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CONVERGENCE AND DECOMPOSITION FOR TENSOR
PRODUCTS OF HILBERT SPACE OPERATORS

C.S. KUBRUSLY AND P.C.M. VIEIRA

ABSTRACT. It is shown that convergence of sequences of Hilbert space opera-
tors is preserved by tensor product and the converse holds in case of conver-
gence to zero under the semigroup assumption. In particular, unlike ordinary
product of operators, weak convergence is preserved by tensor product. It is
also shown that a tensor product of operators is a unilateral shift if and only if
it coincides with a tensor product of a unilateral shift and an isometry. These
results lead to a decomposition of a tensor product of contractions into an
orthogonal direct sum of tensor products of class Cog, strongly stable tensor
products, unilateral shift tensor products, and a unitary tensor product.

1. INTRODUCTION

Let H and K be nonzero complex Hilbert spaces. We shall consider the concept
of tensor product space in terms of the single tensor product of vectors as a conju-
gate bilinear functional on the Cartesian product of H and K. (See e.g., [4], [10] and
[11] — for an abstract approach see e.g., [1] and [14].) The single tensor product of
z € H and y € K is a conjugate bilinear functional x @ y: H x K — C defined by
(x ®@y) (u,v) = (z;u) (y;v) for every (u,v) € H x K. The collection of all (finite)
sums of single tensors x; ® y; with x; € H and y; € K, denoted by H ® I, is a com-
plex linear space equipped with an inner product ( ; ): (H®K)x (H® K) — C
defined, for arbitrary Zfil z; ® y; and ij:l w; ® z; in H® K, by

N M N M
<in ®RYis Yy w; ®Zj> =30 i wy) i 2)
i=1 j=1 i=1 j=1
(the same notation for the inner products on ‘H, K and ‘H ® K). By an operator
we mean a bounded linear transformation of a normed space into itself. Let B[H],
B[K] and B[H ® K] be the normed algebras of all operators on H, K and H ® K.
The tensor product on H ® KC of two operators T in B[H] and S in B[K] is the
operator T ® S: H® K — H ® K defined by
N N N
(T®S)in®yi = ZT;vi@Syi for every Zmi®yi eHRK,
i=1 i=1 i=1
which lies in B[H ® K]. The completion of the inner product space H ® K, denoted
by H & K, is the tensor product space of H and K. The extension of T'® S over the
Hilbert space H & K, denoted by T'® S, is the tensor product of 7' and S on the
tensor product space, which lies in B[H ® K]. For an expository paper containing
the essential properties of tensor products needed here, the reader is referred to [6].
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It is exhibited in Theorem 4 a decomposition of a tensor product contraction
T ® S into an orthogonal direct sum of tensor products of class Cgo, strongly stable
tensor products, unilateral shift tensor products, and a unitary tensor product. This
is done after showing in Theorem 1 that weak, strong and uniform convergences
are preserved by tensor product. The case of convergence to zero is considered in
Theorem 2, and the converse is investigated in Theorem 3 under the semigroup
assumption (i.e., for power sequences). The above mentioned decomposition is also
based on Lemma 1, which ensures that a tensor product is a unilateral shift if and
only if it coincides with a tensor product of a unilateral shift and an isometry.

2. CONVERGENCE

A sequence {T,,} of operators in B[H] converges uniformly, or strongly, or weakly
to an operator T in B[H] if ||T;, — T'|| — 0, or ||(T,, — T)x|| — O for every z in H, or
(Thx;y) — 0 for every z and y in H (equivalently, (T,,x;x) — 0 for every z in the
complex Hilbert space H), and these will be denoted by T,, — T, or T,, = T, or
T,, == T, respectively. It is bounded if sup,, ||Ty| < co. Clearly,

T,->T = T,>T = T,5T = supl|T,| <.
Theorem 1. Let {T,,} be a sequence of operators in B[H] and let {S,} be a se-
quence of operators in BIK]. Let T and S be operators in B[H] and in B[K].

(a) If T, T and S, -~ S, then T, ® Sp - T®&S.
b) If Ty =T and S, =+ S, then T,®8S,->T®S.
(c) If T, T and S, > S, then T, 88, T&S.
Proof. Recall that T, ® S, —T® S =T, ® (S, —S)+ (T, - T) ® S for each n,
which still holds if ® is replaced with & (see e.g., [6, Propositions 2(by,bs) 4(by,bs)]).
(a) If |T. — T|| — O (so that {T},} is bounded) and [|S,, — S|| — O, then
IT% ® Su =T & S| < sup || Tl [1Sn — S| + IS 1T — T,

and hence ||T, ® S, = T ® S|| — 0. That is, T, ® S, % T ® S.
(b) Take an arbitrary Ziil z; ®y; in H ® K and observe that

N
H(Tn®Sn—T®S)in®yi

=1
< sup 1T, ||Z|m||2|| S)uill + ||S||Z||y1||z|| (T, — T)a|-

If S, =+ S and T,, =~ T, then |[(T, ® Sy, — T(X)S)X:Z 12 @yl — 0, and so
T, ® S, T ®S. Moreover, {T,, ® S, } is bounded (because sup,, ||T}, @ S| <
sup,, | 7|l sup,, [|Sn|| < 00). As it is well-known, if a sequence of operators converges
strongly in a normed space, and if its extension is bounded in the completion, then
convergence holds in the completion of the space. Thus T), ® S, = T ® S.

(¢) Similarly, and applying the Schwarz inequality,
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N N
‘<(Tn®sn_T®S)Z$i®yi§zxi®yi>
< sup||T, IIZZII%II IIIJIIZZI S)yi s i)

=1 j=1 7,1]1

N N N
+1IS ZZ lyall by D>~ (T = Tais ).

=1 j=1 1=1 j=1

Thus |((T,® S, — T®S) Z 1% ® yl,zi]\il z; ®y;)| — 0, whenever S, —~ S
and T, =~ T, and so T}, ® S,, = T'® S. The same argument applies for weak
convergence so that T, ® S,, > T & S. a

Remark 1. The result in Theorem 1(c) does not mirror the ordinary product coun-
terpart. Indeed, T,, > T and S,, = S do not imply 7,,S, == T'S (in fact, even
T, = T and S, =~ S do not imply 7,5, = T'S). Sample: if V is a unilateral
shift, put 7 = S,, = V" so that T,, = O, S, = O, but T,,S,, = I for every n.

Theorem 2. Let {T,,} and {S,} be sequences of operators in B[H] and B[K],
respectively. If one of them converges to zero uniformly (strongly, weakly) and the
other is bounded, then {T,, ® S,} converges to zero uniformly (strongly, weakly).

Proof. If ||T,,|| — 0 and sup,, ||Sn|| < oo (or vice versa), then || T, & S,|| — 0 be-
cause | T, ® Sull = [|[Tn ® Sull = |0 ||Snl| for every n > 1, which proves the
claimed result for uniform convergence. For strong and weak convergences take an
arbitrary vector Zf\il z; ®y; in H ® K. Note that

N N N
(T @ 80) > 2 @ wi]| < sup 150l D I1T0zill Y sl
i=1 n i=1 i=1

If {T.,} Converges strongly to zero and if {S,} is bounded (or vice versa), then
H (T, ® S, )ZZ 12 ® ylH — 0. Applying the same argument in the proof of Theo-
rem 1(b) we get T,, ® S, = O. Similarly,

(@ o s0) Zmyl,_zxz@y) < sup IS, DI BCEAFI) 3 S T]

=1 j=1 =1 j=1
If {T,} converges weakly to zero and if {S,} is bounded (or vice versa), then
(T, ® Sy )Zl 1T QY ; Zfil z; ®y; ) — 0. Again, applying the same argument
in the proof of Theorem 1(c), it follows that T}, ® S,, - O. O

Remark 2. A tensor product sequence {7, ® Sn} may converge in every topology
and both sequences {T,} and {S,} may not converge in any topology (actually,
both sequences may not even be bounded). For instance, put T,, = nl if n is odd
and T,, = O if n is even, and S,, = O if n is odd and S,, = nI if n is even, so that
1T @ Snll = | TullllSnll = 0. However, in general, we always have

(*) i%f [T sup [|Snll < sup ([|T5[l|1Snll) = sup || T ® Sall
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(if we declare that 0-oco =0). Theorem 3 below shows that, unlike the above
example, convergence to zero of power sequences (or, equivalently, of sequences
having the semigroup property) is transferred from the tensor product to one of
the factors. First we consider the following auxiliary result.

Proposition 1. If the power sequence {T”@ S™} is bounded, then so is one of
the power sequences {T™} or {S"}.

Proof. Since (T ® §)* = T™ & S™ for every n > 0, the above statement says that
if T ® S is power bounded, then so is one of T or S. Indeed, suppose T ® S is
power bounded so that inf,, |77 sup,, ||S™|| < oo by (x). If one of T or S, say T, is
not power bounded, then inf,, ||T™| > 1 (since inf, ||7"|| < 1 implies | T"|| — 0; cf.
(a) in the proof of Theorem 3 below). Hence sup,, ||S™|| < inf, || 7" sup,, ||S™|| and
so S is power bounded. Similarly, if S is not power bounded, then 7" must be. [

Let {n},>0 denote the self indexing of the set of all nonnegative integers Ny
equipped with the natural order. We say that a subsequence {ny}r>0 of {n},>0 is
of bounded increments if supys(nk+1 — ng) < 0o, and that a Hilbert space operator
T is power incremented if either the power sequence {T"} converges weakly to zero
or there exists a subsequence of bounded increments {ny }x>0 of {n},>0 such that
lim supy, [(T™x;y)| > 0 whenever (T"x;y) /> 0 for some pair of vectors z and y.

Theorem 3. Let T be an operator in B[H] and let S be an operator in B[K]. Con-
sider the power sequences {T™} and {S"}. If {T™® S™} converges to zero uni-
formly or strongly, then so does one of the sequences {T™} or {S™}. If {T™® S™}
converges to zero weakly, and one of T or S is power incremented, then one of the
sequences {T™} or {S™} converges to zero weakly.

Proof. First recall that (T ® S)® = T™® S™ for each nonnegative integer n.
Part 1: Uniform Convergence.
(a) If inf, ||T™] < 1, then ||T™] — O.
Indeed, if inf,, |7™| < 1, then there is a positive integer ng such that |[|T7°| < 1.
Thus (with 7(T") denoting the spectral radius of any operator T in B[H]),
r(T)™ =r(T™) < ||T™|<1 = r(T)<1 <= |T"||—0.
Now suppose |[|T" & S™|| — 0 and recall that | T ® S”|| = || T"||||S™|| for every n.
(b) If inf, |T™] > 0, then |S™| — 0.

In fact, inf,, |77 > 0 if and only if liminf,, |77 > 0 (reason: || T+ < ||T|||T™).
Since || T"||||S™|| — 0, it then follows that if liminf, ||T7| > 0, then [|S™| — 0.
From (a) and (b) we get the claimed result for uniform convergence.

Part 2 : Strong Convergence. If the sequence {T™ ® S™} converges strongly, then
it is bounded (i.e., T ® S is power bounded, since (T ® S)* = T"® S™), and so
is one of {T"} and {S™} (i.e., one of T or S is power bounded) by Proposition 1.
Thus, with no loss of generality, suppose T' is power bounded: sup,, || 7" < oc.

(¢) If liminf, ||T"z| =0 for every x € H, then | T"z| — 0 for every z € H.
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Indeed, take any z € H. If liminf, ||[7"z| = 0, then there exists a subsequence
{|T™ ||} of {||T"z||} such that limy, | T™*z|| — 0. Since sup,, |T™|| < oo, and since
T+ = T™T" for every m > 0 and n > 0, this ensures that || 7"z|| — 0. Actually,

(|T™| < | T || ||T™*z|| < sup |[T™||||T"*z| whenever n > ng.
n

Now suppose {T™ ® S™} converges strongly to zero. Since for each integer n > 0
(T & S)"z @ u| = Tz © S™ul| = | T"||||S™ull

for every z € H and u € K, it follows that ||T™z||||S™u|| — 0 for every = € H and
u € K, which ensures the next assertion.

(d) If liminf, ||T"| > 0 for some z € H, then ||S™u| — 0 for every u € K.

From (c) and (d) we get the claimed result for strong convergence.

Part 3 : Weak Convergence. Take an arbitrary z in H.

(e)  If there exists a subsequence of bounded increments {ng}r>0 of {n},>0
such that [(T"™z;y)| — 0 for every y in H, then |{(T"x;z)| — 0.

Indeed, take any x € H. Let {ns}r>0 be a subsequence of {n},>q, of bounded
increments, such that

{T™z;y)| — 0 as k — oo for every y € H.
Since Tm—i—n = T™T" for every m Z 0and n 2 O7 it follows that, for each _7 Z 0,
|<Tnk+jx;x>| — |<T"k‘;1;;T*j:c>| — 0 as k — oo.

However, If {an}n>0 is a sequence of nonnegative numbers, and if there exists a
subsequence of bounded increments {ni}i>0 of {n}n>0 such that can,+; — 0 as
k — oo for every j >0, then ay, — 0 as n — oo. Thus

[(T"z;z)] — 0 as n — oo.

Now suppose {T™ ® S™} converges weakly to zero and that one of T or S, say T
(with no loss of generality), is power incremented. Since, for each integer n > 0,

(T ® "z @usy@v)=[{T"8 Sz usy @ v)| = (T z;y)]|{S"u;0)|

for every z,y € H and u,v € K, it follows that |(T"z;y)||(S™u;v)| — O for every
z,y in H and u, v in K.

(f)  If for every subsequence of bounded increments {ny}r>o of {n},>o there
exists y in H such that [(T™xz;y)| 4 0, then [(S™u;u)| — 0 for every u in K.

Indeed, if the hypothesis in (f) holds, then it holds, in particular, for the whole
sequence {n}p>o so that |[(T™z;y)| /4 0 for some y in H. Hence there exists a
subsequence {nj}r>0 of {n},>0 such that iminfy [(T™x;y)| > 0. If T is power
incremented, then we may assume that {nj}r>0 is of bounded increments. Since
KTz ; y)|[(S™u;v)| — 0, it follows that [(T™x;y)||(S™u;v)| — 0, and therefore
[{(S™w;v)| — 0 for every u,v in K. Thus take an arbitrary u in K. Since {ny}r>0
is a subsequence of bounded increments of {n},>o such that [(S™u;v)| — 0 for
every v in KC, it follows by (e) that
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[(S™u;u)] — 0 as n — oc.

From (e) and (f) we get the claimed result for weak convergence. O

An operator T is uniformly, strongly or weakly stable if the power sequence {T"}
converges uniformly, strongly or weakly to zero. Preservation of uniform stability
can be viewed as a consequence of the spectrum formula o(T ® S) = o(T) - o(S)
for a pair operators [2]. Preservation of strong stability as in [3, Theorem 1] and [7,
Proposition 1] is a particular case of Theorems 2 and 3. It still remains open whether
weak stability in Theorem 3 holds without the power increment assumption.

3. DECOMPOSITIONS

Let T* € B[H] denote the adjoint of T' € B[H]. A contraction is an operator T°
such that ||T|| < 1. If T is a contraction, then the sequence {T*"T"} converges
strongly. Let Ay € B[H] be the strong limit of {7*"T"}. The following basic prop-
erties of Ay will be required in the sequel (see [5, Chapter 3]): O < Ay < (ie,
Ar is a nonnegative contraction) and [|Ar| = 1if A7 # O. Moreover, if A = A,
then Ar is a projection, (i.e., A7 = AZ%). Furthermore, a contraction 7 is strongly
stable if and only if Ar = O. According to [13] a Co.-contraction (or a contraction
of class Co.) is a strongly stable contraction (i.e., a contraction T" with Ayr = O),
and a Cgp-contraction (or a contraction of class Cqp) is a strongly stable contraction
whose adjoint also is strongly stable (i.e., a contraction T' with A = Ap« = O).

Corollary 1. If T and S are Hilbert space contractions, then

(a) Args=Ar® As.
If both At and Ag are nonzero, then
(c) Args= AQT 5 implies Ap= A% and Ag = AZ.

Proof. (a) Since T & S is a contraction in B[H ® K] whenever T and S are contrac-
tions in B[H] and B[K], it follows that the sequence {(T' ® S)**(T ® S)™} converges
strongly to a nonnegative contraction Ay 5 ¢ in B[H ® K. Since

and
it follows by Theorem 1 that

(T @ S)™(T & S)" =~ Ar @ Ag,
and so Ap g ¢ = Ar ® Ag by uniqueness of the strong limit.
(b) Since (T ® S)*=T* ® S* is a contraction, the sequence {(T ® S)*(T ® S)*"}
converges strongly to A(T@) Sy = Api g ge = A+ ® Ag- by (a). If Args =
A(T & 5)* then Ap ® Ag = Ap. ® Ag. by (a). If both Ap and Ag are nonzero,
then A7 = aAr- and Ag = a~'Ag- for some nonzero scalar « [12, Proposition

2.1], and ||Ar|| = ||Azr+|| = 1. Thus |a| = 1. Since Ay > O, it follows that « > 0,
and so « = 1. Thus Ay = Ap~ and Ag = Ag-.




CONVERGENCE AND DECOMPOSITION FOR TENSOR PRODUCTS 7

(c) A, oo =A% then A7 ® As = (Ar ® As)® = A7 © A% by (a), which
implies that A = aA? and Ag = a~! A% for some nonzero scalar « [12, Proposition
2.1], whenever both Ay and Ag are nonzero. In this case, ||Ar| = ||As|| =1 so
that ||A%| <1, ||4%]| < 1, and hence o = 1 because Ar and Ag are nonnegative.
Thus Ay = A% and Ag = A%. |

Remark 3. Consider the assertions in Corollary 1. According to assertion (a)
A g ¢ = O if and only if either A7 = O or Ag = O. The converse to assertions (b)

and (c) hold trivially by (a) — since (Ar ® Ag)? = A% ® A%. The implications in
(b) and (c¢) do not hold if one of Ay or Ag is zero.

Lemma 1. A tensor product T® S in B[H@K] is a unilateral shift if and only if
T®S=J&V where Jis an isometry in B[H] and V is a unilateral shift in B[K],
or T® S=V & Jwhere Vis a unilateral shift in B[H] and J is an isometry in B[K].

Proof. A unilateral shift is precisely an isometry whose adjoint is strongly stable
(cf. [5, Lemma 6.1]). Thus T & S is a unilateral shift if and only if

T® S is an isometry and (T ® S)*™ - O.
But, for any pair of nonzero operators 7" and S,
T® S is an isometry <= T®S5=.J,® Jo,
where, J; and Jo are isometries in B[H] and B[K] (see e.g., [8, Lemma 4(b)]), and
(1 ® J) " =50 = J"0 o Ji"=0

(Theorems 2 and 3). Thus T’ ® S is a unilateral shift if and only if T ® S = J; & Jo,
where J; and Jy are isometries and one of them has a strongly stable adjoint.
Equivalently, J; and Js are isometries and one of them is a unilateral shift. |

The closing result exhibits a decomposition of a tensor product of contractions
for which the strong limit A} 5 g is a projection. Here © stands for orthogonal
direct sum, and 2 stands for unitary equivalence.

Theorem 4. Let T and S be contractions on H and K and consider the tensor
product T ® S on H & K.

(a) If AT@S:AQ

Teg then T@S=BoGaVaU,

where B is a Coo-contraction, G is a Co.-contraction (i.e., a strongly stable contrac-
tion), V is a unilateral shift, and U is a unitary operator.

(b) If Apgs=Argsy then T®S=BoU.

Proof. Suppose T' and S are contractions. If one of Ar or Ag is zero, then A} 5 ¢
is zero, which means that T ® S is strongly stable, and so (a) holds with T'® S =
B @ G and (b) holds with T ® S = B. Thus suppose both A and Ag are nonzero.
(a)If Ay 5 g = A2T 5 g then Ap = A% and Ag = A% by Corollary 1. Moreover,
AT:AQT = T=GreVreUr,
AS:AZS - SZGs@VsEBUs,
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where G and Gg are Cp.-contractions, Vi and Vg are unilateral shifts, and Uy
and Ug are unitary operators [9, Theorem 1]. Therefore (see [6, Eq. (14),(16)]),
T®S = (GroGs) @ (GrdVs) @ (GrdUs)
@ (Vr ® Gg) @ (Vp ® Vo) (Vr ® Us)
© (Ur®Gs) @ (Ur®Vs) @ (Ur ®Us),
which yields the decomposition in (a) with
B=(Vr ® Gs) ® (Gr ® Vs),
G=(Gr ®Gs)® (Gr ® Us) ® (Ur ®Gs),
V=Vr®Vs)®(Vr&Us)® (Ur®Vs) and U =Ur ® Us.

Since G and Gg are strongly stable, it follows by Theorem 2 that both Vi ® Gg
and Gr ® Vg are strongly stable. Since Vg and Vi are unilateral shifts, their adjoint
are strongly stable, and another application of Theorem 2 ensure that (Vp ®G )"
and (G ® Vs)* are strongly stable. Thus the contractions Vi ® Gg and Gr ® Vg
are of class Cgg, and so is their direct sum B. Theorem 2 also ensures that all the
direct summands of G are strongly stable, and so is G itself. Lemma 1 says that
all the direct summands of V are unilateral shifts, and so V'is a unilateral shift (of
higher multiplicity). Finally, U clearly is unitary once Ur and Ug are.

(b)IfApg 5= A(T & )» then Ap = Ap« and Ag = Ag« by Corollary 1. Moreover,
A = Ap« - T:BT@UT,
AS:AS* - S:BS@Us,

where By and Bg are Cgp-contractions, and Ur and Ug are unitary operators [9,
Corollary 1]. Thus, as before,

T®S = (Br®Bs) @ (Br@Us) ® (Ur ® Bs) @ (Ur ® Us),
which yields the decomposition in (b) with
B=(Br® Bs)® (Br @ Us)® (Ur ® Bs) and U =Ur ® Us,

where B is a Cgp-contraction because both By and Bg are, and U is unitary because
both Ur and Ug are. O

ACKNOWLEDGMENT

We thank the anonymous referee who brought to our attention an important cor-
rection in the weak stability proof of a previous version of Theorem 3.

REFERENCES

1. A. Brown and C. Pearcy, Introduction to Operator Theory I — Elements of Functional Anal-
ysis, Springer, New York, 1977.

2. A. Brown and C. Pearcy, Spectra of tensor products of operators, Proc. Amer. Math. Soc. 17
(1966), 162-166.

3. B.P. Duggal, Tensor products of operators — strong stability and p-hyponormality, Glasgow
Math. J. 42 (2000), 371-381.

4. P.R. Halmos, Finite-Dimensional Vector Spaces, Van Nostrand, New York, 1958; reprinted:
Springer, New York, 1974.

5. C.S. Kubrusly, An Introduction to Models and Decompositions in Operator Theory, Birk-
hiuser, Boston, 1997.



10.

11.
12.

13.

CONVERGENCE AND DECOMPOSITION FOR TENSOR PRODUCTS 9

. C.S. Kubrusly, A concise introduction to tensor product, Far East J. Math. Sci. 22 (2006),
137-174.

. C.S. Kubrusly, Tensor product of proper contractions, stable and posinormal operators, Publ.
Math. Debrecen 71 (2007), 425-437.

. C.S. Kubrusly, Regular subspaces of tensor products, to appear.

. C.S. Kubrusly, P.C.M. Vieira and D.O. Pinto, A decomposition for a class of contractions,

Adv. Math. Sci. Appl. 6 (1996), 523-530.

M. Reed and B. Simon, Methods of Modern Mathematical Physics I: Functional Analysis,

2nd edn. Academic Press, New York, 1980.

R. Ryan, Introduction to Tensor Products of Banach Spaces, Springer, London, 2002.

J. Stochel, Seminormality of operators from their tensor product, Proc. Amer. Math. Soc.

124 (1996), 135-140.

B. Sz.-Nagy and C. Foiag, Harmonic Analysis of Operators on Hilbert Space, North-Holland,

Amsterdam, 1970.

. J. Weidmann, Linear Operators in Hilbert Spaces, Springer, New York, 1980.

CaTHoLIC UNIVERSITY OF RIO DE JANEIRO, 22453-900, R10 DE JANEIRO, RJ, BRAZIL
E-mail address: carlos@ele.puc-rio.br

NATIONAL LABORATORY FOR SCIENTIFIC COMPUTATION, 25651-070, PETROPOLIS, RJ, BRAZIL
E-mail address: paulocm@lncc.br



