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REGULAR SUBSPACES OF TENSOR PRODUCTS

CARLOS S. KUBRUSLY

ABSTRACT. The concept of regular subspaces of a tensor product space and
the structure of regular invariant and reducing subspaces for tensor products of
Hilbert space operators are explored. Preservation by tensor product is investi-
gated. It is shown how transitiveness and reducibility, as well as the properties
of being hereditarily normaloid and totally hereditarily normaloid travel be-
tween a pair of Hilbert space operators {A, B} and their tensor product A ® B.
The case of completely nonunitary tensor products is also considered.

1. INTRODUCTION

Let H and K be nonzero complex Hilbert spaces. The single tensor product of
r € H and y € K is a conjugate bilinear functional x ® y: H x K — C defined by
(z ®@y) (u,v) = (x;u)(y;v) for every (u,v) € H x K. The tensor product space
'H ® K is the completion of the inner product space consisting of all (finite) sums of
single tensors z; ® y; with z; € ‘H and y; € I, which is a Hilbert space with respect
to the inner product

<Z$i®yi§zwj®zj> ZZZ<xi;wj><yi;zj>

for every >, z; ® y; and ), w; ® z; in H® K. By an operator on a normed space
X we mean a bounded linear transformation of X into itself. Let B[X] be the

normed algebra of all operators on X. The tensor product of two operators A in
B[H] and B in B[K] is the transformation A ® B: H® K — H ® K defined by

(A®B)in®yi:ZAxi®Byi for every in@yi eEHRLK,

which is an operator in B[H ® K]. For an expository paper containing the essential
properties of tensor products needed here, the reader is referred to [8].

There are a number of properties that survive when taking the tensor product,
and several more that do not. A property that is not preserved by tensor product is
irreducibility. The concept of regular subspaces of a tensor product space H ® K is
defined in Section 2, and it is shown in Section 3 how transitiveness and reducibility
may be transferred from operators A and B to their tensor product A ® B.

On the other hand, some properties of A and B are preserved when taking the
tensor product. For instance, if A and B are nonnegative, self-adjoint, normal,
quasinormal, subnormal, hyponormal, quasihyponormal, or semi-quasihyponormal,
then so is A® B (see e.g., [8]); and the converse holds in many cases: if A® B is
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2 C. S. KUBRUSLY

normal, quasinormal, subnormal or hyponormal, then so are A and B (if they are
nonzero) [15]. Preservation by tensor product has also been verified for other classes
of close to normal operators (see e.g., [3], [6], [9], [13] and [17]). However, such a
preservation may fail for some important classes: the properties of being paranormal
or spectraloid are not preserved when taking tensor products [14, pp.629,631].

Recall the following standard definitions. An operator T' € B[H] is hyponormal
if TT* < T*T, paranormal if | Tx||? < || T2z ||z|| for every z in H, and normaloid if
r(T) = ||T|| (where r(T) denotes the spectral radius of T and ||T'|| denotes the norm
of T in B[H]). An operator is hereditarily normaloid (abbreviated: HN) if every
part of it is normaloid, and totally hereditarily normaloid (abbreviated: THN) if
it is hereditarily normaloid and every invertible part of it has a normaloid inverse.
These classes of operators are related by proper inclusion [4]:

Hyponormal C Paranormal ¢ THN C HN C Normaloid.

As we commented above, hyponormality is preserved by tensor product but paranor-
mality is not. Normaloidness is preserved by tensor product as well, and it is shown
in Section 4 how the properties of being hereditarily normaloid, or totally heredi-
tarily normaloid, travel between the tensor product and each of the factors.

Also recall that an operator T' on H is strongly stable if ||T™z| — 0 for every
z in H, and weakly stable if (T"z;y) — 0 for every z and y in H (equivalently, if
(T™x;z) — 0 for every z in the complex Hilbert space H). These are denoted by
T" =5 O and T" =% O, respectively. Moreover, T is a contraction if || T']| < 1, and
a contraction is completely nonunitary (abbreviated: c.n.u.) if the restriction of it
to every nonzero reducing subspace is not unitary. If T is a contraction, then

w

T"=+0 = Tiscnu =— T" 0.

(The first implication is trivially verified and the second is a consequence of the
Foguel decomposition for contractions — see e.g., [5, p.55] or [7, p.106].) It was
shown in [3] and [9] that if A and B are contractions, then A® B is strongly
(weakly) stable whenever one of A or B is strongly (weakly) stable; and the converse
holds for strong stability. (For weak stability, the converse requires additional as-
sumption — [12, Theorem 3].) Preservation of the property of being completely
nonunitary will be considered in Section 5, where it is given a new proof that A ® B
is completely nonunitary if and only if one of A or B is completely nonunitary.

2. REGULAR SUBSPACES

By a subspace M of a Hilbert space H we mean a closed linear manifold of H.
It is nontrivial if {0} # M # H, and T-invariant — or invariant for an operator T’
in B[H] —if T(M) C M. It is said to be a reducing subspace for T'— or to reduce
the operator T in B[H] — if both M and its orthogonal complement M=+ =H & M
are T-invariant (equivalently, if M invariant for both T and its adjoint 7).

Regular subspaces of tensor product spaces were introduced in [10] as follows.

Definition 1. A subspace of H ® K is reqular if it is of the form M @ N, where
M and N are subspaces of H and K, respectively. Otherwise it is called irregular.
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Let M be any nonzero subspace of a Hilbert space H and let {h} e’ be an
orthonormal basis for M so that, with \/ denoting closure of span,

M=\/ h,,
~eI”

where {h- },cr is a subset of an orthonormal basis {h },er for H with IV CT". Let
S be an arbitrary nonzero subspace of the tensor product space H ® K. Thus,

S=\1rs
SEA’

for an orthonormal basis { fs}sca for H ® K with A" C A. If {h, } er and {kx}rea
are orthonormal bases for H and K, then {h, ® kx}(y,x)erxa is an orthonormal
basis for H ® K (see e.g., [18, Theorem 3.12(b)]). Hence a nonzero subspace S of
‘H ® K may be given by

S= "\ hok

(v, M) ExA)

for some orthonormal bases {h-}ycr and {kx}rea for H and K, where (I' x A)' is
a subset of the double index set I' x A, which does not necessarily coincides with
any rectangle IV x A’ of subsets I and A’ of the index sets I" and A.

Regular subspaces of tensor product spaces can also be characterized in Lemma
1 below. Its proof is straightforward, hence omitted.

Lemma 1. A subspace S of H® K is reqular if and only if it is either zero or
S= "\ h ok,
(7, A)ETY X A

for orthonormal bases {h} cr for H and {kx}xea for KK with T'" CT and A" C A.

3. REGULAR INVARIANT AND REDUCING SUBSPACES

We borrow the next result from [10] since it will play a central role in the forth-
coming sections. It explores the structure of regular invariant and regular reducing
subspaces of tensor products.

Lemma 2. Let A and B be nonzero operators on H and K, let M and N be
subspaces of H and K, respectively, and consider the subspace M QN of H® K.

(a1) If M is invariant (reducing) for A and N is invariant (reducing) for B,
then M @ N is invariant (reducing) for A® B.

(ag) If M ®N is invariant for A® B, then M is invariant for A or N is in-
variant for B.
(ag) If M@N reduces A® B, then
M reduces A, or
N reduces B, or
M is invariant for A and N'* is invariant for B, or

N s invariant for B and M= is invariant for A.
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(ag) If M QN is nonzero and invariant (reducing) for A® B, and if A and
B are injective, then M is invariant (reducing) for A and N is invariant
(reducing) for B.

(b) One of M or N is nontrivial and the other is nonzero if and only if M QN
is nontrivial.

(c1) If M is A-invariant and N is B-invariant, then
(A® B)|mon = Alm @ By

(co) If M QN is nonzero and A ® B-invariant, and if A and B are injective,
then

(A® B)|mon = Alm @ By
Proof. See [10, Theorem 1] for the case of m = 2. |

An operator is transitive if it has no nontrivial invariant subspace, and intran-
sitive if it has a nontrivial invariant subspace. The invariant subspace problem is
the open question that asks whether the class of all transitive operators acting on
an infinite-dimensional complex separable Hilbert space is nonempty. An operator
is reducible if it has a nontrivial reducing subspace, and irreducible otherwise.

Theorem 1. Let A and B be nonzero operators on H and K.

(a) If one of A or B is intransitive (reducible), then the tensor product A ® B
has a nontrivial regular invariant (reducing) subspace.

(b) The converse holds if A and B are injective.

Proof. According to Definition 1 a subspace of H ® K is regular if and only if it is
a tensor product M ® N of subspaces M and N of ‘H and K.

(a) If one of A or B is intransitive (reducible), then there exists a nontrivial invariant
(reducing) subspace M for A or a nontrivial invariant (reducing) subspace N for
B, and so M ® K or H® N is a regular nontrivial invariant (reducing) subspace
for A ® B by Lemma 2(a;,b).

(b) Conversely, if A and B are injective and if A® B has a nontrivial regular
invariant (reducing) subspace M ® N, then M is invariant (reducing) for A and
N is invariant (reducing) for B by Lemma 2(a4), and one of them is nontrivial by
Lemma 2(b), and hence one of A or B is intransitive (reducible). O

The whole space H ® K and the null space {0} are regular, and so irregular
subspaces are always nontrivial. If A and B are injective, then by Lemma 2(aq, aq4,
b) M ® N is nontrivial and reduces A ® B if and only if M and N are nonzero (one
of them being nontrivial) and reduce A and B. If both M and N are nontrivial,
then A ® B commutes with a nonscalar normal tensor product N4 ® Npg of normal
operators N4 and Ng. However, not all normal operators on H ® K are tensor
products of operators. Theorem 1 is applied in Corollary 1 below to verify the
existence of reducible tensor products whose nontrivial reducing subspaces are all
irregular. A generalization of Corollary 1 was considered in [10]. Nevertheless, we
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present below the particular case that precisely fits our present needs, and sketch
out its proof since part of the proof will be required later in Section 5.

Corollary 1. Let A be an arbitrary operator on a Hilbert space of dimension
greater than 1.

(a) The tensor product A® A is reducible.

(b) If A is injective and irreducible, then all nontrivial reducing subspaces of
A® A are irregular.

Proof. Let A and B be operators acting on Hilbert spaces H and K, respectively.
Consider the mapping II: H ® K — K ® H defined by

H(sz(@yz) :Zyi®ffi

for every >, x; ® y; in H ® K. It is readily verified that this is an invertible linear
isometry, thus a unitary transformation. If X = H, then II in B[H ® H] also is an
involution (i.e., I1? = I), and so it is a symmetry (i.e., II7! = IT* = II) on H ® H.

(a) Consider the tensor product A ® B in B[H ® K] and let II be the unitary trans-
formation of H ® K onto K ® H defined above so that

(A® B) = (B®A)II

(i.e., the tensor product is unitarily equivalent commutative). In particular, the
tensor product of an arbitrary operator A in B[H] with itself, A ® A in B[H ® H],
commutes with the nonscalar normal operator II in B[H ® H]. This means that
A ® A is reducible (which is a classical consequence of the Spectral Theorem).

(b) Thus the tensor product A ® A always has a nontrivial reducing subspace. If
A is injective and irreducible (sample: a unilateral shift of multiplicity 1), then
A ® A has no nontrivial regular reducing subspace by Theorem 1(b), and so all its
nontrivial reducing subspaces are irregular. O

4. REGULARLY NORMALOID TENSOR PRODUCTS

After recalling that the property of being normaloid is preserved by tensor prod-
uct, it is given in Theorem 2 necessary and sufficient conditions on A ® B for both
operators A and B be hereditarily normaloid (or totally hereditarily normaloid).
This shows how hereditary normaloidness and total hereditary normaloidness are
transfered between {4, B} and their tensor product A ® B.

Lemma 3. Let A and B be nonzero operators on H and K. The tensor product
A ® B is normaloid if and only if both A and B are normaloid.

Proof. See e.g., [14, Corollary 6.1]. O

A part of an operator is a restriction of it to an invariant subspace; a nontriv-
ial part is a restriction to a nontrivial invariant subspace. A direct summand of an
operator is a restriction of it to a reducing subspace. By a regular part of a tensor
product of two operators we mean a restriction of the tensor product to a regular
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invariant subspace. Recall that an operator is called hereditarily normaloid if ev-
ery part of it is normaloid, and totally hereditarily normaloid if it is hereditarily
normaloid and every invertible part of it has a normaloid inverse.

Definition 2. A tensor product is regularly normaloid (abbreviated: RN) if every
regular part of it is normaloid, and totally regularly normaloid (abbreviated: TRN)
if it is regularly normaloid and every invertible regular part of it has a normaloid
inverse.

Theorem 2. Let A and B be nonzero operators on H and K.

(a1) If the tensor product A ® B is regularly normaloid, then both A and B are
hereditarily normaloid.

(ag) If the tensor product A ® B is totally regularly normaloid, and if one of A
or B has an invertible part (in particular, if one is invertible), then the other
is totally hereditarily normaloid.

(b) If A and B are hereditarily normaloid (totally hereditarily normaloid) and
injective, then A ® B is regqularly normaloid (totally regularly normaloid).

Proof. Let Lat(A) and Lat(B) denote the collection of all invariant subspaces for
A € B[H] and B € B[K], respectively. Take arbitrary M € Lat(A) and N € Lat(B).

(a1) By Lemma 2(a;), H ® A is a regular invariant subspace for A® B. If A® B
is regularly normaloid, then (A ® B)|nyga is normaloid, and so is A® B|y by
Lemma 2(cy). If Bly = O, then it is trivially normaloid. If B|x # O, then (since
A # 0O), both A and B|xs are normaloid according to Lemma 3. Similarly, If A ® B
is regularly normaloid, then (A ® B)|mex is normaloid and the same argument
ensures that, if A|yp # O, then A|y and B are normaloid. Therefore,

A® B€ RN implies A€ HN and B € HN.

(ag) If S and T are Hilbert space operators, then S ® T is invertible if and only if
both S and T are invertible (indeed, o(S ® T') = o(S) - o(T), where o(-) denotes
spectrum — cf. [2]) and (S®T)~! = S~1 ® T~1. Hence, (A ® B)|men is invert-
ible if and only if A|y ® By is invertible by Lemma 2(cq), and this happens if
and only if both Ay and B|y are invertible. Moreover, in such a case,

(+) [(A® B) | men] ' = (Am ® Bla) ™" = (Alm) "' @ (Bly)

Suppose A ® B is totally regularly normaloid. Then it is regularly normaloid, and
so both A and B are hereditarily normaloid according to item (a;). Suppose A|,
is invertible for some My € Lat(A). Take an arbitrary N in Lat(B). If B|y is
invertible, then (A ® B)|moen = Alm, @ Bla (cf. Lemma 2(cy)) is invertible and
[(A® B)|mean] ™t = (A amy) " @ (Bla) ™! by (x). Since A ® B is totally regularly
normaloid, it follows that (A|a,) ™ ® (B|y) ! is normaloid, and so (A|aq, )~ ! and
(B|n)~! are normaloid by Lemma 3. Thus B is totally hereditarily normaloid.
Similarly, Suppose B|y; is invertible for some Ny € Lat(B). Take an arbitrary M
in Lat(A). If A|x is invertible, then the same argument ensures that (A|r()~! and
(B|n;,) ! are normaloid. Thus A is totally hereditarily normaloid. In particular, if
both A and B have an invertible part (specially, if they are invertible), then
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A® B € TRN implies A€ THN and B € THN.

(b) Let M ® N be an arbitrary regular A ® B-invariant subspace of H ® K. If
M = {0} or N = {0}, then M ®N = {0}, and hence (A ® B)|pmgn = O, which
is trivially normaloid and noninvertible. Thus take M # {0} and A/ # {0}, so that
M@ N # {0}. Suppose A and B are injective (so that A|y # O and By # O
since M ¢ kernel (A) = {0} and M ¢ kernel (B) = {0}). Then A ® B is injective
(see e.g., [11]). Thus M @ N € kernel (A ® B) = {0}, and so (A ® B)|men # O.
By Lemma 2(a4), M is A-invariant and N is B-invariant. If A and B are heredi-
tarily normaloid, then A|r¢ and B|xs are normaloid, and hence A|r ® B|y is nor-
maloid by Lemma 3. Therefore, (A ® B)|menr is normaloid by Lemma 2(cg). Thus

A€ HN and B€ HN implies A® B € RN.

Again, if (A ® B)|mgn is invertible, then so are A|rq and B|y. If A and B are
totally hereditarily normaloid, then (A[xr¢)~! and (B|x)~! are normaloid, and so
is [(A® B)|men] ™! by (*) and Lemma 3. Then the above implication ensures that

A€ THN and B € THN implies A® B € TRN. O

The next result gives a complete characterization of unitary tensor products.
This is applied to prove the forthcoming Corollary 2 and Theorem 3.

Lemma 4. Consider the tensor product A® B € B[H ® K] of a pair of nonzero
operators A € B[H] and B € BIK].

(a) A® B is unitary (an isometry) if and only if both A and B are nonzero
multiples of unitary operators (isometries) with ||A| = ||B||~'.

(b) In particular, if A and B are unitary operators (isometries), then A® B s
unitary (an isometry) and, conversely, if A® B is unitary (an isometry),
then there are unitary operators (isometries) U € B[H] and V € BIK] such
that AQ B=UQ®YV.

(¢) Moreover, if A and B are contractions, then A ® B is unitary (an isometry)
if and only if both A and B are unitary operators (isometries).

Proof. The result in (a) is a straightforward application of [15, Theorem 2.4(a)].
The results in (b) and (c) are readily verified by (a). d

A contraction T' € B[H] is of class C1; (or T is a Cqi-contraction) if both se-
quences {||T™z||} and {||T*"z||} do not converge to zero for every nonzero x in H.
For Cq1-contractions the properties of being totally regularly normaloid and totally
hereditarily normaloid coincide.

Corollary 2. Let A and B be Hilbert space contractions. The following assertions
are pairwise equivalent.
(a) The tensor product A ® B 1is unitary.
(b) The tensor product A ® B is totally hereditarily normaloid and of class C11.
(¢) The tensor product A® B is totally reqularly normaloid and of class Cq1.
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Proof. 1t is clear that every unitary operator is a totally hereditarily normaloid Cq1-
contraction. Thus (a) implies (b). Moreover, (b) trivially implies (c¢). It remains
to prove that (c) implies (a). First note that A ® B is a contraction because A and
B are contractions, since ||A® B| = ||A|| || B]-

Claim 1. If A® B is of class C11, then both A and B are of class C11.
Proof. Indeed, for every z € H and y € K,
I(A® B)"z @yl = [A"x @ B"y| = [[A"z|| | B"y]|,
[(A® B)™"z @yl = [[A™"z @ B™"y| = [|A™=| | By

Claim 2. Every Cyi-contraction has an invertible part.

Proof. If T € B[H] is a C;1-contraction, then it is quasisimilar to a unitary operator
(see e.g., [7, p.70]), which in turn implies that there exists an increasing sequence
{M,,} of T-invariant subspaces that span H such that each part T'|aq, is similar
to a unitary operator [1]. Thus every T'|r, is an invertible part of T

Claim 3. FEwvery totally hereditarily normaloid Cy1-contraction is unitary.
Proof. See [4, Proposition 2.5].

Therefore, if the contraction A ® B is of class Cq1, then it follows by Claims 1 and
2 that both contractions A and B are of class C1; and both have an invertible
part. Thus Theorem 2(ag) ensures that if (a) holds, that is, if the C11-contraction
A ® B is totally regularly normaloid, then the C1;-contractions A and B are totally
hereditarily normaloid, and so A and B are unitary by Claim 3. Hence (c) holds,
that is, A ® B is unitary according to Lemma 4(b). Outcome: (c) implies (a). O

5. REGULARLY NONUNITARY TENSOR PRODUCTS

Recall that a contraction is completely nonunitary if the restriction of it to every
nonzero reducing subspace is not unitary. Equivalently, a nonzero contraction 7" in
B[H] is not completely nonunitary if there exists a nonzero vector x € H such that

|IT™z|| = ||T*"z|| = ||z|| for every positive integer n.

Definition 3. A tensor product is a regularly nonunitary contraction if it is a
contraction and the restriction of it to every nonzero regular reducing subspace is
not unitary.

Theorem 3. Let A and B be contractions on H and K.

(a) If the tensor product A® B is a regularly nonunitary contraction, then one
of A or B is completely nonunitary.

(b) The converse holds if A and B are injective.

Proof. Let H and K be the nonzero Hilbert spaces upon which act the contractions
A and B. The tensor product A ® B is a contraction because both A and B are.
Moreover, one of A or B is null if and only if the tensor product A ® B is null, which
in this case are completely nonunitary once the Hilbert spaces are all nonzero. Thus
suppose A and B are nonzero contractions.
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(a) If both contractions A and B are not completely nonunitary, then there exist
nonzero vectors x € H and y € K such that

[A"z]| = [[A™z]| = ||lz]| and [|B"y[| = |[B™y| = [lyll

for every positive integer n. Let M and N be the sets of all those vectors z and y
that satisfy the above equations (i.e., put M = {z € H: ||A"z| = ||A*"z| = ||z||}
and N = {y € K: ||B"y|| = [|B*"y|| = ||lyll}- These are nonzero subspaces of H
and K (see e.g., [16, p.9] or [7, p.76]). Moreover they reduce A and B and Al and
B| are unitary operators. Thus the regular subspace M @ A of H ® K is nonzero
(since both M and N are), reduces A ® B by Lemma 2(a;), and

(A® B)|lmer = Alm @ Bly

by Lemma 2(cy ), which is unitary by Lemma 4. Hence A ® B is not regularly non-
unitary. Therefore, if the tensor product A ® B is regularly nonunitary, then one
of A or B is completely nonunitary.

(b) Conversely, suppose A and B are injective. Let M ® N be any nonzero regular
subspace of H ® K that reduces A ® B. By Lemma 2(ay, c3)

(A® B)|men = Alm @ Bly,

where M reduces A and A reduces B. If one of the parts Al or B|y is zero, then
(A® B)|pmen = O is certainly not unitary (since M ® A is a nonzero subspace).
Thus suppose A|rq and B|ys are nonzero. If A is a completely nonunitary contrac-
tion, then A|x is a nonunitary contraction. This implies that Ay ® B|as is not
unitary. Indeed, since A|rq and B|xs are nonzero contractions, it follows by Lemma
4(c) that if A|pq ® B|y is unitary, then A|arq is unitary, which is a contradiction.
Hence (A ® B)|men is not unitary whenever A is completely nonunitary. Similarly

exactly the same argument (A ® B)|mgn is not unitary whenever B is a
completely nonunitary contraction. Therefore, if one of A or B is completely non-
unitary, then A ® B is a regularly nonunitary contraction. O

In fact, it was proved in [10] that the properties of being regularly nonunitary
and completely nonunitary coincide (i.e., the property of being completely nonuni-
tary is invariant for the type — regular or irregular — of the reducing subspace).
This enables the converse in the preceding theorem to hold without the injectivity
assumption. We shall give below a new and simple proof for these facts. The price
for such an elementary proof is that it works for separable Hilbert spaces (while
the nonelementary proof in [10, Theorem 3] works for general Hilbert spaces).

Corollary 3. Let A and B are contractions acting on separable Hilbert spaces.
The following assertions are pairwise equivalent.

(a) The tensor product A ® B is completely nonunitary.

(b) The tensor product A ® B is regularly nonunitary.

(c) One of the contractions A or B is completely nonunitary.

Proof. Assertion (a) trivially implies (b), and (b) implies (¢) by Theorem 3(a). To
show that (c) implies (a) proceed as follows. Let S be an operator on H and let
T be an operator on K. If H is a separable Hilbert space, and if I stands for
the identity operator on H, then I ® T is unitarily equivalent to the countable



10 C. S. KUBRUSLY

(orthogonal) direct sum @, T through a unitary transformation ®x that does not
depend on T'. That is, with (% (K) = @, K, there exists a unitary transformation
Pic: L2(K) — H® K such that (see e.g., [8, Remark 5]), for every T in B[K],

O (@T) =(I®T)ok.

k

Moreover, as we saw in the proof of Corollary 1, there also exists a unitary trans-
formation II: H ® K — K ® H such that, if I stands now for the identity on X,

(I S) = (S @ I)II*

for every S in B[H]. Thus, if K is separable, then there exists a unitary transforma-
tion ®y: £2(H) — K @ H such that S ® I is unitarily equivalent to the countable
direct sum @, S through the unitary transformation II*®y, : £2(H) — H ® K,

IT* By (@ S) = (S® )"y,
k

where (2 (H) = ,, H. Therefore,

(%) ST =(S®1) (I®T):H*<I>H(@S)<I>;{H (I),C(@T)@,*C
k k

for every S in B[H] and every T in B[K]. Next let A and B be contractions on
‘H and KC, and suppose the contraction A ® B is not completely nonunitary, which
means that there exists a nonzero vector z € H ® K such that

I(A® Byz] = l[(A® B)™"z] = ||

for every positive integer n. Since @, A™ and @, B™ are contractions, and since
composition of unitary operators is unitary, if follows by (xx) that

I(A @ B 2l| = [[(A" & B")zl| = || 110 (@D A" ) 03,11 o (P B ) 01
k k
<[ Da I Drr)oir] < (Do) e
k k k
and so there exists a nonzero vector w = ®5.z € £?(K) such that

lwll = 1211 = (A @ By2I| < || (€D B )| < Il

< [|@k=ll,

and hence .
@51 =)l = v

for every positive integer n. Dually (since ||(A ® B)*"z|| = ||[(A*™ & B*™)z||) we get
(B, B) "wl|| = ||(B), B*™)w|| = |lw]|, and therefore

CORRCDREE

for every positive integer n. But this means that the contraction @, B is not com-
pletely nonunitary. If @, B is not completely nonunitary, then B is not completely
nonunitary (because a countable direct sum of completely nonunitary contractions
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a completely nonunitary contraction). Thus, if B in B[K] is completely nonuni-

tary, then A® B in B[H ® K] is completely nonunitary. Similarly, since A® B in
B[H® K] and B® A in B[K ® H] are unitarily equivalent (cf. Proof of Corollary

1

again), and since every contraction unitarily equivalent to a completely nonuni-

tary contraction is itself completely nonunitary, it follows if A in B[H] is completely

nonunitary, then A ® B in B[H ® K] is completely nonunitary. O
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