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UNITARY EQUIVALENCE AND TRANSLATION
REPRESENTATION IN WAVELET THEORY

NHAN LEVAN AND CARLOS S. KUBRUSLY

ABSTRACT. Unitary Equivalence and Translation Representation play a key
role in the Lax-Phillips Scattering Theory. In this paper we show that Trans-
lation Representation also plays an important role in Wavelet Theory, for
Discrete Multi-Resolution Approximation as well as for Continuous Multi-
Translation Approximation — to be defined in the paper.

1. INTRODUCTION

At the heart of Wavelet Theory is a chain of nested subspaces of the func-
tions space £L2(R), called Multi-Resolution Approximation (MRA), generated from
a “resolution-2°” subspace V by the discrete unitary group [D™] of the scale-by-2
operator D. Moreover V is actually an outgoing (incoming) subspace with respect
to [D™].

The concept of outgoing (incoming) subspace, with respect to either a discrete
group, or a continuous one-parameter group, of Hilbert space unitary operators,
originated from the Lax-Phillips Scattering Theory in which Translation Represen-
tation plays a key role.

In this paper we study applications of Translation Representation to Wavelet
Theory. It will be shown that it plays an important role in the Discrete Multi-
Resolution Approximation (DMRA) and, particularly, in the associated Continuous
Multi-Translation Approximation (CMTA) — to be defined below.

We must note that the “object” that connects Wavelet Theory and Scattering
Theory is a group of Hilbert space shift operators. This will be shown below.

We begin in Section 2 by showing that the well known Discrete Multi-Resolution
Approximation is actually generated from a specific outgoing (incoming) subspace
O (or 7) with respect to the scale-by-2 operator D. Then by Discrete Translation
Representation, the space £2(R) “goes” into — i.e., “isomorphically onto” — the
space of approximations — of a signal at resolution-2° — to all nonzero resolutions
of the signal. We then turn to Continuous Translation Representation. This leads
to the formulation of Continuous Multi-Translation Approximation over the signal
space L£2(R) as well as over the Translation Representation “Hilbert over Hilbert”
space L2(R; W) — i.e., the space of L2(R) functions taking values in an auxiliary
Hilbert space W.

We close the paper with some historical notes and remarks on the Discrete
Wavelet Transforms, as well as on the time-steps decomposition which leads to
“elementary” Translation Representation for wavelets.
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2. MAIN RESULTS

Let H be a separable complex Hilbert space on which there is a discrete group
of operators [U™] := {U™, m € Z} generated from a unitary operator U, where Z
denotes the set of all integers.

2.1. Discrete Translation Representation and Discrete Multi-Resolution
Approximation. We now recall the concept of outgoing (incoming) subspace [12]
with respect to [U™] [12]. This leads to Discrete Translation Representations of H
and of an outgoing (incoming) subspace as well as that of the unitary operator U.

Definition 1. A subspace O (orZ) of H is an outgoing (incoming) subspace with
respect to [U™] if the following properties are satisfied.

i) UOCcO (UZICT).

(ii) Unez UMO (or ) = H.

(iii) ez U™O (or I) = {0}.

It follows from property (i) that an outgoing subspace O is U-invariant. More-

over, the chain of subspaces {U™O} := {U™O, m € Z} “generated” from O is “de-
creasingly” nested

(2.1) Umtlo c Um0, mez.

We must note that the closed union of a decreasingly nested sequence of subspaces
coincides with its closed span, hence (2.1) makes sense only because of property (i).

Let W be the orthogonal complement of UQO in O, that is,
(2.2) W:=06eUO.
Then it can be shown that [12]

(2.3) 0= é Umw
m=0
and
(2.4) H=EPHumw,
meZ
where
(2.5) U™W LU™W, m#m.

Hence W is called wandering for U [4, 6, 9, 21]. Moreover, because of (2.4), it is
also a “generating” wandering subspace.

Equation (2.4) can be characterized as a “wandering subspace” definition of a
bilateral shift whose multiplicity is dim W. Therefore, since (2.4) is a consequence
of Definition 1, it follows that a unitary operator for which there is an outgoing
(incoming) subspace is a bilateral shift [2], see also [11].

More is true [12].

Proposition 1. Let O be an outgoing subspace with respect to the group of bilateral
shifts [U™] over H. Then the operator Q4 defined by

(2.6) Qq: H—LCRW), Quh={w,}, heH, wn,eW,



where
(2.7) h= Z Uy, wm €W, and Z lJwnml]? = ||R||*.
meZ meZ

is unitary and is such that

(2.8) H o« C(RW),
(2.9) O« ([0,00)W),
(2.10) U « S QU = 5Qy,

where > means unitary equivalent, while S is the bilateral shift on (?(R; W)
defined by

(2.11) S{wm} = {wWm-1}.

Equations (2.8) - (2.10), because of the “translation” action of S on the subscript
m in (2.11), are referred to as Discrete Translation Representations of H, O and
U, respectively. The important point here is how to characterize the operator Q4
which “carries out” the unitary equivalence.

Similar results can be stated for an incoming subspace Z. In the following we will
be mostly dealing with outgoing subspaces. We now connect the above to Discrete
Multi-Resolution Approximation [14, 18], see also [8, 15].

Consider the outgoing subspace set up with H := £2(R) and with U := D —
the scale-by-2 operator on £2(IR) defined by
(2.12) Df() = V2 f(2()).
Moreover, the outgoing subspace O — called wavelet outgoing subspace — is ex-
plicitely given by
(2.13) 0:=\/ 6(() - n)
nez

for some unit function ¢(-) € L2(R) — called scaling function, see for instance,
8, 15] — which is such that its integral translates ¢((-) —n)) are orthogonal

(2.14) o(()—n) Lo(()—n'), n#n'

Definition 2. The chain of subspaces {D™O} := {D™0O, m € Z} with the out-
going subspace O defined in terms of a scaling function ¢(-) is called a Discrete
Multi-Resolution Approximation.

More is true, see for instance [8, 15].

Proposition 2. Given a DMRA {D™O} — with scaling function ¢(-) — over
L2(R). Then there exists a wavelet ¥(-) such that the wavelet functions

(2.15) V() = D™)((-) = n), (m,n) € Z?

form an orthonormal basis for L2(R), and the subspace W is expressed explicitely
in terms of ((-) — n) as

(2.16) W= \/ ¢(() —n).

ne”Z
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It follows from (2.4) and (2.7) that, for any f(-) € L3(R),
(217)  f() =) DMwn(), wn()EW, and Y [lwa()I* = IfC)I.
meZ meZ

Let P,, be the orthogonal projection onto the wandering subspace D™W then,
see for instance [11],

(2.18) Pl f()}=D"Po{D"f(-)}, m €L
Therefore

(2.19) wn() = D™PL{f()}, meL
(2.20) = Po{D™f())}.

Hence

(2.21) f() =Y D™ Po{D™f()}.

mEZ
As a consequence the unitary operator 24 is now defined by

(2.22) Qa: L2(R) — C(RW),  Qa f() = {wm(-)} = {Po{D™f()}}.

In Wavelet Theory the function D™ f(-) = V2" f(2m(-)), m € 7, is, by tradi-
tion, defined as the resolution (or scale)-2™ of f(-). Then, since P, {f(:)} is the
projection of f(-) onto the subspace D™W, it is defined as an approximation at
resolution-2™ to f(-) [8].

We therefore conclude from (2.22) that.

Proposition 3. A signal f(-) € L2(R), under the action of 4, goes into ap-
prozimations at resolution-2° to the resolutions-2™ of f(-). In other words, the
Translation Representation space of the signal space L?(R) is the space of approzi-
mations to all resolutions of the signal f(-) € L2(R).

2.2. Continuous Translation Representation and Continuous Multi-Trans-
lation Approximation. We now consider the case in which, beside a discrete
group of unitary operators [U™], we also have a one-parameter continuous group
of unitary operators [U(t)] := {U(t), t € R} over H.

We have [12].

Definition 3. A subspace O (or Z) of H is outgoing (incoming) with respect to a
group of unitary operators [U(t)] over H if the following conditions are satisfied.
HUHOCO,t>0, (UHICZ, t<0).
(it) U, U)O (or ) = H.
(i) N, U()O (or T) = {0}.

We must note that, as in the discrete case, Definition 3 implies that the unitary
group [U(t)] is a continuous shift over H [2].

To proceed we recall the following properties which are shared by a unitary group
[(t)] and its discrete cogenerator group [C}}] [12, 16].

Theorem 1. Let [U(t)] be a unitary group — with cogenerator Cyy — over H. Then
UL Cl = CRU), teR, m e Z. Moreover, an outgoing (incoming) subspace
— with respect to [Cj}'] — is also outgoing (incoming) with respect to [U(t)] and
conversely.
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Definition 3 is a “natural” generalization of Definition 1, whether the unitary
group [U(t)] admits a cogenerator or not. However for wavelets we already have a
wavelet outgoing subspace O — defined by (2.13) — with respect to [D™], and since
it is easy to see that the scale-by-2 operator D can also serve as the cogenerator of
a unitary group, we propose the following Definition.

Definition 4. Let O be a wavelet outgoing subspace, which is defined by O :=
V ez (j)(() — n), with respect to the discrete group [D™] of the scale-by-2 operator
D over L2(R), as well as with respect to the unitary group [/(t)] whose cogenerator
is D. Then the continuous chain of subspaces {O;} := {U(t)O, t > 0} satisfying
O, C Oy, 0< 11 <tg, is called an outgoing Continuous Multi-Translation Ap-
proximation (CMTA) — associated with the DMRA {D™0O}.

We do not in general have an explicit expression for [/(¢)]! However it can
be shown that [¢/(t)] is the strong limit of a linear combination of D™, m € Z,
[16]. Therefore, since for each ¢ € R the scale-by-2 operator D is an instanta-
neous translation by ¢ [17], the unitary group [U(t)] — which is already a group of
continuous shift operators — “behaves” like a group of “translation” operators. In-
deed, as we shall see, [U(t)] is unitarily equivalent to the group of translations by ¢
units over another Hilbert space. This is the justification for introducing the term
“Multi-Translation”.

To proceed we recall the following Translation Representation Theorem due to
Sinai [19].

Theorem 2. Let O (or Z) be an outgoing (incoming) subspace with respect to a
group of unitary operators [U(t)], with cogenerator Cy, over the complex separable
Hilbert space H. Then there exists a unitary operator Q, (or§);) taking H onto the
Hilbert space L2(R; W) — called “Translation Representation Space”

(2.23) Qo(or ) H = L2R; W),

where W is some auziliary Hilbert space. Moreover,

(2.24) Q0 = L2([0,00); W), (T =L*(—00,0);W)),
(2.25) Qo (orQ)U{t) = T(t)Qb (or ),

where [T (t)] is the unitary group of translations by t units over L2(R; W),
(2.26) TWIO)=(()-1), teR,

Moreover,

(2.27) Qo (or Q) Cyy = CQy (0r ),

where C is the cogenerator of [T (t)]. The Continuous Translation Representations:
(2.28) LER) « L2R;W),

(2.29) O < L%([0,00);W) (I < L£*((—00,0);;W)),
(2.30) Uy < T(),

(2.31) Cy < C,

are unique up to an isomorphism of W.



6 NHAN LEVAN AND CARLOS S. KUBRUSLY

The cogenerator C of [7 (t)] is a bilateral shift on £2(R; W), since it is unitarily
equivalent to Cy; which is a bilateral shift by virtue of the fact that it admits an
outgoing subspace O. Moreover [C™] is expressed in terms of [7 (t)] as [16],

(2.32)  CE"f(z) = f(x) + 2/0C L (2t)e " T(£t)f(z)dt, m=>0, zcR,
0

where L,,(-), m > 0, is the Laguerre polynomial of degree m [22].

To proceed, consider the space £2([0,00); W) as a subspace of L2(R;W). It is
clearly invariant for the semigroup {7 (¢), ¢ > 0}, hence it is also invariant for C

[12, 21] as a unilateral shift — in £?([0, 00); W) — whose generating wandering
subspace, denoted by Wa™, is [21],

(2.33) Wat =V2e W, >0

From which we find

(2.34) Wa}t == C™"Wat =C™V2e™ W, >0, m>0
or

(2.35) Wai = C™ Lago(z)W = Lag,(x)W, x>0, m >0,
where Lag,(z), m > 0, denote the Laguerre functions defined by
(2.36) Lago(z) = V2e " Lo(2z) =V2e™®, x>0,
(2.37) Lagn,(x) = C™ Lago(z), >0, m>0

(2.38) = V2¢®L,(22), >0, m>0.

It then follows that £2([0,00); W) admits the wandering subspaces decomposi-
tion

(2.39) £2([0,00); W) = GB al = @ ™ Lago(z x>0
m=0 m=0

(2.40) = EB Lagm(x)W, x>0.
m=0

Similarly, £2((foo,0); W) as a subspace of L2(R; W) is invariant for the semi-
group {7 (—t),t > 0} which is the adjoint semigroup {7 *(¢),¢ > 0}, hence it is also
invariant for C*, i.e., for C™!, as a unilateral shift on Ez((—oo, 0); W)

We then find, as for the case of the space £2([0, 00); W),

(2.41) L?((—00,0); W) = @ C*™ Lago(—z) W, x<0
i

(2.42) = @ C™ Lago(—x)W, x<0

(2.43) = @ Lagm(—x)W, z<O0.

Combining (2.39) and (2.41), then (2.40) and (2.43), we arrive at the following
result.



Theorem 3. The space L£> (]R; W) admits the orthogonal representation

—1 00
(2.44) £*(R; W) @ C™ Lago(—z) W & @ C™ Lago(z) W

m=—o00 m=0
—1 o)
= @ Lagm(—a?)W ® @ Lagm(a?)W
m=—oo m=0
(2.45) = P Lagm(=x)W,
mEeEZ
where

Lagn(+x) = C™Lago(z), >0, m>0
= C™Lago(—z), <0, m<O0.

To proceed let us consider the outgoing subspace O of (2.3) — with Cy, instead
of U,

(2.46) o=@ cpw

m=0

and, by Theorem 2, let the unitary operator €2, be such that

(2.47) Q, 0 = L£3([0,00); W).

Then by (2.46)

(2.48) 0,0 =P 2QCyw.
m=0

This becomes, by (2.31) and (2.47),

(2.49) 2,0 = éCmQOW:EZ([O),oo);W).

m=0

It then follows from this and from (2.39) that

(2.50) PBecraw = Lago(x) W, x>0.
m=0 m=0
Therefore
(2.51) C™" QW =C™ Lago(z) W = Lagm(x)W, x>0, m>0.

This can also be rewritten as
(2.52) Qo CIFW = Lagm(z) W, x>0, m>0.
In exactly the same way we obtain

(2.53) Q, CH™W = Lagm(—xz) W, x<0, m>0.

We summarize the above results in the following Proposition.
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Proposition 4. The unitary operator Q, is characterized by the following equa-

tions.

(2.54) Q, CFW = Lagm(z)W, >0, m>0.
(2.55) Q, CH™mW Lagm(—x)W, x<0, m>0.

We now apply the above to the CMTA of Definition 4 — with the wavelet
outgoing subspace O :=\/, ., #((-) — n) and with Cy := D.

First, we have O, C O for every t,7 > 0. Therefore, we can write
(2.56) Or=0uir ® Oy,

where @t is the orthogonal complement of O, in O;.
Next, by definition,
(2.57) O =uU)0 =\ Ut)((-)—n), t>0.
nez

Then by Sinai’s Theorem

(2.58) Q2,0 = L£*([0,00); W),

(2.59) Q0 = QUBO=T1)Q0, t>0,
(2.60) = T(t)£*([0,00); W), by (2.58),
(2.61) = L([t,c0); W), t>0

That is

(2.62) Oy < L2([t,00); W), t=0.
Similarly

(2.63) Oppr = L([t+7,00;W), t,7>0.
Consequently

(2.64) Op « L2((Lt+T);W), t,7>0.

To proceed, let P; be the orthogonal projection from L£2?(R) onto O; then by
(2.57)

(2.65) PO} =D (FOLUBS(() = n)) UMS(() =n), t=0,

nez

which is an approzimation to f(-) att > 0. Then, since [U(t)] is unitary (2.65) can
be rewritten as

(2.66)  PALC)} = D UDSC),d(() —n))UB)S(() —n), t=0

neE”L
Ut) Po {Ut)" ()},
where P denotes the projection onto the outgoing subspace O which is also
the projection P;—q.
We note that (2.67) is the continuous analogue of P, {f(-)} of (2.18).

(2.67)



Next, it follows from (2.66) that

(268) WPASC) = D (fOLUBS(() —n)) WUDS(() —n), t=0

nez

(2.69) = D (f(), QUMS(() —n)) QUBG(() —n).
nez

Therefore

(2.70) Qo Pr = Pa,0,, =0,

This, by (2.61), means that

(2.71) Qo Pt = Pra(t,00)w) o, 120,

that is,

(2.72) Pr = Pra(it.copw)-

We note that (2.69) can also be rewritten as

(273) WP} = D (Qf(),QUBS(() —n)) QUEG(() —n)

(274) = Z <Qof(')’ T(t) Qo (b(() - n)>7<t)Qo (b(() - TL)
(2.75) = Prwa.o {Qf(0)},

which is (2.71) as expected.
In exactly the same way we obtain

(2.76) Pirr < Praisroc)w), 720,
and
(277) ﬁt < PLZ((t’tJrT);W)’ t, T > O,

where 73,5 is the projection onto @t.
We are now ready to state the following results.
Theorem 4. Let O be the wavelet outgoing subspace with respect to a DMRA

{D™W} as well as with respect to its associated CMTA {O:}, then an approxi-
mation to f(-) € L2(R) at any t > 0 can be expressed as

(2.78) PASO} = P A SO} +PASC)Y, 20,

where the first term on the right hand side represents (as in the discrete case)
“coarse” details approximation while the second term is “finer” details approxima-
tion. Moreover, approximations in the signal space L2(R) go into unitarily equiv-
alent approzimations in the Translation Representation Space L*(R;W). In other

words, for f(-) € L%(R),

(2.79) Pr2(fto0) ) 1S ()} = Pra(ierr,corm) {6 f ()} + Pra(itrom 10 F ()},

where the unitary equivalence operator Q, is characterized by Theorem 2.



10 NHAN LEVAN AND CARLOS S. KUBRUSLY

3. CONCLUDING REMARKS

Let {Op, := D™O, m € Z} be the DMRA with the outgoing subspace O given
by (2.13). Then we have the orthogonal decomposition, see for instance, [8, 15]:

(3.1) L2R) =0 @P O, mez,
l=m
where
(3.2) @g =05 O0p41.
Moreover,
m—+1 N
(3.3) O =0 @ @ Oy, for m>m'.
l=m'

From which it is easy to see that

m+1
(3.4) Podf()} =P SO} + Y Pe{f()}, for m>m.

L=m'
This results in the well-known Discrete Wavelet Transform, see for instance [8], for
approximating f(-) at resolution-2™ by the “coarse” details at resolution-2™" and
the “finer” details from resolution-2™" to resolution-2"+1.

Equation (2.78)) is the discrete £2(R)-analogue of (3.4), while (2.79) is the con-
tinuous £2(R;W)-analogue of (3.4).

The concept of Continuous Multi-Resolution Analysis (CMRA), as a general-
ization of the concept of DMRA, was first formulated by Antoniou and Gustafson
[1], see also [5], and was motivated by the analogy to continuous-parameter regular
stationary processes. Their formulation consists of a continuous chain of Hilbert
subspaces satisfying properties “similar” to those of a DMRA, as well as some ad-
ditional properties. Moreover, the continuous group of unitary operators [I/(t)] is,
in their formulation, a continuous shift which needs not be generated by the scale-
by-2 operator D — as its cogenerator. We must note that [1] and [5] also discuss
connections of Wavelet Theory to several areas of Mathematics and Mathematical
Physics.

The concept of CMRA was also developed via the theory of Continuous Wavelet
Transform in [3] and [20].

Finally, by tradition, the decomposition £L2(R) =P, ,,c;, D™W, where the wavelet
generating wandering subspace W is defined in terms of a wavelet ¢(-) as W :=
Voez ¥(() = n) is a decomposition at each resolution-2™. In [13], see also [10],
we show that the space £2(R) can also be represented by the decomposition with
respect to time-steps-n, i.e., it is of the form L£2(R) = DB,.cz Hn, where H,, =
Vmez me((-) - n), n € Z. What is interesting about this time-steps decomposi-
tion is the fact that the subspaces H,, are D-reducing and the parts of D on H,,
i.e., D|'H,, are shifts of multiplicity 1. Therefore, Translation Representation can be
obtained for H,,, for an outgoing subspace defined on H,, and for the shift opera-
tors D|H,,. These representations are “elementary” compared to those of Theorem
2. In other words they involve shifts of multiplicity 1 instead of shifts of nonfinite
multiplicity.
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We have not considered the role of the Lax-Phillips scattering operator for

Wavelet Theory. For this we refer to the work of Jorgensen [7].
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