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ORTHOGONAL DECOMPOSITIONS FOR WAVELETS

CARLOS S. KUBRUSLY AND NHAN LEVAN

ABSTRACT. Decompositions of Hilbert spaces in terms of reducing subspaces
for wavelets operators, as well as decompositions of these operators themselves,
are investigated. In particular, it is shown on which reducing subspaces these
operators act as bilateral shifts of multiplicity 1. We also exhibit the unitary
transformation that performs the unitary equivalence between restrictions of
them to appropriate reducing subspaces.

1. INTRODUCTION

Let H be a separable (infinite-dimensional) Hilbert space. By an operator on H
we mean a bounded linear (i.e., a continuous linear) transformation of H into itself.
Recall the following definitions [9]. Let D and T be bilateral shifts of (countably)
infinite multiplicity [6] acting on H such that

DT? =TD.
This ensures that [9, Proposition 3]
(1) DanZm — T D™
for every m € Z and n € 7Z, where Z denotes the set of all integers. Any nonzero

vector ¢ in ‘H that makes {D™T"1}(,, n)ezxz into an orthonormal basis for H is
a wavelet, and the vectors ¥y, , = DT are the wavelet vectors generated by 1.

For instance, with H = £?(R), the operators D and T on £2?(R) defined by

y=Dz with y(t)=v2x(2t)
and
y=Tx with y(t)=z(t—1)

(for almost all ¢ in R with respect to Lebesgue measure) are bilateral shifts of infinite
multiplicity satisfying (1) for which there is a function ¢ (e.g., the Haar wavelet)
that makes { DT} n)ezxz into an orthonormal basis for L2(R). In this case,
D and T are referred to as dilation-by-2 and translation-by-1, respectively.

Orthogonal decompositions of Hilbert spaces in terms of reducing subspaces for
the operators D and T are revisited in Section 2. Orthogonal decompositions of the
operators D and T themselves are considered in Section 3, where it is investigated
on which subspaces of H these operators still act as bilateral shifts; in particular, as
bilateral shifts of multiplicity 1. The closing Section 4 shows which restrictions of
D and T are unitary equivalent, and it is also exhibited the unitary transformation
that performs the unitary equivalence between restrictions of D and restrictions of
T on appropriate reducing subspaces.
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2. WAVELETS SUBSPACES

For each m € Z we associate with a wavelet ¢ € H the following infinite-dimen-
sional subspaces of H [14] (also see [1], [2] [4], [5], [8], [9], [10], [11], [12] and [15]).
Wy =D"\/ T =\/ D"T"y, meL.

nez neZ
(Recall: invertible operators, in particular, unitary operators, can be moved inside
the “closed span” symbol — cf. [9, Corollary 3].) Since {D™T"} (1 n)ezxz is a
double-indexed orthonormal basis for H, we get the next wavelet expansion for H.
H=\/ Wn=\ DTy = \/ D",
meZ meEZne’ (m,n)ELXZ

where {W, }mez is a family of pairwise orthogonal subspaces of H that spans H,
thus yielding an orthogonal direct sum decomposition of H into {W,,}:

(2) H = W
meZ

It will be convenient to split the family {W;, } mez into two orthogonal subfamilies
of pairwise orthogonal subspaces {W;,}m<o and {W;},,>0, a negatively and a
nonnegatively indexed,

W, = D™ \/ T = \/ D™T™p,  m <0,

Nne” nez
Wit =Dpm \/ T = \/ D™T™y, m >0,
Nne” nez

so that the above orthogonal direct sum decomposition of H can be written as

H=EPW, e PwWi.
m<0 m>0
Now applying (1) we put
Rm=\/T"D™=\/ D"T"*"y=D™ \/ T"*"y, m=>0.
neZ neE”L nez
This is defined just for m > 0 because { D™ T2 4}, is a subset of the orthonor-
mal basis {D™T" )} (m.n)ezxz only if n2™ is an integer for every n € Z and, there-
fore, only for nonnegative integers m. It is clear (by their own definition) that each
R, is a subspace of W,,,
R CWE =W, m >0,

and so {R. }m>o0 is a family of pairwise orthogonal subspaces. Next consider the
orthogonal complement of each R, in W;.. For each nonnegative integer m > 0,
take the set Z,, = {k € Z: k # n2™ for every n € Z}. Recalling that {D™T"},
with (m,n) € Z x Z, makes an orthogonal set, put

R’m:ng@Rm:Dm(\/T"vpe\/T"2mw): \/ D"T*,  m>0,
nez nez k€L,
so that
WhH=R, @ R, m >0,
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where {R], }m>0 is a family of pairwise orthogonal subspaces (since {W;; },,>0 is).
Hence the previous orthogonal direct sum decomposition of H can be rewritten as

(3) H=EPW, o PRn o PR,

m<0 m>0 m>0

Next we turn to another kind of subspace, where the spans run over m, rather
than over n, as follows. For each n € Z we now associate with a wavelet ¢ € H
another infinite-dimensional subspace of H, namely,

Moo= \/ D"T™ nel
meEZL

Since {D™T™}(m,nyezxz is a double-indexed orthonormal basis for H, we get
another wavelet expansion for H,

AV
ne” n€EZ meZ (n,m)ELXTL

where {H,, }nez is a family of orthogonal subspaces of H that spans H, thus yielding
another orthogonal direct sum decomposition of H, now into {H, }:

(4) H =P Hn.

neZ

Finally, consider the following subspace of H (thus a Hilbert space itself).
M= \/ 1D =\ \JTD"yp =\ '\ T"D" = \/ Rn.
(m,n)ENgXZ m€ENg n€Z n€Z meNg m€ENy

(Here Ny denotes the set of all nonnegative integers.) Once again, recalling that
{D™T" %} (m nyezxz is a double-indexed orthonormal basis for , it follows that
{Rm}m>0 is a family of orthogonal subspaces of M that span M, thus yielding an
orthogonal direct sum decomposition of M into {R,,}:

(5) M= PR c W

m>0 m>0

3. WAVELETS DECOMPOSITIONS

To begin with we recall some known decompositions for the bilateral shifts D
and T. The first one exhibits a decomposition for the bilateral shift D.

Lemma 1. FEach 'H,, reduces D so that
D =D Dl
nez

where each Dy, is a bilateral shift of multiplicity 1 on each Hilbert space H,,.

Proof. See [9, Theorem 1]. |

A counterpart of the above result, now exhibiting a similar decomposition for the
bilateral shift 7', goes as follows. (Here M~ stands for the orthogonal complement
of M; that is, M+ =H o M.)
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Lemma 2. FEach R,, reduces T, and so does M. Hence

T=T

m>0

R, D T|Mi7

where each T|r,, is a bilateral shift of multiplicity 1 on each Hilbert space R,.

Proof. See [13, Theorem 1]. |
We show next that T'| o1 is a bilateral shift.

Theorem 1. T|a. is a bilateral shift acting on M-*.

Proof. First we need the following general result on orthogonal direct summands of
bilateral shifts on Hilbert spaces. Let A be an operator acting on a Hilbert space.

Claim 1: If A = B® C, where A and B are bilateral shifts, then C' is a bilateral
shift as well.

Indeed, recall that every unitary operator U can be decomposed as U = S & W,
where S is a bilateral shift and W is a reductive unitary operator (see e.g., [3,
p.18] — an operator is reductive if all its invariant subspaces are reducing). Note
that a bilateral shift has no reductive direct summand. In fact, if U is a bilateral
shift and if NV # {0} is W-invariant, then W(N) = N (because W is a reductive
unitary) so that U(N) = N, which is a contradiction (because a bilateral shift has
no eigenvalue). Since a bilateral shift is nonreductive, a unitary operator is non-
reductive if and only if it has a bilateral shift as a direct summand. Also recall that
any direct sum of bilateral shifts is again a bilateral shift. Now suppose

A=Be&C,

where A and B are bilateral shifts. Since direct summands of a unitary operator
are again unitary, it follows that C' is unitary. If C is not a bilateral shift, then it
has a (nonzero) reductive direct summand W so that C' = S & W, where S is a
bilateral shift. Thus A = B® S @& W, with B ® S being a bilateral shift, has the
same reductive direct summand W, and therefore A is not a bilateral shift, which
is a contradiction. Outcome: C' must be a bilateral shift, thus concluding the proof
of the above claimed result.

Therefore, since T is a bilateral shift such that (cf. Lemma 2)
T= @ TlRm © T|pme,
m>0

where B, T'|r,, is a bilateral shift, 7| y+ also is a bilateral shift by Claim 1. [

Since {Wi, }mez is a family of pairwise orthogonal subspaces of H, it follows by
(3) and (5) that M~ admits the orthogonal direct sum decomposition

Mt =M{ & My,
with
(6) Mt =PR, and M;=FPHwW,
m>0 m<0

which are subspaces of H, thus Hilbert spaces themselves.
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Theorem 2. Each R!, reduces T, and hence both M7 and Mg reduce T so that
Tipme =Ty & Tlpag-
Proof. Take an arbitrary nonnegative integer m > 0 so that n £+ 2™ € Z for every
n € 7. Consider the set Z,, = {k € Z: k # n2™ for every n € Z}, and note that
kely, = kEx2Mecly

Indeed, suppose k # n2™ for every n € Z. If k+ 2™ = n2™ for some n € Z, then
k =n2™ F2™ = (n F 1)2™, which is a contradiction. Conversely, suppose k £ 2™ #
n2™ for everyn € Z. If k=n2™ for some n € Z, then k 4+ 2™ = n2™ £ 2™ =
(n+1)2™, which is again a contradiction. Thus

k2™ eZ,, — k€Zp
Outcome:

keZl,, <+— kx2™cZln,

Therefore, according to (1),
\/ TD"T*y = \/ DT Ty

E€Zm, E€Zm,
\/ DR+ — \/ DTk = R
K€Ly, K€L,

Since T is unitary (i.e., since T* = T~!), this implies that
T(R;,) =Ry, =T"(R;,)

and so R/, reduces T, which in turn implies that M3 = D,,>0 R, also reduces T

Since M3 is the orthogonal complement of Mi in M~ (ie., My = M+ o M),
and since both M+ and Mj reduce T, it follows that Mg reduces T as well. [

Recall from the proof of Theorem 2 that k 4+ 2™ € Z,, if and only if k € Z,,,
and so a trivial induction ensures that k + j2™ € Z,,, for each j € Z, if and only if
k € Zy,. Thus, for each m > 0 and each k € Z,,, consider the subspace

mk—\/ﬂ’mkﬂzm - \/ Ym g =
JEZ k€L,
Note by the above argument that

\/ Rm k= \/ \/ wm,k-&-j?’” = \/ ¢m,k+j2"” = \/ wm,k =R/

kE€Zm, kE€Z,, EL (G k)ELX Ly, kEZmm

However, it is worth noticing that {R],, ; }xez,, is not a family of pairwise orthogonal
subspaces; that is, for each m > 0 the subspace R/, , is not orthogonal to R/, if
k # k. Indeed, for any k € Zy, it follows that ¥, am € Rl ;. and G i € R) .
coincide if k' = k + 2™ € Z,,. Thus R/, is not the orthogonal direct sum of R/ .
over all k € Z,, (1n fact, it does not make sense talking about the orthogonal dlrect
sum Py R;, , because R; . L R, ., whenever k # k).

Theorem 3. FEach le,k reduces T and each T|Rin . is a bilateral shift of multi-
plicity 1 on R}, ,
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Proof. Take any m > 0, any k € Z,,, and observe that

T( {,nvk) — \/ TDmTk+j2m: \/ DmTQmTk+j2m: \/ DmTk+(j+1)2m: R,/m”k-
JEZ JEZ JEZ

Since T is unitary (i.e., since T* = T~1), this implies that

T(Ron ) = Rione = T (R i)
and so each subspace R;, ;. reduces T'. Moreover, for an arbitrary j € Z,

m

T ot jom = TD™TFHI2") = pm2"h+s2

m

Y = DmTHHUTD2%, = Vm ket (+1)2m

Since for fixed m > 0 and fixed k € Z,, the set {1, k4,2 }jez consists of orthogonal
vectors, it is an orthonormal basis for each subspace R;,, ;. Thus each Tz,  shifts
(sequentially) a Z-indexed orthonormal basis for each R’m x> Which means that

T|R5n,k is a bilateral shift of multiplicity 1 acting on ’R’m k- O

Lemma 2 ensures that the restriction of T to some subspaces of W,, (i.e., the
restriction of T to each R,,) is a bilateral shift of multiplicity 1. The next theorem
shows that some powers (integer or fractional) of T in fact are bilateral shifts of
multiplicity 1 when restricted to every W,,.

Theorem 4. FEach W,, reduces T and each TT"
tiplicity 1 on the Hilbert space Wy, .

w,, s a bilateral shift of mul-

Proof. Take an arbitrary m € Z. It follows from [9, Proposition 5(b,b*)] that
(7) Wi = T77 (Wy,) = T77" (W),

and hence W,, is T7%-invariant and also T2_}"*-ilrlvauriaun‘L7 which means that W,,
reduces T. Note that {¢n, n nez is an orthonormal basis for the Hilbert space W,,
since it spans W,,. Take any v, ,, (for some n € Z). Observe that

1
Tam

W,,,me,n = Tﬁwmm = T2_1" Dan’(/)
However, it follows from (1) that
(8) T D™ = D™T.

Indeed, by setting n = 1, replacing m with —m, and multiplying by D™ (both from
left and from right) the expression in (1) we get the identity in (8). Therefore,

1
T

qu:bm?n =D"TT"w = Dan—i_lq:[} = wm,n-i-l-

Thus T'37 |w,, shifts (sequentially) a Z-indexed orthonormal basis for W,,, which
means that 777 lw,, is a bilateral shift of multiplicity 1 acting on W,. O

Corollary 1. Take arbitrary integers m and n in Z, and i in Ng. The operators
1
D|'H T|"Rw and T2m

w,, are unitarily equivalent to each other.

n’?

Proof. Shifts of the same multiplicity are unitarily equivalent (e.g., see [7, Chapter
2]). Thus the claimed results follow by Lemmas 1, 2 and Theorem 4. O
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The spaces W,,, Ry, and ‘H,, are trivially unitarily equivalent, since they have the
same countably infinite dimension — orthonormal bases with the same cardinality.
However, constructing unitary transformations between these spaces that make
those bilateral shifts (of multiplicity 1) unitarily equivalent may turn out to be a
recalcitrant task. A result along these lines is considered in the next section.

4. CONSTRUCTING THE UNITARY EQUIVALENCE BETWEEN H,, AND R,,

Take an arbitrary vector h,, € H,, which can be expressed by
w= Y axD* Ty,
ke
where {ay }rez is a square-summable family of scalars:
S lakl? = ha” < oo.
kEZ
Consider the transformation that assigns, to each h,,, the vector
O(n,m)hy =Y _ axT*D™.
keZ
This defines a surjective linear transformation between H,, and R,,,
®(n,m): H, — R
(for arbitrary n € Z and m € Ny). Indeed, ®(n,m) is trivially linear on H,, and

clearly surjective onto R,,

Theorem 5. ®(n,m) is unitary and intertwines Dy, with T|g,, :

®(n,m)Dl|y, =T|r,, ®(n,m).

m*

Proof. Take any integer n € Z, and an arbitrary h,, € H,. Since
1@ (n, m)hn® =D lal* = [|hal,
keZ

it follows that the surjective linear transformation ®(n, m) also is an isometry, and
therefore ®(n, m) is unitary. Now observe that

Dh,, = Z apDFHIT™Y) = Z ak—1 DFT™y,

kEZL keZ

®(n, m)Dhyy, Zak \TED™ 1,
kEZ

T®(n,m)hn =Y apT*HD™p =Y " ap T D™y
kEZ kEZ

so that
®(n,m)Dh, = T®(n,m)h,.
Since H,, reduces D and R, reduces T (cf. Lemmas 1 and 2), the above expression

ensures that ®(n,m)D|y, = T|r,, ®P(n,m). O

™m
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Observe that the operators
Dln,: Hn —H, and T|g

e clearly unitarily equivalent (since they are bilateral shifts of the same multiplic-

R — R

m

ity 1). The above proposition exhibits the unitary transformation

O(n,m): Hp — R

that carries out such a unitary equivalence, showing how these operators are, in
fact, unitarily equivalent.
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