Rendiconti del Circolo Matematico di Palermo 59 (2010) 473-481

ON THE ¢-BROWDER AND «-WEYL SPECTRA OF TENSOR
PRODUCTS

B.P. DUGGAL, S.V. DJORDJEVIC, AND C.S. KUBRUSLY

ABSTRACT.  Given Banach space operators A € B(X) and B € B(Y), let
A® B € B(X ®Y) denote the tensor product of A and B. Let 04, Taw
and o,p denote the approximate point spectrum, the Weyl approximate point
spectrum and the Browder approximate point spectrum, respectively. Then
Oaw(A® B) C 04q(A)oqw(B)Uoqw(A)oa(B) C 04(A)oap(B)Uoeps(A)oa(B) =
cab(A® B), and a sufficient condition for the (a-Weyl spectrum) identity
Oaw(A® B) = 04(A)oaw(B) Uoaw(A)oa(B) to hold is that cqw(A® B) =
cab(A ® B). Equivalent conditions are proved in Theorem 1, and the problem
of the transference of a-Weyl’s theorem for a-isoloid operators A and B to their
tensor product A ® B is considered in Theorem 2. Necessary and sufficient
conditions for the (plain) Weyl spectrum identity are revisited in Theorem 3.

1. INTRODUCTION

Given Banach spaces X and ), let X ® ) denote the completion (in some rea-
sonable uniform cross norm) of the tensor product of X and ). For Banach space
operators A € B(X) and B € B(Y),let A® B € B(X ® V) denote the tensor prod-
uct of A and B. Recall that for an operator S, the Browder spectrum o3(S) and
the Weyl spectrum o,,(S) of S are the sets

op(S) = {A € a(S): S — \is not Fredholm or asc(S — A) # dsc(S — A)},
0w (S) ={A € g(5): S — A is not Fredholm or ind(S — A) # 0}.

(Al our notation is explained in the following section). In the case in which X and
Y are Hilbert spaces, two of the authors proved in [8] that

if 0p(A) =0yu(A) and op(B) = 04 (B), then 0p(A® B) =0, (A® B)
if and only if 0,(A® B) = 0(A)ow(B) U oy (A)a(B).

In other words, if A and B satisfy Browder’s Theorem, then their tensor product
satisfies Browder’s theorem if and only if the Weyl spectrum identity holds true.
The same proof still holds in a Banach space setting, and a new equivalent condition
is added in Theorem 3 below.

The current paper considers the Browder approximate point spectrum o,
oap(S) ={A € 04(S): A& ®(5) or asc(S — \) = o0},
and the Weyl approximate point spectrum o,
aw(S) = {A € 04(S): A ¢ ©,.(S) or ind(S — A) > 0}.
Here o, denotes the approximate point spectrum and
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o, (S)={N€g(5): S — \is upper semi-Fredholm}.
It is proved that

Oaw(A® B) C 04(A)0aw(B) U daw(A)o.(B)

c a
C 04(A)oap(B)Uap(A)oa(B) = 0ap(A® B),
and that,

if 04p(A) = 04w(A) and 044(B) = 04 (B), then 04,(A® B) = 04,(AQ B)
if and only if 044, (A ® B) = 04(A)04w(B) U 0aw(A)o.(B),

which extends the above displayed result from [8] to Browder and Weyl approximate
point spectrum.

Let TI2(S) = {\ € iso0,(S): 0 < dim(S — A\)71(0) < oo}. We prove that
if 04(A)\ 04w(A) = IIE(A) and 04(B) \ 0aw(B) = I&(B), the isolated points
of 04,(A) (also, of 0,(B)) are eigenvalues of A (resp. B), and 04,(A ® B) =
04(A)0aquw(B) Udaw(A)oy(B), then 0,(AQ B) \ 04(A® B) =1I(A® B).

2. NOTATION AND COMPLEMENTARY RESULTS

For a bounded linear operator S € B(X), let o(S), 0,(5), 04(S) and iso o (S)
denote, respectively, the spectrum, the point spectrum, the approximate point spec-
trum of S and the isolated points of o(S). Let a(S) and 3(S) denote the nullity
and the deficiency of S, defined by

a(S) =dimS~1(0) and A3(S) = codim S(X).

If the range S(X) of S is closed and «(S) < oo (resp. 5(S) < 00), then S is called
an upper semi-Fredholm (resp. a lower semi-Fredholm) operator. If S € B(X) is
either upper or lower semi-Fredholm, then S is called a semi-Fredholm operator,
and ind(S), the index of S, is then defined by ind(S) = a(S) — 5(S). If both a(S5)
and B(S) are finite, then S is a Fredholm operator. The ascent, denoted asc(S),
and the descent, denoted dsc(S), of S are given by

asc(S) = inf{n: S7(0) = STV (0)}, dsc(S) = inf{n: S™(X) = S"F1(X)}

(where the infimum is taken over the set of non-negative integers); if no such integer
n exists, then asc(S) = oo, respectively dsc(S) = co. Let

O, (S)={NeC: S — \is upper semi-Fredholm},
®.(S)={Ae€C: S — \is Fredholm},
osr, (S) ={A € 0a(S): A ¢ 2.(9)},

={A€0a(5): A€ asp, (5) or asc(S —A) = oo},
={\ €is00,(5): 0 < dim(S — \)"(0) < oo},
={X €is004(S): A € D, (5), asc(S — \) < oo},

(5)
(5)
(5)
Oaw(S) ={A €04(8): A€ ogp, (S) or ind(S — \) > 0},
(5)
(5)
(5)
y={reX: nlggonsnxnl/" =0}.

Recall that 0,4, (S) is the Weyl approximate point spectrum of S, o4,(S) is the
Browder approximate point spectrum of S, and Hy(S) is the quasi-nilpotent part
of S [1].
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We say that S has the single valued extension property, or SVEP, at A € C if
for every open neighborhood U of A, the only analytic solution f to the equation
(S — p)f(p) =0 for all p € U is the constant function f = 0; we say that S has
SVEP if S has a SVEP at every A € C. It is well known that finite ascent implies
SVEP; also, an operator has SVEP at every isolated point of its spectrum (as well
as at every isolated point of its approximate point spectrum).

We say that S € B(X) satisfies a-Browder’s theorem (shortened to S satisfies
a-Bt) if 044, (S) = 04 (S) (if and only if 04(S) \ 0w (S) = p&(S), see [1, p. 156]); S
satisfies a-Weyl’s theorem (shortened to S satisfies a-Wt) if 0, (5)\ 04 (S) = ITE(S)
(if and only if S satisfies a-Bt and p§(S) = II§(S)) [1, p. 177]. The implications
a-Wt = a-Bt and a-Wt = Wey!’s theorem are well known. Let iso 0,(S) denote
the isolated points of ¢,(5).

Lemma 1. [1, Theorem 3.23]. If S € B(X) has SVEP at A € 0(S)\osF, (S), then
A €050 04(5) and asc(S — ) < oo.

Let A € B(X) and B € B()).
Lemma 2. [2] and [6, Theorem 4.4 (a),(b)].
(i) 04,(A® B) = 0,(A)o,(B), where 0, = 0 or 0,.
(i) osF (A® B) = 0sp, (A)0a(B) Uoa(A)osr, (B).
The inclusions below are readily verified.
Lemma 3. is00,(A®B)Cisoo,(A) isoo,(B)J{0} and 0,(A)o,(B)Co,(A® B).
Lemma 4. 0 ¢ 0,(A® B) \ 05r, (A® B).
Proof. Suppose that 0 € 0,(A®B)\osr, (A®B).Then 0 € 0,(A®B)N®, (A® B),
i.e., A® B has closed range and 0 < a(A ® B) < oo. Since A ® B is injective if

and only if A and B are injective, we have that a(A) > 0 or a(B) > 0. But then
a(A® B) = 0o, and we have a contradiction. |

3. REsuLTS
We start with a lemma relating 0,.,(A ® B) and o,(A ® B).
Lemma 5. Let A € B(X) and B € B(Y).

Oaw(A® B) C 04(A)0aw(B) U daw(A)o.(B)
C 04(A)oap(B)U0oap(A)oe(B) = 0up(A® B).

Proof. Since 044, (S) C 044(5), for every operator S, the inclusion o4 (A)0g,(B) U
Caw(A)oa(B) C 04(A)oap(B) U 0gp(A)oe(B) is evident. To prove the inclusion
Caw(A®B) C 0,(A)0aw(B)U0 gy (A)oa(B), take A ¢ 0,(A)0aw(B)U0gw(A)oa(B).
Since 05p, (A ® B) C 04(A)0qw(B) U 0aw(A)oq(B), Lemma 4 implies that A # 0.
For every factorization A = uv of A such that p € 0,(A) and v € 0,(B) we have
that p € 04,(A) \ 0aw(A) and v € 04(B) \ 0aw(B), i.e., A € PL(A), v € P(B),
ind(A — p) <0 and ind(B — v) < 0. In particular, A ¢ osr, (A ® B).

We prove next that ind(A® B —\) < 0. Suppose that ind(A® B—\) > 0. Then
a(A® B — \) < oo implies that S(A® B — ) < o0, so that A € ®.(A® B). Let
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E = {(i,vi)izy € 0(A)o(B): pivi = A},
Then FE is a finite set. Furthermore (see [5, Theorem 3.1] and [4]):
(i) if n > 1, then u; € isoo(A4), for 1 <14 < n;
(i) if p > n, then v; € isoa(B), forn +1<i < p;
(iii) ind(A® B —A) = >°F_,, ind(A — p) dim Ho(B — v;)
+ Z _,ind(B — v;) dim Ho(A — p; ).
Since ind(A — p;) and ind(B —v;) are non-positive, we have a contradiction. Hence,

ind(A® B — ) <0, and consequently A ¢ 04, (A® B). This leaves us to prove the
equality 04(A® B) = 04,(A)owp(B) Uow(A)o.(B).

Suppose that A € 04,(A®B). Then A # 0, A € &, (A®B) and asc(A® B—\) <
00. Observe that A € iso0,(4A ® B). Let A = pv be any factorization of A such
that p € 04,(A) and v € 04(B); then p € & (A) and v € &, (B). Furthermore,
since 0,(A ® B) C iso 0,(A)iso 0,(B) U {0}, A has SVEP at u and B has SVEP
at v. Consequently, y € &4 (A), asc(A — u) < 0o, v € 4 (B) and asc(B —v) < o0,
ie, u € oaw(A) and v ¢ o4p(B). But then A ¢ 0,(A)owp(B) Uoap(A)oa(B). Hence
Ua(A)O'ab(B) Uoaw(A)oa(B) C ou(A® B).

To prove the reverse inclusion we start by recalling the (easily proved) fact that
if p € isoo,(A) and v € isoo,(B) for every factorization A = uv of A # 0,
then A = pv €180 04(A ® B). Let A ¢ 04(A)0ap(B) U 0ap(A)oe(B). Then A # 0.
Furthermore, if A = pv is any factorization of A such that € 0,(A) and v € 04(B),
then the following implications hold:

wéog(A)and v ¢ 0(B) =
pwe d (A),ved(B),asc(A—p) <ooandasc(B—-—v)<oo =
Ae€P, (AR B), p€isooy(A) and v €iso0,(B) =
A€, (A®B)and A€iso0,(A®B) =
Ae® (A®B)and asc(A®B—)\) <oco =
A ow(A® B).
Hence, 04p(A ® B) C 04(A)oap(B) Uoap(A)oe(B), and the proof is complete. O
The equality 04w (A® B) = 04(A)0aw(B)Udew(A)o,(B) fails to hold in general,

as follows from Remark 2(a) below. The following lemma gives a sufficient condition
for the equality to hold.

Lemma 6. If A® B satisfies a-Bt, then
Caw(A® B) = 04(A)0aw(B) U oaw(A)oe(B).

Proof. A ® B satisfies a-Bt if and only if 04,(A ® B) = 04(A ® B). Thus the
stated result is an immediate consequence of Lemma 5. O

Remark 1. The hypothesis 04, (A ® B) = 04(A)0aw(B) U 04w (A) U oy (B) is not
sufficient to guarantee that A® B satisfies a-Bt. Indeed, the conclusion A® B satis-
fies a-Bt is liable to fail if one of A and B does not satisfy a-Bt, as the following ex-
ample shows. Let U € B((2) denote the forward unilateral shift U(z1, z2,z3,...) =
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(0,21, 29,23,...). Let A =U* (or, A=U @®U*) and let B € B({%) be the op-
erator B = I ® %I, I(z1,29,...) = (x1,29,...) for all (z1,x9,x3,...) € Eﬁ_. Then,
letting OD denote the boundary of the closed unit disc D, 04,(A4) = D, 04(A) = OD,
0(B) = 04uw(B) = 04(B) = {3,1}, 04(A)0aw(B) Uoaw(A) Uo,(B) = ODU 3D and
0a(A® B) =D = 0(A® B). Since asc(4 — p) = oo for all p € o(A) (in both
choices of A), 0,4(A ® B) = . Evidently, A and A ® B do not satisfy a-Bt. We
remark here that if either 0,(C) = 04, (C) or 04(D) = 04,(D) for some operators
C € B(X)and D € B(Y), then 0(C ® D) = 04(C)0au (D) Uaw(C) U, (D); con-
sequently, 0,(C ® D) = 04(C)0au(D) U 04 (C) U 0g(D) implies C @ D satisfies
a-Bt.

The next theorem, our main result, proves that A and B satisfy a-Bt implies
A ® B satisfies a-Bt if and only if 04, (A ® B) = 04(A)0qw(B) U 04y (A)o.(B).

Theorem 1. If A and B satisfy a-Bt, then the following conditions are equivalent:
(i) A® B satisfies a-Bt.
(i) 0auw(A® B) = 04(A)04(B) U 0gw(A)oa(B).

(iii) A has SVEP at every p € ®,(A) and B has SVEP at every v € ®,(B)
such that (0 #)A = pv € 0,(A® B) \ 0quw(A® B).

Proof. If A and B satisfy a-Bt, then 04, (A) = 04p(A4) and 044, (B) = 04s(B).

(i) & (ii). By Lemma 6 we have, without any extra condition, that (i) = (ii). If (ii)
is satisfied, then

Oaw(A® B) = 04(A)0qw(B) U oqw(A)oa(B)
= 04(A)0ap(B) Uep(A)oe(B) = 0ap(A @ B)

(by Lemma 5). Hence A ® B satisfies a-Bt.

(ii) = (iii). Suppose that (ii) holds. Let A € 0,(A® B)\ 0quw(A® B) = 0,(A® B)\
oap(A ® B). Then (A # 0 and) for every factorization A = pv of A such that
neE o, (A)NP,(A) and v € g,(B)NP,(B) we have that asc(A —p) and asc(B —v)
are finite. Hence, A and B have SVEP at (all such) p and v, respectively.

(iii) = (ii). In view of Lemma 5, we have to prove that o,,(A ® B) C 04w (A ® B).
Suppose that (iii) is satisfied. Take a A € 0,(A® B) \ 040 (A® B). Then (0 #)\ €
¢, (A® B) and ind(A® B) < 0. The equality osr, (A ® B) = o5, (A)oq(B) U
04(A)osp, (B) (see Lemma 2) implies that for every factorization A\ = pv of A
(such that p € 04(A) and v € 0,(B)) we have that 4 € &, (A) and v € &, (B).
The SVEP hypothesis on A and B implies that asc(A — p) and asc(B — v) are
finite. Hence, p ¢ oa(A) and v ¢ o4(B). But then A ¢ 04,(A ® B); hence
0ab(A® B) C 04 (A® B). O

It is worth noticing that the equivalence (i) < (ii) in Theorem 1 extends the result
[8, Corollary 6] from plain Browder’s theorem and plain Weyl spectrum identity to
a-Browder’s theorem and a-Weyl spectrum identity.

Remark 2. Recall that S € B(X) satisfies Browder’s theorem if 0,,(S) = 05(S5).
Let U € B(£?) denote the forward unilateral shift, and define the operators A, B
by A=(1-UU*)®(3U—-1), B=—(1-UU*)®(3U* +1). Then A and B satisfy
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Browder’s theorem, but A ® B does not satisfy Browder’s theorem [7, Section 3].
More is true.

(a) Since A and B* have SVEP, they satisfy a-Browder’s theorem. Furthermore,
since the operator A ® B fails to have SVEP on the complement of ,,(A ® B), it
fails to have SVEP on 0,(A® B)\ 04w (A® B) D 0(A® B)\ 0, (A® B), hence does
not satisfy a-Browder’s theorem [3, Lemma 2.18]. Theorem 1 implies that A ® B
does not satisfy the equality 04w (A ® B) = 04,(A)0aqw(B) U 0aw(A)oa(B).

(b) A well-known open question, implicitly posed in [5, Theorem 4.2], asks whether
the following inclusion, which holds for all operators A and B,

0w(A® B) C 0u(A) - 0(B) U o(A) - 0u(B),

may become a proper inclusion for some pair of operators. Equivalently, whether
the above inclusion is an identity for every pair of operators. However, it was proved
in [8, Proposition 7(a)] that if A and B are such that

ow(A® B) =0,(A)-0(B) Uoc(A)-o,(B)

(i.e., if the Weyl spectrum identity holds) and if both A and B satisfy Browder’s
theorem, then the tensor product A ® B satisfies Browder’s theorem. Therefore, if
there exist A and B that satisfy Browder’s theorem, but A ® B does not satisfy
Browder’s theorem, then the Weyl spectrum identity does not hold for them.

The next theorem gives a sufficient condition for A ® B to satisfy a-Wt, given
that A and B satisfy a-Wt. But before that a couple of technical lemmas. Recall
that an operator S is said to be a-isoloid if A € iso 04(S) implies A € o,(5).

Lemma 7. A and B are a-isoloid implies A ® B is a-isoloid.

Proof. If iso 04(A) = iso 04(B) = &, then iso 0,(A ® B) = @. Observe also that if
either of iso 0, (A) or iso 0,(B) is the empty set, say iso 0,(A) = &, then iso 04 (A®
B) C {0} and 0 € iso 04(B). But then 0 € 0,,(B), which implies that 0 € 5,(A®B).
Now let A € iso 0,(A ® B) be such that A = uv, p € iso 0,(A) and v € iso 0,(B).
Then p € 0,(A) and v € 0,(B). Since 0,(A) - 6,(B) C 0,(A ® B), we have
A€ o,(A® B). O

Lemma 8. Suppose that A, B and AQ B satisfy a-Bt. If u € pE(A) and v € pi(B),
then A = uv € p§(A ® B).

Proof. p € 04(A)\ 0aw(A), v € 04(B)\ 04w(B) and 04, (A® B) = 04(A)04,(B) U
Oaw(A)oa(B). Hence, A = pv € 0,(A® B) \ 04,(AQ B) = pE(A® B). |

Theorem 2. Suppose that A and B are a-isoloid operators which satisfy a-Wt. If
Caw(A® B) = 04(A)0au(B) U ew(A)o.(B), then A® B satisfies a- Wt.

Proof. The hypotheses imply that A® B satisfies a-Bt, i.e., 04, (A®B)\0 4y (AR B) =
pd(A® B). Since pi(A® B) C IIE(A ® B), we have to prove that II¢(A ® B) C
p3(A® B). Let A € II3(A® B). Then (0 #)X = pv for some p € iso 04(A) and v €
iso 04(B). The operators A and B being a-isoloid, it follows (from A € II§(A® B))
that p € TIg(A) = pd(A) and v € TI(B) = p&(B). By Lemma 8, A € pd(A®B). O
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4. BROWDER’S THEOREM

A bounded linear operator S satisfies Browder’s theorem, Bt for short, if o,,(S) =
op(S); S satisfies Weyl theorem, Wt for short, if 0(5)\ oy, (S) = o(S) (equivalently,
if S satisfies Bt and po(S) = p(S)), where po(.S) (TIp(.S)) is the set of isolated point
in o(S) with finite ascent and descent (resp. with finite dimensional kernel). It is
known, [1], that

Weyl’s theorem

/ N
a-Weyl’s theorem Browder’s theorem.
a-Browder’s theorem

Theorem 3. If A and B satisfy Bt, then the following conditions are equivalent:
(i) A® B satisfies Bt.
(ii) 0w(A® B) =0(A)oy(B)Uoy(A)o(B).

(iii) A has SVEP at points p € ®(A) and B has SVEP at points v € ®(B) such
that (0 A)A = uv ¢ 0, (AR B).

Proof. (1)< (ii). [8, Corollary 6].

(ii) < (iii). The proof is similar to that of Theorem 1: we include it here for
completeness. Suppose that (ii) holds. Let A € 0(A® B)\ 0y (A®B) =0(A® B)\
op(A ® B). Then (A # 0 and) for every factorization A = uv of A such that
w € o(A)N®(A) and v € o(B) N ®(B) we have that asc(A — u) and asc(B — v)
are finite. Hence, A and B have SVEP at (all such) u and v, respectively. We
suppose next that (iii) is satisfied and prove that o,(A ® B) C 04, (A ® B). Take a
A€ o(A®B)\0yw(A® B). Then (0 #)X € $(A® B) and ind(A® B — ) =0. The
equality 0.(A® B) = 0.(A)o(B) Uo(A)o.(B) implies that for every factorization
A = pv of A (such that u € 0(A) and v € o(B)) we have u € ®(A) and v € ®(B).
The SVEP hypothesis on A and B implies that asc(A — u) and asc(B —v) are finite
(which in turn implies that ind(A — i) and ind(B —v) are both < 0). Thus, in view
of the fact that ind(A® B—\) = 0, it follows from the index formula (iii) of the proof
of Lemma 5 that ind(A—p) and ind(B—v) are both 0. Consequently, both A—y and
B — v have finite ascent and descent [1, Theorem 3.4 (iv)]. But then p ¢ 0,(A) and
v ¢ op(B), which implies that A ¢ 0,(A® B). Hence 0,(A® B) C o, (A® B). O

Remark 3. A result similar to that in Lemma 6 shows that the hypothesis A® B
satisfies Bt ensures that 0, (A® B) = 0(A)oyw(B)Uoy,(A)o(B) (see [8, Proposition
6]). Also, the example in Remark 1 shows that the opposite implication is not true in
general. Indeed, let A = U@®U* and B be defined as in Remark 1. Then o(A4) = D,
ow(A) = 0D, 0(B) = 0,(B) = {%, 1}, 0w (A ® B) = 0(A)ow(B) Uoy(A)o(B) =
ODU LD, 0,(A® B) = D and 0(A® B) = D. Evidently, A and A® B do not satisfy
Bt.
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