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A NOTE ON k-PARANORMAL OPERATORS

C. S. KUBRUSLY AND B.P. DUGGAL

ABSTRACT. It is still unknown whether the inverse of an invertible k-paranor-
mal operator is normaloid, and so whether a k-paranormal operator is totally
hereditarily normaloid. We provide sufficient conditions for the inverse of an
invertible k-paranormal operator to be k-paranormal.

1. PRELIMINARIES

Let B[H] stand for the Banach algebra of all bounded linear transformations of
a nonzero complex Hilbert space H into itself. By an operator we mean an element
from B[H|. If T lies in B[H], then T* in B[H] denotes the adjoint of X. The
range and kernel of T' € B[H] will be denoted by R(T) and N (T'), respectively.
By a contraction we mean an operator 7' € B[H] such that ||T|| < 1. An isometry
is a contraction T such that ||Tz|| = ||z|| for every x € H. If both T and T* are
isometries, then T' is a unitary operator. A contraction is said to be completely
nonunitary if it has no unitary direct summand. For any contraction 7" the sequence
of positive numbers {||7"z||} is decreasing (thus convergent) for every z € H. A
contraction T is of class Cy. if it is strongly stable; that is, if {||T"z||} converges
to zero for every x € H, and of class C;. if {||T™z||} does not converge to zero for
every nonzero x € H. It is of class C.g or of class C.; if its adjoint T is of class Co.
or Cy., respectively, leading to the Nagy-Foiag classes of contractions Cgg, Co1, C10
and Cn [23, p. 72]

The classes of subnormal and hyponormal operators were introduced more than
half a century ago by Paul Halmos in [12]. Since then, these have been considered
in current literature along with a myriad of classes of close to normal operators. We
shall be concerned with just a few of these well-known classes of operators that prop-
erly include the hyponormals. An operator T' is dominant if, for each A € C, there
exists a real number M) such that [[(A — T)*z| < My||(M — T)z|| for every x € H
or, equivalently, if R(A\I — T') € R(A — T*); and it is called M -hyponormal if there
exists a real number M > 1 such that, forall A € C, ||[(AI —T)*z| < M||(AI — T)z||
for every x € H. A hyponormal is precisely a 1-hyponormal operator (i.e., an op-
erator T' such that TT* < T*T or, equivalently, |[(A —T)*z| < |[((M —T)z|| for
every A € C and every = € H). As usual, put |T| = (T*T)3, the absolute value of
T. A p-hyponormal is an operator T such that |T*|*? < |T'|*" for some real num-
ber 0 < p < 1. Again, a hyponormal is precisely a 1-hyponormal. An operator T is
k-quasihyponormal if T**(T*T — TT*)T* > O for some integer k > 1, and quasi-
p-hyponormal (also called p-quasihyponormal) if T*(|T|* — |T*|?P)T > O for some
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real 0 < p < 1. A quasihyponormal is a 1-quasihyponormal or a quasi-1-hyponormal
operator or, equivalently, an operator T’ such that |T|* < |T2|?; and so a semi-quasi-
hyponormal is an operator T such that |T'|? < |T?| (also called class A or class U).
An operator T is k-paranormal if | Tz|*+! < ||T*+1z||||z||* for some integer k> 1
and every z € H. Equivalently, T is k-paranormal if | Tz||**1 < ||T*+1z| for some
integer k£ >1 and every unit vector x € H (i.e., for every x € H such that ||z|| = 1).
A paranormal is simply a l-paranormal operator.

See [3], [4], [8], [10], [14], [15], [22] and [25] for properties of operators belonging
to the above classes. Recall that a paranormal operator is k-paranormal for every
positive integer k (see e.g., [10, p. 271] or [14, Problem 9.17]), and so an operator
is paranormal if and only if it is k-paranormal for every k >1. The diagram below
summarizes the relationship among these classes.

p-hyponormal — quasi-p-hyponormal

/ L N
hyponormal — quasihyponormal — semi-quasihyponormal — paranormal — k-paranormal
M-hyponormal k-quasihyponormal
dominant

For the nontrivial implications in the central row (from hyponormal through k-
paranormal) see e.g., [14, p. 94]. Those in 1 and 2 can be found in [9]-[11] and [1],
respectively. The remaining implications are either readily verified or trivial.

2. INTRODUCTION

What all the above classes have in common besides including the hyponormal
operators? Putnam [18] gave the first proof that completely nonunitary hyponormal
contractions are of class C.o (also see [16]). This was extended to paranormal con-
tractions in [17] and to dominant contractions in [22] (also see [4], [24], and the
references therein). This was further extended to both k-paranormal and k-quasi-
hyponormal contractions in [7]. Therefore, every completely nonunitary contraction
in any of those classes appearing in the diagram of Section 1 is of class C.q — all of
them are included in the union of dominant, k-quasihyponormal and k-paranormal
contractions. We show that in this sense (that is, in the sense that completely non-
unitary contractions are of class C.g) the diagram of Section 1 is tight enough.
Posinormal operators (defined in Section 5) comprise a class that properly includes
the dominant operators. Hereditarily normaloid operators (defined in Section 3)
comprise a class that properly includes the k-paranormal operators. We exhibit in
Section 5 a completely nonunitary posinormal contraction and a completely non-
unitary hereditarily normaloid contraction that are not of class C.g,

It is known that every k-paranormal operator is hereditarily normaloid (every
part of it is normaloid), and that a paranormal operator (i.e., a l-paranormal
operator) is totally hereditarily normaloid (it is hereditarily normaloid and every
invertible part of it has a normaloid inverse). However it remains as an open question
whether the inverse of an invertible k-paranormal operator for k£ > 2 is normaloid,
and so whether a k-paranormal operator for k > 2 is totally hereditarily normaloid.
Sufficient conditions for an invertible k-paranormal operator to have a k-paranormal
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inverse are given in Theorems 1 and 2 of Section 4, and hence for a k-paranormal
operator to be totally hereditarily normaloid.

3. INTERMEDIATE RESULTS: k-PARANORMAL

Recall that a part T'| s of an operator T is a restriction of it to an invariant sub-
space M, and that an operator T is normaloid if its spectral radius coincides with
its norm (i.e., if #(T) = ||T||) or, equivalently, if ||T"|| = ||T||™ for every nonnega-
tive integer n. An operator is hereditarily normaloid if every part of it (including
itself) is normaloid (also called invariant normaloid [10, p. 275]) and totally heredi-
tarily normaloid if it is hereditarily normaloid and the inverse of every invertible
part of it (including its own inverse if it is invertible) is normaloid [5]. Paranormal
operators are totally hereditarily normaloid (which are trivially hereditarily nor-
maloid, and tautologically normaloid), and all these inclusions are proper (cf. [6]).
We start with a new, short and simple proof of a proposition that extends the right
end of the above diagram, asserting that k-paranormal operators are hereditarily
normaloid, as follows.

totally hereditarily normaloid

/ N

paranormal — k-paranormal — hereditarily normaloid — normaloid

For a different proof see [10, p. 267-273]).
Proposition 1. Fvery k-paranormal operator is hereditarily normaloid.

Proof. The proof is split into two parts.
(a) Every k-paranormal operator is normaloid.
(b) Every part of a k-paranormal operator is again k-paranormal.
Proof of (a). Let T # O in B[H] be k-paranormal so that, for some integer k >1,
| Tz|*+ < | T | ||z||*  for every z € H.
Take any integer 7 >1. Observe that
[vack e v aead 1 v i o 7

for every x € H, which implies ||T7||*+ < ||T*+7|| | T~ 1||*. Suppose ||T7| = |||
for some j >1 (which holds tautologically for j = 1). Then, by the above inequality,
T *+D9 = (T = |72+ < T TS < T | )| o=,

and therefore . .

1T+ = || 7"+
Thus, by induction, ||[T'+7%| = ||T||**7* for every j >1. This yields a subsequence
{Tm3} of {T™}, say T™ = T+ such that lim; |77 || ™7 = lim, (|| T||")™7 = ||Tl.
Since {||T™||™} is a convergent sequence that converges to the spectral radius of T

(Beurling—Gelfand formula for the spectral radius), and since it has a subsequence
that converges to ||T']], it follows that r(T") = ||T'||, which means that 7" is normaloid.

Proof of (b). If M is a T-invariant subspace, then, for every u in M,

I M5 = (1T M5 < Tl fJuall® = (1T )
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and so T'| pq is k-paranormal whenever T' € B[H] is k-paranormal for some k£ >1. O

Observe that k-paranormality and normaloidness are closed under nonzero scal-
ing (i.e., for every a #0, aT is k-paranormal or normaloid if and only if T is),
and so is hereditarily and totally hereditarily normaloidness (since the lattice of in-
variant subspaces and inversion are closed under nonzero scaling). Moreover, since
any power of a paranormal operator is paranormal, it follows that if the power T™
for some m >1 is paranormal, then T™" is paranormal for every n >1, but T itself
may not be paranormal.

However if T*+1 is a multiple of an isometry for some k>1 (i.e.,if
|TF+1z|| = ||T||**+ ||z for every x € H) then T is k-paranormal.

Indeed, in this case, ||Txz|**! < ||T||**Y|z|**+! = | T** 2| ||=||* for each x € H.
Note that if 7%*!is a multiple of an isometry then 7%+ is paranormal, since isome-
tries are hyponormal — quasinormal, actually — and so T%*+! is j-paranormal for
every j > 1. Further conditions for k-paranormality are given in the next lemmas.

Lemma 1. Take any T € B[H] and an arbitrary integer k>1. Suppose either

(1) T )M+ < T ||
or
(2) 1T || Tl < [T+ ]

for every unit vector x € H. If T is (k-1)-paranormal, then T is k-paranormal.
Conwversely, suppose either

(1) 1T a]|® < T F ]
or

(2) |IT*+ | < | T || T
for every unit vector x € H. If T is k-paranormal, then T is (k-1)-paranormal.

Proof. Take an operator T' € B[H] and an integer k£ >1. Suppose T is (k-1)-para-
normal (i.e., |Tz|/® < ||T*z|| for every unit vector x € H). If (1) holds true, then

||Tx||k(k+1) < ||Tkgj||k+1 < ||Tk+1x||k’
and, if (2) holds true, then
[T = |Ta|*|Te| < | T ||| T| < T 2|,

and so, in both cases, ||Tz|/**+1 < ||T*+1z| for every unit vector € H, which means
that 7T is k-paranormal. Conversely, suppose 7' is k-paranormal (i.e., ||Tz|*+! <
| T + x| for every unit vector € H). If (1) holds true, then

||Tx||k(k+1) < ||Tk+1x||k < ||Tkx||k+1,
and, if (2') holds true, then
T ||| Tx||* = || Tx||** < | T* || < ||T*2|| | T|,

and so, in both cases, ||Tz||* < ||T*z| for every unit vector z € H, which means
that T is (k-1)-paranormal. O
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We assume in (3) of Lemma 2 below that T**! is injective. If T is k-paranormal,
then this means that T is injective itself because for a k-paranormal operator we
have N (T*+1) C N(T). A similar observation holds for (2) in Lemma 3.

Lemma 2. Take any T € B[H] and an arbitrary integer k>1. If

(1) T ||"+! < || 7" ||
and
(3) 0 <[ T*')|* and ||Ta||" T z|*= < | T"z|*

for every unit vector x € H, then T is k-paranormal. Conversely, if T is k-para-
normal and

3) TR < [T+
for every unit vector x € H, then (1) holds for every unit vector x € H.
Proof. If (1) and (3) hold true, then 0 # ||T*+1z|/*~1 and

Tl ST |7 < (| T || < (|7 | ® = | T P T e

and so
| T||* < || T |

for every unit vector = € H. Conversely if (3') and the above inequality hold true
for every unit vector x € H, then

T |1 < (| TP B8 < T | |75 ]| = T

and so (1) holds true for every unit vector x € H. |

Lemma 3. Take any T € B[H] and an arbitrary integer k>1. If

(1) 1T | < || T |+

(2) 0<|[IT"z| and | T*|||Tz] < [T 2|

for every unit vector x € H, then T is both (k-1)-paranormal and k-paranormal.
Conversely, if T is either (k-1)-paranormal or k-paranormal and

(2) |IT*+ | < | T | T||
for every unit vector x € H, then (1') holds for every unit vector x € H.

Proof. 1f (1') and (2) hold true, then 0 # ||T*z|| and
T || Tal|® < T || < | T )"+ = | T ]| T x|l
and hence X X
[T||® < I T"|

for every unit vector € H so that T is (k-1)-paranormal. But if T" is (k-1)-para-
normal and (2) holds, then Lemma 1 says that T is k-paranormal. Conversely if
(2') and the above inequality hold true for every unit vector z € H (i.e., if T is
(k-1)-paranormal and (2') hold true), then
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1T a||* < T ¥ T )| * < T2 | T*]| = || T ] "+

and so (1’) holds true for every unit vector x € H. But if T is k-paranormal and
(2') holds, then Lemma 1 says that T is (k-1)-paranormal, and so (1’) holds by the
above argument. O

Lemma 4. Take any T € B[H] and an arbitrary integer k>1. If
(1) [T |*t < | T e *

for every unit vector x € H, and if T**' is (k-1)-paranormal, then T* is k-para-
normal. Conversely, if

(1) 1T ]| < |7 | M+

for every unit vector x € H, and if T* is k-paranormal, then T**+1 is (k-1)-para-
normal.

Proof. If (1) holds true, and if T**! is (k-1)-paranormal, then
||Tkx||k+1 < ||Tk+1x||k < ||T(k+1)kx|| — ||Tk(k+1)m||

for every unit vector = € H, which ensures that T is k-paranormal. Conversely, If
(1) holds true, and if T* is k-paranormal, then

||Tk+1.%'||k < ||Tkx||k+1 < HTk(k-H)xH — ||T(k+1)kx||
for every unit vector € H, which ensures that 7%+ is (k-1)-paranormal. O

4. MAIN RESULTS: INVERTIBLE k-PARANORMAL

Note that every operator is trivially O-paranormal since the inequality that de-
fines a k-paranormal holds trivially for every operator T € B[H)] if we set k = 0.

Theorem 1. If T € B[H] is an invertible k-paranormal operator for some integer
k>1, and if its inverse is (k-1)-paranormal, then T~ is k-paranormal.

Proof. Let T € B[H] be an invertible operator. If T is k-paranormal, then

[T )M+t =TT || < TN ) || 77 | = | 7o | | 77 e
for every = € 'H and every integer j € Z. Summing up, for each integer j € Z,
(%) T | "+t < | T ||| T |

for every z € H. Put j = —kin (%) and get | T~ %zt < ||z |7~ *+Dz||* for every
z € H. Equivalently,

(17) T~ |+ < |7+ D

for every unit vector x € H. Thus the inequality (1) in Lemma 1 holds for 7!, and
so Lemma 1 ensures that, if T~! is (k-1)-paranormal, then 7! is k-paranormal. [
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Remark 1. If T' € B[H] is an invertible k-paranormal for some k> 1, then
1T ||~ < |7 e ]*

for every unit vector z € H and therefore, if T-! is (k-1)-paranormal (which com-
pletes the hypothesis in Theorem 1), then

1T ]| 7! < |77 ]| < | T 2

for every unit vector x € H. Indeed, if T is an invertible k-paranormal, then the
inequality (%) in the proof of Theorem 1 holds for every « € H and every j € Z.
Put j =0 in (%) and get ||z||**! < ||T*z||||T~z||F for every x € H. Equivalently,
|Tkz|| =t < ||T~1z||F for every unit vector z € H.

The next result is an immediate consequence of Theorem 1.
Corollary 1. If an operator T € B[H)] is invertible and k-paranormal for every in-

teger i < k < j, for some integers 2 < i < j, and if its inverse is (i—1)-paranormal,
then T~ is k-paranormal for every integer i —1 < k < j.

Theorem 2. If T € B[H] is an invertible k-paranormal for some k>1, and if
(3 1T ||* < || T T
for every unit vector x € H, then T~ is k-paranormal.

Proof. If T is an invertible k-paranormal, then (1) of Lemma 1 holds for 7~

(1) 1T~ Fy |+ < |7 Dy *

for every unit vector y € H (cf. proof of Theorem 1). Now (3’) is equivalent to
[ e 7 e i | A e

for every x € H. Since T**! is invertible, take any y in H = R(T**!) so that y =
T*+1z for some z in H, and hence z = T~ +1y. Thus, by the above inequality,

T~y T =Dy 1 < TRy By
for every y € H, which is equivalent to

(37) Tyl T Dy o < TRy

for every unit vector y € H. Since T~ +1 is invertible, thus injective, it follows
by Lemma 2 that (1*) and (3*) imply that 7~! is k-paranormal. O

Therefore, according to Proposition 1, the subclass of all k-paranormal operators
such that their invertible parts (which are k-paranormal) satisfy either the hypoth-
esis of Theorem 1 or condition (3') in Theorem 2 are included in the class of the
totally hereditarily normaloid operators.
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Remark 2. Put k = 1in Theorem 1 and recall that every operator is 0-paranormal.
Similarly, if £ = 1 in Theorem 2, then (3’) holds trivially. Thus Theorems 1 and 2
show, in particular (and with different proofs), that the inverse of a paranormal op-
erator is again paranormal. Therefore, an immediate particular case of Theorems
1 and 2 (cf. Proposition 1) leads to the known result that every paranormal opera-
tor is totally hereditarily normaloid. Moreover, since an operator is paranormal if
and only if it is k-paranormal for every k >1, it follows that if 7" is an invertible
paranormal operator, then both 7 and 7! are k-paranormal for every k > 1.

Open questions: Suppose k > 2. Is the inverse of every invertible k-paranormal
operator normaloid ? Equivalently (cf. Proposition 1), is every k-paranormal opera-
tor totally hereditarily normaloid ? Is the inverse T~ of an invertible k-paranormal
operator k-paranormal if and only if T~ is normaloid ?

5. COMPLETENESS OF THE DIAGRAM OF SECTION 1

Posinormal operators were introduced in [19]. An operator T is posinormal
if there exists a real number « such that [|[T*z| < «|Tz| for every x € H or,
equivalently, if R(T) C R(T*). Thus

dominant — posinormal.

Actually, an operator T is dominant if and only if A\l — T is posinormal for every
A e C. If T is posinormal then N(T)) C N (T™), and the converse holds if R(T') is
closed. For a survey on posinormal operators see [15]. Posinormal operators are
not necessarily normaloid (not even M-hyponormal are normaloid), and normaloid
operators are not necessarily posinormal (in fact, not even paranormal operators
are posinormal) — see e.g., [15].

As we saw in Section 2, all operator classes in the diagram of Section 1 have the
property that every completely nonunitary contraction is of class C.g. First we show
that such a property cannot be extended from dominant to posinormal contractions,
and then that it cannot be extended from k-paranormal to hereditarily normaloid
contractions.

Example 1. There exist completely nonunitary posinormal contractions that are
not of class C.g. For instance, consider the bilateral weighted shift

T = shift{wg }7e_ o

on 2 with weights w, = 1 if £ < 0 and wy, = % if k¥ > 0. This is an invertible con-

traction. Indeed, the spectrum of T is the annulus
o(T)={reC: 1 <|N\<1}

and ||T']] = 1 (cf. [20, p. 67]). Then T is posinormal (since every invertible operator

is posinormal). Moreover, [,_,wir = ()™ — 0 as n — oo, which means that the

product [, wi diverges to 0, and ngfoo wi = 1. Hence T is of class Co; (cf. [2,
p. 181]), and so it is not of class C.g. Since the contraction T is strongly stable, it is
completely nonunitary. Thus 7T is a completely nonunitary posinormal contraction
that is not of class C.¢ (and so not a dominant contraction according to [22]).
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Example 2. There exist completely nonunitary hereditarily normaloid contrac-
tions that are not of class C.g. In fact, let

T = shift{wy } 7=

—00

be a bilateral weighted shift on ¢? with weights wy = 1 for all k except for k =0
where wg = % This is a nonunitary Cii-contraction similar to a unitary operator
[13, p. 69]. Moreover, T is an hereditarily normaloid that is not totally hereditarily
normaloid. Actually, it is hereditarily normaloid because every Cy.-contraction is [6,
Proposition 1]; and it is not totally hereditarily normaloid because if an operator is
similar to a unitary operator, then it is invertible with a power bounded inverse, and
a totally hereditarily normaloid contraction in C;. with a power bounded inverse
must be unitary [6, Proposition 4]. If the contraction T is not completely nonunitary
itself, then there exists a nonzero subspace M of (2 that reduces T so that, by
the well-known Nagy-Foiag-Langer decomposition for contractions (see e.g., [23,
Theorem 3.2] or [13, Theorem 5.1]),

T=C®U on FP=MaoM

where U = T'|p is unitary and C' = T| 4. is a nonzero completely nonunitary con-
traction (acting on a nonzero subspace, because T' is not unitary), which is heredi-
tarily normaloid (but not totally hereditarily normaloid) since T is, and of class C11
since T is. (Indeed, C™v = (T|pq1)™v = T"|pqrv = T™; similarly, C*"v = T*™,
for every v € M*, because M~ reduces T.) Thus either T or C is a completely
nonunitary hereditarily normaloid contraction (not totally hereditarily normaloid)
that is not of class C.¢ (and so not a k-paranormal contraction according to [7]).

Recall the following standard concepts. The defect operator of a contraction T’
is the nonnegative contraction (I — T*T)%. A T-invariant subspace M is a normal
subspace for T if the restriction T|p¢ of T to M is a normal operator in B[M].
The class of all operators for which normal subspaces are reducing characterizes
a class of operators that lies between the dominant and the posinormal operators.
Indeed, every normal subspace for a dominant operator reduces it [21], and every
operator with closed range for which normal subspaces are reducing is posinormal
[15]. We close the paper with a sufficient condition for a completely nonunitary
totally hereditarily normaloid contraction to be of class C.g, which is an immediate
consequence of [6, Theorem 1]:

Let T € B[H] be a completely nonunitary contraction with a Hilbert-Schmidt
defect operator. Suppose T is totally hereditarily normaloid. If normal sub-
spaces of T reduce T, then T is of class C.p.
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