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INVARIANT SUBSPACES OF MULTIPLE TENSOR PRODUCTS

CARLOS S. KUBRUSLY

ABSTRACT. Regular subspaces are tensor products of subspaces. The structure
of regular subspaces that are invariant or reducing for the tensor product of a
finite collection of Hilbert space operators is entirely characterized. Necessary
and sufficient conditions for a multiple tensor product of operators to be a
unilateral shift are established, and it is proved that a multiple tensor product
of operators is a completely nonunitary contraction if and only if each factor
is a contraction, being one of them completely nonunitary.

1. INTRODUCTION

Consider the Hilbert space ;- H; consisting of the tensor product of a finite
collection of Hilbert spaces H; and the tensor product @);-; A; of operators A; on
H;. A subspace of @, H; will be called regular if it is the tensor product @."; M,
of subspaces M; of H;. In Section 3 we focus on regular subspaces that are invariant
or reducing for ®.", A;. These are explored in Theorem 1, and reducing irregular
subspaces are presented in Corollary 1. In Section 4 we investigate tensor products
of lattices of invariant subspaces. These are characterized in Corollary 2.

Sections 5 and 6 deal with applications. Theorem 2 describes unilateral shift
tensor products, where it is shown that ).~ A; is a unilateral shift if and only if
X", A = @i~ Vi, where each V; is an isometry, at least one of them is a unilat-
eral shift. Finally, in Theorem 3, completely nonunitary tensor product contractions
are characterized, where it is proved that ;- A; is a completely nonunitary con-
traction if and only if at least one of the contractions A; is completely nonunitary.

2. PRELIMINARIES

By an operator A on a Hilbert space H we mean a bounded linear transformation
of H into itself. Let B[H] be the normed algebra of all operators on H, and let A(A)
and R(A) stand for kernel and range of A € B[H]. A subspace M of H is a closed
linear manifold of H, which is nontrivial if {0} # M # H, invariant for an operator
A (or A-invariant) if A(M) C M, and reducing for A (or M reduces A) if M is
invariant for both A and A* (where A* denotes the adjoint of A); equivalently, if
both M and M~ are A-invariant (where M+ = H © M stands for the orthogonal
complement of M). An operator A is reducible if it has a nontrivial reducing sub-
space, otherwise it is called irreducible. If {H;}!" is a finite collection of Hilbert
spaces, then their orthogonal direct sum is denoted by @:r;l ‘H;, which is again a
Hilbert space. If {A;}™, is a finite collection of operators with A; in B[H;], then
their direct sum is denoted by €., A;, which is an operator in B@, H].
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2 C.S. KUBRUSLY

Let H and K be nonzero complex Hilbert spaces. We consider the concept of
tensor product space ‘H ® K in terms of the single tensor product of vectors as
a conjugate bilinear functional on the Cartesian product of H and K. (See e.g.,
[3], [10] and [11] — for an abstract approach see e.g., [1] and [14].) Let A® B in
B[H ® K] stand for the tensor product of two operators A in B[H] and B in B[K].
For an expository paper on tensor product see e.g., [5]. The tensor product of a pair
of Hilbert spaces and of a pair of operators is naturally extended to a finite collection
{H;}7™, (m > 2) of complex Hilbert spaces and to a finite collection {4;}7, of oper-
ators with A; in B[H;], where @." ; H; denotes the tensor product space of {H,;}™,
and @, A; in B[Q);~, H;] stands for tensor product of the operators {A4;}™ ;.

3. INVARIANT SUBSPACES

Consider a finite collection {H;}7, of complex Hilbert spaces. A subspace of
the orthogonal direct sum ", H; is intrinsic if it is of the form ", M,, where
each M; is a subspace of H;. Otherwise it is said to be extrinsic. This notion can
be brought to tensor product spaces yielding the concept of reqular subspaces.

Definition 1. A subspace of a tensor product space @, H; is regular if it is of
the form @.", M;, where each M; is a subspace of H;. Otherwise it is irregular.

The direct sum @Z’;l M, of subspaces M; of H; is a subspace of the direct sum
space @, H;, and @, M, is invariant (reducing) for the direct sum @0, A; of
operators A; on H; if and only if each M, is invariant (reducing) for A;. The tensor
product @, M; of subspaces M; of H; is a subspace of the tensor product space
®." | H;. Regular invariant and reducing subspaces are characterized as follows.

Theorem 1. Take any integer m > 2. For each integer i € [1,m] let A; be an op-
erator on a Hilbert space H; and let M; be a subspace of H;. Consider the tensor
product @, A; of {A;}7%, on the tensor product space @~ H;.

(a1) If each M; is invariant (reducing) for A;, then @, M; is an invariant
(reducing) subspace for @, A;.

(ag) If Q% M, is invariant for @, A;, then one of the subspaces M; is in-
variant for A;.

(ag) If @ity M; reduces Q- Ai, then one of the subspaces M; reduces A;, or
one of the subspaces M; is invariant for A; and the orthogonal complement
./\/ljl of another subspace M; with j # i is invariant for A;.

(ag) If Q% M, is invariant (reducing) for Q.~, A; and if each M; € N(A;),

then each M; is invariant (reducing) for A;. Particular case:

(ay) If @:*, M, is nonzero and invariant (reducing) for @i-, A; and if
every A; is injective, then each M; is invariant (reducing) for A;.

(b) One of the subspaces M; is nontrivial and the others {M;}7,;_, are nonzero
if and only if @, M; is nontrivial.

(c1) If each M; is A;-invariant, then

(®:4) ®r, M &), Al




INVARIANT SUBSPACES OF TENSOR PRODUCT 3

(co) If @i, M, is nonzero and @, A;-invariant, and if each A; is injective,

then i )
(®z‘:1Ai> M, M, = ®i:1Ai|Mi.

Proof. Suppose all A; are nonzero (otherwise the results are trivial). Assertion (a;)
is readily verified since a subspace M of a Hilbert space is invariant (or reducing)
for a nonzero operator A if and only if the unique orthogonal projection P with
R(P) = M is such that PAP = AP (or such that PA = AP); see e.g., [9, Theorem
0.1]. Conversely, if @, M, is invariant (or reducing) for @~ A;, then there
exists an orthogonal projection £ on @, H; with R(E) = @, M, and such that
E(®", 4)E = (®", A;)E [or such that E(Q", 4;) = (&, A;)E]. Consider
the projections P; onto M;. Since F is unique and since R(@:’;l Pi) = Qi M,
it follows that £ = @, P;. Thus

é) PAP, = E(é Ai)E - (é) Ai)E - éAiPZ—
=1 i=1 =1 =1

whenever @, M; is invariant for @), A;, or

S s@)- Bo)s -G
i=1 i=1 i=1 =1

whenever ®:’;1 M, is reducing for ®;11 A;. In any case, if A;P; = O for some i,
then M, is A;-invariant since M; = R(P;) C N(4;). If Q.- M; reduces Q- A;,
then A;P; = O also implies that P;A; = O, that is, A} P; = O, for some j, so that
either M; reduces A; (if j =) or M, is As-invariant and Mj is Aj-invariant (if
j #1). On the other hand, suppose A;P; # O for every i. This means that M; =
R(P;) € N(A;) for every i. In particular, this happens if every A; is injective and
®:, M, is nonzero, since P; # O if M; # {0}. In this case (ie., if 4P, # 0O —
cf. [12, Proposition 2.1]), for each 7,

PiA;P; = a; A P;

for nonzero scalars ;, so that each M; = R(P;) is A;-invariant, whenever @, M,
is @, A;-invariant, or

PA; = BiAP;

for nonzero scalars 3;, so that each M; = R(P;) reduces A;, whenever @ ; M,
reduces @, A;. This completes the proof of (az), (ag) and (as). Assertions (b)
and (c;) are also readily verified, and so their proofs will be omitted. If ", M;
is nonzero, then (c3) is a consequence of (c1) and (a}). O

Both the zero subspace and the whole space are always intrinsic and regular, and
therefore extrinsic and irregular subspaces are always nontrivial. Indeed, the zero
subspace @~ {0} of the direct sum @P."; H; is intrinsic as well as the whole space
D", H;. The zero subspace {0} of the tensor product space )., H; is precisely
{0} = @, M; with one of the M; being the zero subspace (M; = {0} C H; for
some i), which is regular and, again, the whole space @.", H; is clearly regular.



4 C.S. KUBRUSLY

Remark 1. There exist extrinsic subspaces of a direct sum space that, in addition
to being extrinsic, are invariant for the direct sum of Hilbert space operators. For
instance, take any nonzero operator C' on a Hilbert space H and consider the set

M, ={(Cz,---,Cz) e " H: x € H},

which in fact is a nontrivial linear manifold of the direct sum space ", H of m
copies of H. It is readily verified that if C' has a closed range, then M, is closed in
@B, H, and so M, is a subspace of @, H, which is clearly extrinsic. Moreover,
if C' commutes with an operator A on H, then the extrinsic subspace M, of @, H
is invariant for the direct sum @."; A of m copies of A. We consider the existence
of irregular reducing subspaces of tensor product spaces in Corollary 1(b) below.

Corollary 1. Take an arbitrary integer m > 2. For each integer i € [1,m] let A;
be an injective operator on a Hilbert space H; and let M; be a nonzero subspace of
H;. Consider the regular subspace @, M; of Q.- H; and the tensor product

Qi1 Ai on @i, Hi.
(a) Qi M; is Q. Aj-invariant if and only if each M; is A;-invariant.
Put H; = H (a Hilbert space of dimension greater than 1) and A; = A (injective)

for all i. Take the tensor product @~ A of m copies of A € B[H] on the tensor
product space @, H of m copies of H.

(b) @, A is reducible and, if A is irreducible, then all nontrivial reducing sub-
spaces of Qv A are irregular.

Proof. The result in (a) is a straightforward application of Theorem 1(aq, a4). The
proof of the result in (b) goes as follows. Consider the tensor product .-, A;
of m operators {4;}™,, each A; acting on the Hilbert space H;, and consider the
mapping II: @i~ H; — Q._,, H; defined by

1(Y @ mie) =Y @ ai

for every >, @, z;; in @, H;. This is an invertible linear isometry, thus a
unitary transformation of @, H; onto @;_, H;, and it is readily verified that

QL A) = (@, 4)n

(i.e., the tensor product of m operators is unitarily equivalent commutative). Now
put H; = H and A; = A for all 7. In this case the unitary operator II on @, H
also is an involution (II?> = I, and so it is a symmetry — i.e., II7! = IT* = II),
and the tensor product @, A of m copies of an arbitrary operator A in B[H]
commutes with the nonscalar normal operator II in B [ X, ’H]. This means that

(i) i~ A is reducible for every Hilbert space operator A,

which is a classical consequence of the Spectral Theorem. Hence the tensor product
®:", A always has a nontrivial reducing subspace. Now suppose A is injective.

(ii) If A is irreducible, then @~ A has no nontrivial regular reducing subspace.

This follows from Theorem 1(a}). |
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4. INTRINSIC AND REGULAR LATTICES

Take a finite collection of Hilbert spaces {H;}7, and consider the Hilbert spaces
made up of their orthogonal direct sum, @), H;, and of their tensor product,
&®:", H;. Let Lat(A) stand for the lattice of all invariant subspaces for an arbitrary
operator A, and take operators A; in B[H;] for each integer ¢ € [1, m].

Intrinsic Lattices: Let @~ Lat(A;) be the collection of all intrinsic subspaces
B, M, C D", H; made up of A;-invariant subspaces M,,

EB::lLat(Ai) = {@:;Mz - @:1Hi: M; e Lat(Ai)}.

Let ILat (@21 Ai) denote the collection of all intrinsic invariant subspaces for the
direct sum ", A; on P.", Hi,

ILat(@ZlAi) - { ZlMi c @Zlm: @LMZ' e Lat(@j;Ai)}.

This is a lattice. Indeed, consider the lattice Lat (@]~ H;) of all subspaces of the
direct sum @;"; H; and let ILat (€], H;) be the subcollection of Lat(€D]"; H;)
consisting of all intrinsic subspaces of @;~, H;. It is not difficult to verify that
ILat(€D;", ) is sublattice of Lat(€D;-; ;). Since

ILat(@:‘ilAi) = ILat(@:_:lHi) N Lat(@::lAi>a

it follows that ILat(€D.~, A4;) is a sublattice of Lat(€D;~; A;). Moreover, it is
readily verified that an intrinsic subspace 7 = @, M; lies in ILat(EP;-,; A;) if
and only if 7 € @, Lat(A;). Therefore (and recalling Remark 1),

@ZlLat(Ai) — ILat (EB:;AZ) C Lat (@;Ai).

Regular Lattices: Since {0} € Lat(A;) for every i € [1,m], it follows that if M, =
{0} for some iy € [1,m], then M;, € Lat(4;,) and ®.*; M; = {0} = ®.",{0} is
a regular subspace made up of A;-invariant subspaces even if M; ¢ Lat(A4;) for
every i # ig. So it is convenient to exclude zero subspaces when defining the tensor
product space counterpart. Thus let @, Lat(A;) be the collection of all nonzero
regular subspaces @, M; C ®.", H; made up of A;-invariant subspaces M,

®Z1Lat(z4i) = {{0} # ®LM¢ c ®21Hi: {0} # M, € Lat(AZ-)}.

Let RLat(Q);"; A;) denote the collection of all regular invariant subspaces for the
tensor product operator @ ; A; on @, H;:

RLat(® 4) = {® M c Q" Hi: Q@ Mielat(Q 4)}.

Observe that, if 4;,= O for some ig € [1,m], then @.*, A; = O, and so every
regular subspace @, M; of @, H; lies in Lat(@?;l Ai) independently of the
operators A; for every i # ig. Also note that if M;, C N (A4;,) for some ig € [1,m)]
(and so M, € Lat(4;,)), then @;"; M; € N (Qi~, A;i) so that @, M; lies in
RLat(®;"; A;) independently of the subspaces M; of H; for every i # ig.
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A word on terminology and another on notation. As usual (see e.g., [9, p. 20]),
an operator that is not a multiple of the identity is called nonscalar, otherwise it is
called scalar. Let C and C denote ordinary inclusion and proper inclusion, respec-
tively. We write g for an ordinary inclusion that may not be an identity (i.e., where
there are known instances for which the reverse inclusion does not hold — this is
different from proper inclusion, where the reverse inclusion never holds).

Corollary 2. Take an arbitrary integer m > 2 and consider the preceding setup.

(a) ®ZZ1 Lat(A;) ; RLat(®?i1 Ai)\{o} ;Ct Lat(®g1 Ai)\{o}'

(b) If either every A; is injective or every A; is scalar, then
@i, Lat(4;) = RLat (@7, 4:)\{0}.

(c) If @i, Lat(A;) = RLat( @~ 4;)\{0}, then there is no pair {A;,, A;,} from
{A4;}™, containing a noninjective and a nonscalar operator.

(d1) If every A; is nonscalar, then ;- Lat(A;) = RLat(®;~; A;)\{0} if and
only if every A; is injective.

(d2) If every A; is noninjective, then @~ Lat(A;) = RLat(®;~; A;)\{0} if and

only if every A; is zero.

Proof. (a) Theorem 1(a;) ensures the first ordinary inclusion in (a), which may be
proper (depending on {A4;}7 ) by Claim 1 below. The second ordinary inclusion in
(a) is trivial, and Corollary 1(b) ensures that it may be proper (even if the operators
A; are all nonscalar and injective).

(b) If A; are all scalar, then the identity in (b) is trivially verified. If A; are all
injective, then any R in RLat(®.", 4;)\{0} lies in ;" Lat(A;) by Theorem
1(a}), and therefore the identity in (b) follows from the first inclusion in (a).

(¢) Conversely, (c) is a direct consequence of the following result.

Claim 1: If there exists a pair {A;,, A;, } from {A4;}7, consisting of a noninjective
and a nonscalar operator, then RLat(@);"; 4;)\{0} € ®;~, Lat(4;).

Indeed, an operator A is injective if and only if A'(A) = {0} and scalar if and only
if Lat(A) = Lat(H). Thus, if N'(4;,) # {0} for some i; € [1,m], then there exists
M;, € Lat(H;,) such that {0} # M,;, C N(A;,). Hence M;, € Lat(4;,). Moreover,
Rt M; € N(®i2; A;), and therefore

0} # @ MieRLat(Q) A:)\{0}

for every {0} # M; € Lat(H;) with i # iy in [1,m]. If Lat(A;,) # Lat(H;,) for some
ig # 41 in [1,m], then take {0} # M,, € Lat(H,;,)\Lat(4;,) so that

Q. Mi¢ @ Lat(A).

(Reason: if M; @ M; = N1 ® Ny # {0}, then we may infer from [12, Proof of
Proposition 2.1] that M; = N} and My = AN, which can be extended to a finite
collection of subspaces). This completes the proof of Claim 1.
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(d) The result in (c) ensures that if Q" Lat(A;) = RLat (@), 4;)\{0} and if all
A; are nonscalar, then all A; are also injective; if all A; are noninjective, then all A;
are also scalar, i.e., all A; are zero. Thus (d;) and (dg) follow from (b) and (¢). O

5. APPLICATIONS — UNILATERAL SHIFTS

If the orthogonal direct sum @), A; of a finite collection {A4;}™, of operators
on H; is a unilateral shift, then it is a shift direct sum. It can be verified that
B, A; is a shift direct sum if and only if A; =S;, where each S; is a
unilateral shift.
Since ;" Lat(4;) = ILat (€]~ A;), an intrinsic subspace @, M; of the direct
sum ;- H; is invariant (reducing) for @." ; A; if and only if each M; is invariant
(reducing) for A;. Thus, the above italicized result ensures the next one:
An intrinsic invariant (reducing) subspace of a shift direct sum @, A; is
the direct sum of m invariant (reducing) subspaces for m unilateral shifts.
The tensor product counterpart is not straightforward, as we shall see in this section.
Since a unilateral shift (of any multiplicity, acting on a Hilbert space) is injective,

Corollary 2(b) characterizes the collection of all regular invariant subspace of the
tensor product @~ S; of a finite collection {S;}™; of unilateral shifts,

RLat(®)" )\ {0} =R Lat(s),

once each Lat(S;) was fully characterized in [2]. However, by Corollary 1(b),

RLat (®L&) c Lat(®l15¢)

if S; = S for all ¢, where S is a unilateral shift of multiplicity 1 (which is irreducible).
Thus a full characterization of the lattice Lat (®Z1 Si) requires the description of
all irregular subspaces of tensor products of unilateral shifts,

Lat (®::151> \RLat (®lei) ’

and this turns up from [2] as well because, as a particular case of Theorem 2 below,
®:", S, is again a unilateral shift.

Theorem 2. Take an arbitrary integer m > 2. The tensor product @, A; is a
unilateral shift if and only if @ 1 A; = Qi , Vi, where each V; is an isometry
being at least one of them a unilateral shift.

Proof. A Hilbert space operator A is strongly stable if the power sequence {A™}
converges strongly to the null operator (i.e., ||A"z|| — 0 for every x — notation:
A™ =5 0). Let H and K be Hilbert spaces and take A and B in B[H] and B[K].
Since a unilateral shift is precisely an isometry whose adjoint is strongly stable [4,
Lemma 6.1], the tensor product A ® B is a unilateral shift if and only if

A® B is an isometry and (A® B)*" - O.
But, for any pair of nonzero operators A and B,

A® B is an isometry <= ARRB=V®J,
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where V and J are isometries in B[H] and B[K] (see e.g., [12, Theorem 2.4]), and
VeJ)"—=-0 <+ V"0 o J"

(cf. [6, Proposition 1] or [8, Theorems 2 and 3]). Thus A ® B is a unilateral shift if
and only if A® B =V ® J, where V and J are isometries and one of them has a
strongly stable adjoint, which means that one of the isometries is a unilateral shift.
This proves the theorem for m = 2. If m > 3 then, for any j € [2,m — 1],

m j—1 m
®i:1Ai = ®Z:1Ai ®A® ®i:j+1Ai

so that the result for m = 2 extends by induction to any integer m > 3, because
the tensor product of isometries is again an isometry. |

If the tensor product @.", A; of a finite collection {A;}™, of operators acting
on Hilbert spaces H; is a unilateral shift, then it is called a shift tensor product.

Corollary 3. A regular invariant (reducing) subspace of a shift tensor product
®Z.r;1 A; is the tensor product of invariant (reducing) subspaces for m isometries,
being at least one of them a unilateral shift.

Proof. This follows from Theorem 2 and Corollary 2(b), recalling that if @, V;
is injective, then so is each V; (see e.g., [7, Property 6]). O

6. APPLICATIONS — COMPLETELY NONUNITARY CONTRACTIONS

A contraction (i.e., an operator A with ||A]| < 1) is completely nonunitary if the
restriction of it to every nonzero reducing subspace is not unitary. Equivalently, a
nonzero contraction A in B[H] is not completely nonunitary if there exists a nonzero
vector x € 'H such that

|[A%z|| = ||A*z|| = ||z|| for every positive integer n.

For every contraction A in B[H], let U4 be the collection of all those vectors for
which the above identity holds. The Nagy—Foias—Langer decomposition for contrac-
tions (see e.g., [13, p. 9] or [4, p. 79]) says that U, is a reducing subspace for A
and that A has a unique decomposition on H = U, & U+, namely,

A=Uy P Cy,

where Uy = A|uA is unitary and a Cy = A|uj is completely nonunitary. Thus a
contraction A is completely nonunitary if and only if /4 = {0}.

Consider a finite collection {A;}7, of operators on a complex Hilbert space H;.
The (orthogonal) direct sum @~ A; is a contraction if and only if every operator
A; is a contraction (since ||@]%; A;|| = maxi<;<m ||Ai]]). If every operator A; is a
contraction, then their tensor product @~ A; is a contraction (since H®Z’;1 A%H =
[T%, I|As])- Tt is readily verified that

@B", A; is a completely nonunitary contraction if and only if each A; is a
completely nonunitary contraction.

(Reason: Ugym 4, = @, Ua,). The tensor product counterpart is investigated in
Theorem 3 below, which is based on the next lemma.
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Lemma 1. If A; is a contraction on a Hilbert space H; for each i € [1,m], then

u®£n:1‘4i = ®uAL :
=1

Proof. Let A be a contraction on a Hilbert space H and let B be a contraction on a
Hilbert space K. Consider the contraction A® B on H ® K. Let {e,} and {fz} be
orthonormal bases for H and K, respectively, so that {e, ® fz} is an orthonormal
basis for H ® IC. Take an arbitrary z in H ® K and consider its Fourier expansion,

(1) 2= A pea®f3=) €a®Ya=» 139 f3,
a, 3 a B

with g = )" Ao, geq and yo = Z,@ Aa, g f3 in H and K for every « and every 3,
respectively, where {\,, 3} is a square-summable family of scalars. Hence

(2) 1202 =" lyall® =D llzsll?
o 3

because {eq @ yo} and {3 ® fz} are orthonormal families such that |leq ® yo|| =
llyall and ||zs @ fg]| = ||zg||. Now suppose z lies in Uagp. Then

B) =l =lAeB)"| = (A" @ (I @ B")z| < (I © B")z|| < |||

since (AQ B)" = (A" ® I)(I ® B") = (I ® B™)(A™ ® I) for every nonnegative inte-
ger n, which is a contraction that is a product of contractions, where I stands either
for the identity on H or for the identity on IC. Thus, according to (1), (2) and (3),

> lwal® = 1212 = (7 & BY=A? = (1 @ B") Y ea © 1

- H 3 ew @B |’ = 1Byl

2

This implies that
lvall = |B"yal| for every positive integer n and every index «

because each B" is a contraction. Since z lies in Uagp, (3) holds if A and B are
replaced with A* and B* and so the above identity holds if B is replaced with B*.
Moreover, since A” ® I and I ® B™ commute, we get

(3" [l = [I(A™ @ I)z]]

for every nonnegative integer n by using the same argument applied to yield (3).
Thus, reasoning as above, (1), (2) and (3’) ensure that

llzgl| = ||A"zg|| for every positive integer n and every index £,

and again the above identity also holds if A is replaced with A* Hence zg € Ua
for every 3 and y, € Up for every «, and so z € (H® Up) N (Us ® K) according to
(1). However, if M and N are subspaces of H and K, then

HOIN)N(MK)=MeN.
Indeed, if P and @ are projections onto M and N, then (HQN) N (MR K) =

RI®Q)NRPeI) = R(I®Q)(PeI) = R(P2Q) = R(P)2R(Q) =
M@N since I ® Q and P ® I are commuting projections. Thus z € (Us ® Up).
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Then Usgp CU4 ® Up. The reverse inclusion follows at once. Indeed, Uy ® Up
reduces A ® B by Theorem 1(a;) and (A® B)|u.ous = Alu, ® Bluy by Theorem
1(c1), which is unitary (see e.g., [12, Theorem 2.4] or [5, proposition 5]). Therefore

Usgp =Us @ Up.

This proves the lemma for m = 2, which extends to any integer m > 3 by using the
same argument applied in the proof of Theorem 2. O

Theorem 3. Take any integer m > 2 and, for each integer i € [1,m], let A; be a
contraction on a Hilbert space H;. The following assertions are pairwise equivalent.

(a) The tensor product @, A; is completely nonunitary.

(b) The restriction of the tensor product @, A; to every nonzero reqular reduc-
ing subspace is not unitary.

(¢) One of the contractions A; is completely nonunitary.

Proof. Assertion (a) trivially implies (b). Suppose (c) fails so that every contraction
A; is not completely nonunitary, and hence each reducing subspace U4, is nonzero
and A;[y,, is a unitary operator on Ua, Thus the regular subspace Qi Ua, of
&®:", H; is nonzero (since each Uy, is), reduces @, A; by Theorem 1(a), and

(®Z1Ai) ®m, Ua, - ®Z1Ai|lx{m

by Theorem 1(cy), which is unitary (since it is the tensor product of unitaries) and
so (b) fails. Thus (b) implies (c). Lemma 1 ensures that (¢) implies (a). Indeed, if
U, = {0} for some integer i € [1,m], then Ugm 4, = {0}. O

Remark 2. Besides showing that (a) and (c) are equivalent,

X", A; is completely nonunitary if and only if one of the contractions A; is
completely nonunitary,

Theorem 3 also shows that (a) and (b) are equivalent, which means that the prop-
erty of being completely nonunitary is invariant for the type (regular or irregular)
of the reducing subspace. This can be rewritten as follows.

There exists a nonzero reducing subspace for @, A; on which it acts unitar-
ily if and only if there exists a nonzero regular reducing subspace @i-, M;

Jor @2, Ai on which (Q~, Ai)lgm ., am, is unitary.

Remark 3. The equivalence (a) <= (c¢) in Theorem 3 yields another proof for
Theorem 2. In fact, a unilateral shift is precisely a completely nonunitary isometry
(ie., a pure isometry), and so @~ A; is a unilateral shift if and only if it is com-
pletely nonunitary and @;-, A; = @, Vi, where each V; is an isometry (see
e.g., [12, Theorem 2.4]). This means by Theorem 3 that @, A, = @/~ V; is
completely nonunitary, where each V; is an isometry and one of them is completely
nonunitary. That is, @~ A; is a unilateral shift if and only if Qv Ai = @iy Vi,
where each V; is an isometry, being at least one of them a unilateral shift.
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