{C} \colon S - \lambda \text{ is upper semi-Fredholm}\}, \\ &\Phi_e(S) = \{\lambda \in \mathbb{C} \colon S - \lambda \text{ is Fredholm}\}, \\ &\sigma_{SF_+}(S) = \{\lambda \in \sigma_a(S) \colon \lambda \notin \Phi_+(S)\}, \\ &\sigma_{aw}(S) = \{\lambda \in \sigma_a(S) \colon \lambda \in \sigma_{SF_+}(S) \text{ or } \operatorname{ind}(S - \lambda) > 0\}, \\ &\sigma_{ab}(S) = \{\lambda \in \sigma_a(S) \colon \lambda \in \sigma_{SF_+}(S) \text{ or } \operatorname{asc}(S - \lambda) = \infty\}, \\ &\Pi_0^a(S) = \{\lambda \in \operatorname{iso} \sigma_a(S) \colon 0 < \dim(S - \lambda)^{-1}(0) < \infty\}, \\ &p_0^a(S) = \{\lambda \in \operatorname{iso} \sigma_a(S) \colon \lambda \in \Phi_+(S), \operatorname{asc}(S - \lambda) < \infty\}, \\ &H_0(S) = \{x \in \mathcal{X} \colon \lim_{n \to \infty} \|S^n x\|^{1/n} = 0\}. \end{split}$$

Recall that $\sigma_{aw}(S)$ is the Weyl approximate point spectrum of S, $\sigma_{ab}(S)$ is the Browder approximate point spectrum of S, and $H_0(S)$ is the quasi-nilpotent part of S [1].

We say that S has the *single valued extension property*, or SVEP, at $\lambda \in \mathbb{C}$ if for every open neighborhood U of λ , the only analytic solution f to the equation $(S - \mu)f(\mu) = 0$ for all $\mu \in U$ is the constant function $f \equiv 0$; we say that S has SVEP if S has a SVEP at every $\lambda \in \mathbb{C}$. It is well known that finite ascent implies SVEP; also, an operator has SVEP at every isolated point of its spectrum (as well as at every isolated point of its approximate point spectrum).

We say that $S \in B(\mathcal{X})$ satisfies a-Browder's theorem (shortened to S satisfies a-Bt) if $\sigma_{aw}(S) = \sigma_{ab}(S)$ (if and only if $\sigma_a(S) \setminus \sigma_{aw}(S) = p_0^a(S)$, see [1, p. 156]); S satisfies a-Weyl's theorem (shortened to S satisfies a-Wt) if $\sigma_a(S) \setminus \sigma_{aw}(S) = \Pi_0^a(S)$ (if and only if S satisfies a-Bt and $p_0^a(S) = \Pi_0^a(S)$) [1, p. 177]. The implications a-Wt \Longrightarrow a-Bt and a-Wt \Longrightarrow Weyl's theorem are well known. Let iso $\sigma_a(S)$ denote the isolated points of $\sigma_a(S)$.

Lemma 1. [1, Theorem 3.23]. If $S \in B(\mathcal{X})$ has SVEP at $\lambda \in \sigma(S) \setminus \sigma_{SF_+}(S)$, then $\lambda \in iso \sigma_a(S)$ and $asc(S - \lambda) < \infty$.

Let $A \in B(\mathcal{X})$ and $B \in B(\mathcal{Y})$.

Lemma 2. [2] and [6, Theorem 4.4 (a),(b)].

- (i) $\sigma_x(A \otimes B) = \sigma_x(A)\sigma_x(B)$, where $\sigma_x = \sigma$ or σ_a .
- (ii) $\sigma_{SF_+}(A \otimes B) = \sigma_{SF_+}(A)\sigma_a(B) \cup \sigma_a(A)\sigma_{SF_+}(B)$.

The inclusions below are readily verified.

Lemma 3. $iso \sigma_a(A \otimes B) \subseteq iso \sigma_a(A) iso \sigma_a(B) \cup \{0\}$ and $\sigma_p(A) \sigma_p(B) \subseteq \sigma_p(A \otimes B)$.

Lemma 4. $0 \notin \sigma_a(A \otimes B) \setminus \sigma_{SF_+}(A \otimes B)$.

Proof. Suppose that $0 \in \sigma_a(A \otimes B) \setminus \sigma_{SF_+}(A \otimes B)$. Then $0 \in \sigma_a(A \otimes B) \cap \Phi_+(A \otimes B)$, i.e., $A \otimes B$ has closed range and $0 < \alpha(A \otimes B) < \infty$. Since $A \otimes B$ is injective if and only if A and B are injective, we have that $\alpha(A) > 0$ or $\alpha(B) > 0$. But then $\alpha(A \otimes B) = \infty$, and we have a contradiction.

3. Results

We start with a lemma relating $\sigma_{aw}(A \otimes B)$ and $\sigma_{ab}(A \otimes B)$.

Lemma 5. Let $A \in B(\mathcal{X})$ and $B \in B(\mathcal{Y})$.

$$\sigma_{aw}(A \otimes B) \subseteq \sigma_a(A)\sigma_{aw}(B) \cup \sigma_{aw}(A)\sigma_a(B)$$

$$\subseteq \sigma_a(A)\sigma_{ab}(B) \cup \sigma_{ab}(A)\sigma_a(B) = \sigma_{ab}(A \otimes B).$$

Proof. Since $\sigma_{aw}(S) \subseteq \sigma_{ab}(S)$, for every operator S, the inclusion $\sigma_a(A)\sigma_{aw}(B) \cup \sigma_{aw}(A)\sigma_a(B) \subseteq \sigma_a(A)\sigma_{ab}(B) \cup \sigma_{ab}(A)\sigma_a(B)$ is evident. To prove the inclusion $\sigma_{aw}(A \otimes B) \subseteq \sigma_a(A)\sigma_{aw}(B) \cup \sigma_{aw}(A)\sigma_a(B)$, take $\lambda \notin \sigma_a(A)\sigma_{aw}(B) \cup \sigma_{aw}(A)\sigma_a(B)$. Since $\sigma_{SF_+}(A \otimes B) \subseteq \sigma_a(A)\sigma_{aw}(B) \cup \sigma_{aw}(A)\sigma_a(B)$, Lemma 4 implies that $\lambda \neq 0$. For every factorization $\lambda = \mu\nu$ of λ such that $\mu \in \sigma_a(A)$ and $\nu \in \sigma_a(B)$ we have that $\mu \in \sigma_a(A) \setminus \sigma_{aw}(A)$ and $\nu \in \sigma_a(B) \setminus \sigma_{aw}(B)$, i.e., $\lambda \in \Phi_+(A)$, $\nu \in \Phi_+(B)$, ind $(A - \mu) \leq 0$ and ind $(B - \nu) \leq 0$. In particular, $\lambda \notin \sigma_{SF_+}(A \otimes B)$.

We prove next that $\operatorname{ind}(A \otimes B - \lambda) \leq 0$. Suppose that $\operatorname{ind}(A \otimes B - \lambda) > 0$. Then $\alpha(A \otimes B - \lambda) < \infty$ implies that $\beta(A \otimes B - \lambda) < \infty$, so that $\lambda \in \Phi_e(A \otimes B)$. Let

$$E = \{(\mu_i, \nu_i)_{i=1}^p \in \sigma(A)\sigma(B) \colon \mu_i \nu_i = \lambda\}.$$

Then E is a finite set. Furthermore (see [5, Theorem 3.1] and [4]):

- (i) if n > 1, then $\mu_i \in \text{iso } \sigma(A)$, for $1 \le i \le n$;
- (ii) if p > n, then $\nu_i \in \text{iso } \sigma(B)$, for $n + 1 \le i \le p$;

(iii)
$$\operatorname{ind}(A \otimes B - \lambda) = \sum_{j=n+1}^{p} \operatorname{ind}(A - \mu_j) \operatorname{dim} H_0(B - \nu_j) + \sum_{j=1}^{n} \operatorname{ind}(B - \nu_j) \operatorname{dim} H_0(A - \mu_j).$$

Since $\operatorname{ind}(A - \mu_i)$ and $\operatorname{ind}(B - \nu_i)$ are non-positive, we have a contradiction. Hence, $\operatorname{ind}(A \otimes B - \lambda) \leq 0$, and consequently $\lambda \notin \sigma_{aw}(A \otimes B)$. This leaves us to prove the equality $\sigma_{ab}(A \otimes B) = \sigma_a(A)\sigma_{ab}(B) \cup \sigma_{ab}(A)\sigma_a(B)$.

Suppose that $\lambda \notin \sigma_{ab}(A \otimes B)$. Then $\lambda \neq 0$, $\lambda \in \Phi_+(A \otimes B)$ and $\operatorname{asc}(A \otimes B - \lambda) < \infty$. Observe that $\lambda \in \operatorname{iso} \sigma_a(A \otimes B)$. Let $\lambda = \mu \nu$ be any factorization of λ such that $\mu \in \sigma_a(A)$ and $\nu \in \sigma_a(B)$; then $\mu \in \Phi_+(A)$ and $\nu \in \Phi_+(B)$. Furthermore, since $\sigma_a(A \otimes B) \subseteq \operatorname{iso} \sigma_a(A) \operatorname{iso} \sigma_a(B) \cup \{0\}$, A has SVEP at μ and B has SVEP at ν . Consequently, $\mu \in \Phi_+(A)$, $\operatorname{asc}(A - \mu) < \infty$, $\nu \in \Phi_+(B)$ and $\operatorname{asc}(B - \nu) < \infty$, i.e., $\mu \notin \sigma_{ab}(A)$ and $\nu \notin \sigma_{ab}(B)$. But then $\lambda \notin \sigma_a(A)\sigma_{ab}(B) \cup \sigma_{ab}(A)\sigma_a(B)$. Hence $\sigma_a(A)\sigma_{ab}(B) \cup \sigma_{ab}(A)\sigma_a(B) \subseteq \sigma_{ab}(A \otimes B)$.

To prove the reverse inclusion we start by recalling the (easily proved) fact that if $\mu \in \text{iso } \sigma_a(A)$ and $\nu \in \text{iso } \sigma_a(B)$ for every factorization $\lambda = \mu\nu$ of $\lambda \neq 0$, then $\lambda = \mu\nu \in \text{iso } \sigma_a(A \otimes B)$. Let $\lambda \notin \sigma_a(A)\sigma_{ab}(B) \cup \sigma_{ab}(A)\sigma_a(B)$. Then $\lambda \neq 0$. Furthermore, if $\lambda = \mu\nu$ is any factorization of λ such that $\mu \in \sigma_a(A)$ and $\nu \in \sigma_a(B)$, then the following implications hold:

$$\mu \notin \sigma_{ab}(A) \text{ and } \nu \notin \sigma_{ab}(B) \implies$$
 $\mu \in \Phi_{+}(A), \ \nu \in \Phi_{+}(B), \ \operatorname{asc}(A - \mu) < \infty \text{ and } \operatorname{asc}(B - \nu) < \infty \implies$
 $\lambda \in \Phi_{+}(A \otimes B), \ \mu \in \operatorname{iso} \sigma_{a}(A) \text{ and } \nu \in \operatorname{iso} \sigma_{a}(B) \implies$
 $\lambda \in \Phi_{+}(A \otimes B) \text{ and } \lambda \in \operatorname{iso} \sigma_{a}(A \otimes B) \implies$
 $\lambda \in \Phi_{+}(A \otimes B) \text{ and } \operatorname{asc}(A \otimes B - \lambda) < \infty \implies$
 $\lambda \notin \sigma_{ab}(A \otimes B).$

Hence, $\sigma_{ab}(A \otimes B) \subseteq \sigma_a(A)\sigma_{ab}(B) \cup \sigma_{ab}(A)\sigma_a(B)$, and the proof is complete. \square

The equality $\sigma_{aw}(A \otimes B) = \sigma_a(A)\sigma_{aw}(B) \cup \sigma_{aw}(A)\sigma_a(B)$ fails to hold in general, as follows from Remark 2(a) below. The following lemma gives a sufficient condition for the equality to hold.

Lemma 6. If $A \otimes B$ satisfies a-Bt, then

$$\sigma_{aw}(A \otimes B) = \sigma_a(A)\sigma_{aw}(B) \cup \sigma_{aw}(A)\sigma_a(B).$$

Proof. $A \otimes B$ satisfies a-Bt if and only if $\sigma_{aw}(A \otimes B) = \sigma_{ab}(A \otimes B)$. Thus the stated result is an immediate consequence of Lemma 5.

Remark 1. The hypothesis $\sigma_{aw}(A \otimes B) = \sigma_a(A)\sigma_{aw}(B) \cup \sigma_{aw}(A) \cup \sigma_a(B)$ is not sufficient to guarantee that $A \otimes B$ satisfies a-Bt. Indeed, the conclusion $A \otimes B$ satisfies a-Bt is liable to fail if one of A and B does not satisfy a-Bt, as the following example shows. Let $U \in B(\ell_+^2)$ denote the forward unilateral shift $U(x_1, x_2, x_3, ...) = 0$

 $(0,x_1,x_2,x_3,\ldots)$. Let $A=U^*$ (or, $A=U\oplus U^*$) and let $B\in B(\ell_+^2)$ be the operator $B=I\oplus \frac{1}{2}I$, $I(x_1,x_2,\ldots)=(x_1,x_2,\ldots)$ for all $(x_1,x_2,x_3,\ldots)\in \ell_+^2$. Then, letting $\partial\mathbb{D}$ denote the boundary of the closed unit disc \mathbb{D} , $\sigma_a(A)=\mathbb{D}$, $\sigma_{aw}(A)=\partial\mathbb{D}$, $\sigma(B)=\sigma_{aw}(B)=\sigma_w(B)=\{\frac{1}{2},1\}$, $\sigma_a(A)\sigma_{aw}(B)\cup\sigma_{aw}(A)\cup\sigma_a(B)=\partial\mathbb{D}\cup\frac{1}{2}\mathbb{D}$ and $\sigma_a(A\otimes B)=\mathbb{D}=\sigma(A\otimes B)$. Since $\mathrm{asc}(A-\mu)=\infty$ for all $\mu\in\sigma(A)$ (in both choices of A), $\sigma_{ab}(A\otimes B)=\mathbb{D}$. Evidently, A and $A\otimes B$ do not satisfy a-Bt. We remark here that if either $\sigma_a(C)=\sigma_{aw}(C)$ or $\sigma_a(D)=\sigma_{aw}(D)$ for some operators $C\in B(\mathcal{X})$ and $D\in B(\mathcal{Y})$, then $\sigma(C\otimes D)=\sigma_a(C)\sigma_{aw}(D)\cup\sigma_{aw}(C)\cup\sigma_a(D)$; consequently, $\sigma_w(C\otimes D)=\sigma_a(C)\sigma_{aw}(D)\cup\sigma_{aw}(C)\cup\sigma_a(D)$ implies $C\otimes D$ satisfies a-Bt.

The next theorem, our main result, proves that A and B satisfy a-Bt implies $A \otimes B$ satisfies a-Bt if and only if $\sigma_{aw}(A \otimes B) = \sigma_a(A)\sigma_{aw}(B) \cup \sigma_{aw}(A)\sigma_a(B)$.

Theorem 1. If A and B satisfy a-Bt, then the following conditions are equivalent:

- (i) $A \otimes B$ satisfies a-Bt.
- (ii) $\sigma_{aw}(A \otimes B) = \sigma_a(A)\sigma_{aw}(B) \cup \sigma_{aw}(A)\sigma_a(B)$.
- (iii) A has SVEP at every $\mu \in \Phi_+(A)$ and B has SVEP at every $\nu \in \Phi_+(B)$ such that $(0 \neq) \lambda = \mu \nu \in \sigma_a(A \otimes B) \setminus \sigma_{aw}(A \otimes B)$.

Proof. If A and B satisfy a-Bt, then $\sigma_{aw}(A) = \sigma_{ab}(A)$ and $\sigma_{aw}(B) = \sigma_{ab}(B)$.

(i) \Leftrightarrow (ii). By Lemma 6 we have, without any extra condition, that (i) \Rightarrow (ii). If (ii) is satisfied, then

$$\sigma_{aw}(A \otimes B) = \sigma_a(A)\sigma_{aw}(B) \cup \sigma_{aw}(A)\sigma_a(B)$$

= $\sigma_a(A)\sigma_{ab}(B) \cup \sigma_{ab}(A)\sigma_a(B) = \sigma_{ab}(A \otimes B)$

(by Lemma 5). Hence $A \otimes B$ satisfies a-Bt.

(ii) \Rightarrow (iii). Suppose that (ii) holds. Let $\lambda \in \sigma_a(A \otimes B) \setminus \sigma_{aw}(A \otimes B) = \sigma_a(A \otimes B) \setminus \sigma_{ab}(A \otimes B)$. Then $(\lambda \neq 0 \text{ and})$ for every factorization $\lambda = \mu \nu$ of λ such that $\mu \in \sigma_a(A) \cap \Phi_+(A)$ and $\nu \in \sigma_a(B) \cap \Phi_+(B)$ we have that $\operatorname{asc}(A - \mu)$ and $\operatorname{asc}(B - \nu)$ are finite. Hence, A and B have SVEP at (all such) μ and ν , respectively.

(iii) \Rightarrow (ii). In view of Lemma 5, we have to prove that $\sigma_{ab}(A \otimes B) \subseteq \sigma_{aw}(A \otimes B)$. Suppose that (iii) is satisfied. Take a $\lambda \in \sigma_a(A \otimes B) \setminus \sigma_{aw}(A \otimes B)$. Then $(0 \neq) \lambda \in \Phi_+(A \otimes B)$ and $\operatorname{ind}(A \otimes B) \leq 0$. The equality $\sigma_{SF_+}(A \otimes B) = \sigma_{SF_+}(A)\sigma_a(B) \cup \sigma_a(A)\sigma_{SF_+}(B)$ (see Lemma 2) implies that for every factorization $\lambda = \mu\nu$ of λ (such that $\mu \in \sigma_a(A)$ and $\nu \in \sigma_a(B)$) we have that $\mu \in \Phi_+(A)$ and $\nu \in \Phi_+(B)$. The SVEP hypothesis on A and B implies that $\operatorname{asc}(A - \mu)$ and $\operatorname{asc}(B - \nu)$ are finite. Hence, $\mu \notin \sigma_{ab}(A)$ and $\nu \notin \sigma_{ab}(B)$. But then $\lambda \notin \sigma_{ab}(A \otimes B)$; hence $\sigma_{ab}(A \otimes B) \subseteq \sigma_{aw}(A \otimes B)$.

It is worth noticing that the equivalence (i) \Leftrightarrow (ii) in Theorem 1 extends the result [8, Corollary 6] from plain Browder's theorem and plain Weyl spectrum identity to a-Browder's theorem and a-Weyl spectrum identity.

Remark 2. Recall that $S \in B(\mathcal{X})$ satisfies Browder's theorem if $\sigma_w(S) = \sigma_b(S)$. Let $U \in B(\ell^2)$ denote the forward unilateral shift, and define the operators A, B by $A = (1 - UU^*) \oplus (\frac{1}{2}U - 1), B = -(1 - UU^*) \oplus (\frac{1}{2}U^* + 1)$. Then A and B satisfy Browder's theorem, but $A \otimes B$ does not satisfy Browder's theorem [7, Section 3]. More is true.

- (a) Since A and B^* have SVEP, they satisfy a-Browder's theorem. Furthermore, since the operator $A \otimes B$ fails to have SVEP on the complement of $\sigma_w(A \otimes B)$, it fails to have SVEP on $\sigma_a(A \otimes B) \setminus \sigma_{aw}(A \otimes B) \supset \sigma(A \otimes B) \setminus \sigma_w(A \otimes B)$, hence does not satisfy a-Browder's theorem [3, Lemma 2.18]. Theorem 1 implies that $A \otimes B$ does not satisfy the equality $\sigma_{aw}(A \otimes B) = \sigma_a(A)\sigma_{aw}(B) \cup \sigma_{aw}(A)\sigma_a(B)$.
- (b) A well-known open question, implicitly posed in [5, Theorem 4.2], asks whether the following inclusion, which holds for all operators A and B,

$$\sigma_w(A \otimes B) \subseteq \sigma_w(A) \cdot \sigma(B) \cup \sigma(A) \cdot \sigma_w(B),$$

may become a proper inclusion for some pair of operators. Equivalently, whether the above inclusion is an identity for every pair of operators. However, it was proved in [8, Proposition 7(a)] that if A and B are such that

$$\sigma_w(A \otimes B) = \sigma_w(A) \cdot \sigma(B) \cup \sigma(A) \cdot \sigma_w(B)$$

(i.e., if the Weyl spectrum identity holds) and if both A and B satisfy Browder's theorem, then the tensor product $A \otimes B$ satisfies Browder's theorem. Therefore, if there exist A and B that satisfy Browder's theorem, but $A \otimes B$ does not satisfy Browder's theorem, then the Weyl spectrum identity does not hold for them.

The next theorem gives a sufficient condition for $A \otimes B$ to satisfy a-Wt, given that A and B satisfy a-Wt. But before that a couple of technical lemmas. Recall that an operator S is said to be a-isoloid if $\lambda \in \text{iso } \sigma_a(S)$ implies $\lambda \in \sigma_p(S)$.

Lemma 7. A and B are a-isoloid implies $A \otimes B$ is a-isoloid.

Proof. If iso $\sigma_a(A) = \text{iso } \sigma_a(B) = \varnothing$, then iso $\sigma_a(A \otimes B) = \varnothing$. Observe also that if either of iso $\sigma_a(A)$ or iso $\sigma_a(B)$ is the empty set, say iso $\sigma_a(A) = \varnothing$, then iso $\sigma_A(A \otimes B) \subseteq \{0\}$ and $0 \in \text{iso } \sigma_a(B)$. But then $0 \in \sigma_p(B)$, which implies that $0 \in \sigma_p(A \otimes B)$. Now let $\lambda \in \text{iso } \sigma_a(A \otimes B)$ be such that $\lambda = \mu\nu$, $\mu \in \text{iso } \sigma_a(A)$ and $\nu \in \text{iso } \sigma_a(B)$. Then $\mu \in \sigma_p(A)$ and $\nu \in \sigma_p(B)$. Since $\sigma_p(A) \cdot \sigma_p(B) \subseteq \sigma_p(A \otimes B)$, we have $\lambda \in \sigma_p(A \otimes B)$.

Lemma 8. Suppose that A, B and $A \otimes B$ satisfy a-Bt. If $\mu \in p_0^a(A)$ and $\nu \in p_0^a(B)$, then $\lambda = \mu \nu \in p_0^a(A \otimes B)$.

Proof. $\mu \in \sigma_a(A) \setminus \sigma_{aw}(A)$, $\nu \in \sigma_a(B) \setminus \sigma_{aw}(B)$ and $\sigma_{aw}(A \otimes B) = \sigma_a(A)\sigma_{aw}(B) \cup \sigma_{aw}(A)\sigma_a(B)$. Hence, $\lambda = \mu\nu \in \sigma_a(A \otimes B) \setminus \sigma_{aw}(A \otimes B) = p_0^a(A \otimes B)$.

Theorem 2. Suppose that A and B are a-isoloid operators which satisfy a-Wt. If $\sigma_{aw}(A \otimes B) = \sigma_a(A)\sigma_{aw}(B) \cup \sigma_{aw}(A)\sigma_a(B)$, then $A \otimes B$ satisfies a-Wt.

Proof. The hypotheses imply that $A \otimes B$ satisfies a-Bt, i.e., $\sigma_a(A \otimes B) \setminus \sigma_{aw}(A \otimes B) = p_0^a(A \otimes B)$. Since $p_0^a(A \otimes B) \subseteq \Pi_0^a(A \otimes B)$, we have to prove that $\Pi_0^a(A \otimes B) \subseteq p_0^a(A \otimes B)$. Let $\lambda \in \Pi_0^a(A \otimes B)$. Then $(0 \neq)\lambda = \mu\nu$ for some $\mu \in \text{iso } \sigma_a(A)$ and $\nu \in \text{iso } \sigma_a(B)$. The operators A and B being a-isoloid, it follows (from $\lambda \in \Pi_0^a(A \otimes B)$) that $\mu \in \Pi_0^a(A) = p_0^a(A)$ and $\nu \in \Pi_0^a(B) = p_0^a(B)$. By Lemma 8, $\lambda \in p_0^a(A \otimes B)$. \square

4. Browder's Theorem

A bounded linear operator S satisfies Browder's theorem, Bt for short, if $\sigma_w(S) = \sigma_b(S)$; S satisfies Weyl theorem, Wt for short, if $\sigma(S) \setminus \sigma_w(S) = \Pi_0(S)$ (equivalently, if S satisfies Bt and $p_0(S) = \Pi_0(S)$), where $p_0(S)$ ($\Pi_0(S)$) is the set of isolated point in $\sigma(S)$ with finite ascent and descent (resp. with finite dimensional kernel). It is known, [1], that

Theorem 3. If A and B satisfy Bt, then the following conditions are equivalent:

- (i) $A \otimes B$ satisfies Bt.
- (ii) $\sigma_w(A \otimes B) = \sigma(A)\sigma_w(B) \cup \sigma_w(A)\sigma(B)$.
- (iii) A has SVEP at points $\mu \in \Phi(A)$ and B has SVEP at points $\nu \in \Phi(B)$ such that $(0 \neq) \lambda = \mu \nu \notin \sigma_w(A \otimes B)$.

Proof. (i) \Leftrightarrow (ii). [8, Corollary 6].

(ii) \Leftrightarrow (iii). The proof is similar to that of Theorem 1: we include it here for completeness. Suppose that (ii) holds. Let $\lambda \in \sigma(A \otimes B) \setminus \sigma_w(A \otimes B) = \sigma(A \otimes B) \setminus \sigma_b(A \otimes B)$. Then $(\lambda \neq 0 \text{ and})$ for every factorization $\lambda = \mu\nu$ of λ such that $\mu \in \sigma(A) \cap \Phi(A)$ and $\nu \in \sigma(B) \cap \Phi(B)$ we have that $\operatorname{asc}(A - \mu)$ and $\operatorname{asc}(B - \nu)$ are finite. Hence, A and B have SVEP at (all such) μ and ν , respectively. We suppose next that (iii) is satisfied and prove that $\sigma_b(A \otimes B) \subseteq \sigma_w(A \otimes B)$. Take a $\lambda \in \sigma(A \otimes B) \setminus \sigma_w(A \otimes B)$. Then $(0 \neq \lambda) \in \Phi(A \otimes B)$ and $\operatorname{ind}(A \otimes B - \lambda) = 0$. The equality $\sigma_e(A \otimes B) = \sigma_e(A)\sigma(B) \cup \sigma(A)\sigma_e(B)$ implies that for every factorization $\lambda = \mu\nu$ of λ (such that $\mu \in \sigma(A)$ and $\nu \in \sigma(B)$) we have $\mu \in \Phi(A)$ and $\nu \in \Phi(B)$. The SVEP hypothesis on A and B implies that $\operatorname{asc}(A - \mu)$ and $\operatorname{asc}(B - \nu)$ are finite (which in turn implies that $\operatorname{ind}(A - \mu)$ and $\operatorname{ind}(B - \nu)$ are both ≤ 0). Thus, in view of the fact that $\operatorname{ind}(A \otimes B - \lambda) = 0$, it follows from the index formula (iii) of the proof of Lemma 5 that $\operatorname{ind}(A - \mu)$ and $\operatorname{ind}(B - \nu)$ are both 0. Consequently, both $A - \mu$ and $B - \nu$ have finite ascent and descent [1, Theorem 3.4 (iv)]. But then $\mu \notin \sigma_b(A)$ and $\nu \notin \sigma_b(B)$, which implies that $\lambda \notin \sigma_b(A \otimes B)$. Hence $\sigma_b(A \otimes B) \subseteq \sigma_w(A \otimes B)$. \square

Remark 3. A result similar to that in Lemma 6 shows that the hypothesis $A \otimes B$ satisfies Bt ensures that $\sigma_w(A \otimes B) = \sigma(A)\sigma_w(B) \cup \sigma_w(A)\sigma(B)$ (see [8, Proposition 6]). Also, the example in Remark 1 shows that the opposite implication is not true in general. Indeed, let $A = U \oplus U^*$ and B be defined as in Remark 1. Then $\sigma(A) = \mathbb{D}$, $\sigma_w(A) = \partial \mathbb{D}$, $\sigma(B) = \sigma_w(B) = \{\frac{1}{2}, 1\}$, $\sigma_w(A \otimes B) = \sigma(A)\sigma_w(B) \cup \sigma_w(A)\sigma(B) = \partial \mathbb{D} \cup \frac{1}{2}\mathbb{D}$, $\sigma_b(A \otimes B) = \mathbb{D}$ and $\sigma(A \otimes B) = \mathbb{D}$. Evidently, A and $A \otimes B$ do not satisfy Bt.

References

- P. Aiena, Fredholm and local spectral theory, with applications to multipliers, Kluwer Academic Publishers, 2004.
- A. Brown and C. Pearcy, Spectra of tensor products of operators, Proc. Am. Math. Soc. 17 (1966), 162–166.

- 3. B.P. Duggal, Hereditarily normaloid operators, Extracta Math. 20 (2005), 203-217.
- J. Eschmeier, Tensor products and elementary operators, J. Reine Agnew. Math. 390 (1988), 47–66
- T. Ichinose, Spectral properties of tensor products of linear operators I, Trans. Amer. Math. Soc. 235 (1978), 75–113.
- T. Ichinose, Spectral properties of tensor products of linear operators II, Trans. Amer. Math. Soc. 237 (1978), 223–254.
- 7. D. Kitson, R. Harte and C. Hernandez, Weyl's theorem and tensor products: a counterexample, pre-print (2010).
- C.S. Kubrusly and B.P. Duggal, On Weyl and Browder spectra of tensor products, Glasgow Math. J. 50 (2008), 289–302.

8 REDWOOD GROVE, NORTHFIELD AVENUE, LONDON W5 4SZ, ENGLAND, U.K $E\text{-}mail\ address:\ bpduggal@yahoo.co.uk}$

FCFM, BENEMERITA UNIVERSIDAD AUTONOMA DE PUEBLA, RÍO VERDE Y AV. SAN CLAUDIO, SAN MANUEL, PUEBLA, PUE. 72570, MEXICO

 $E ext{-}mail\ address: slavdj@fcfm.buap.mx}$

Catholic University of Rio de Janeiro, 22453-900, Rio de Janeiro, RJ, Brazil $E\text{-}mail\ address:\ {\tt carlos@ele.puc-rio.br}$