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ON WEYL AND BROWDER SPECTRA OF TENSOR
PRODUCTS

C.S. KUBRUSLY AND B.P. DUGGAL

ABSTRACT. Let A and B be Hilbert space operators. In this paper we explore
the structure of parts of the spectrum of the tensor product A ® B, and con-
clude some properties that follow from such a structure. We give conditions
on A and B ensuring that 0w (A ® B) = 0w(A) - 0(B) U o(A) - ow(B), where
o(-) and oy (- ) stand for spectrum and Weyl spectrum, respectively. We also
investigate the problem of transferring Weyl and Browder’s theorems from A
and B to their tensor product A ® B.

1. INTRODUCTION

Let A® B be the tensor product of a couple of Hilbert space operators A and
B. Let o(-) and 0,(-) denote spectrum and Weyl spectrum, respectively, and let
oo(+) =0(-)\ow(-) be the complement of the Weyl spectrum in the spectrum.

The problem of transferring Weyl’s theorem from isoloid operators A and B to
their tensor product A ® B was considered in this journal in [10], where the proof
of the main statement (viz. if A and B are isoloid and satisfy Weyl’s theorem, then
A ® B satisfies Weyl’s theorem) stands only if it is assumed that the inclusions
ow(A)-0(B) U g(A)-0y(B) C 0yuw(A® B) and 0¢(A) - 0o(B) C 0o(A® B) hold
true. It was also given an example of a pair of nonisoloid operators A and B that
satisfy Weyl’s theorem (and also the above inclusions), but their tensor product
A ® B does not satisfy Weyl’s theorem.

Although it is known that
0uw(A® B) Coy(A)-0(B) Uo(A)-o,(B),

the reverse inclusion 0,,(A) - 0(B) U o(A) - 0,,(B) C 04 (A ® B) remains as an open
question, and so does the identity o,(A® B) = 0,(A4) -0(B) U 0(A) - 0,(B). If
this identity holds, then we show in Proposition 5 that o¢(A ® B) C g¢(A) - 0o(B).
However, the reverse inclusion o¢(A) - 09(B) C 09(A ® B) may fail even if A and
B are isoloid operators for which 0,(A® B) = 0,(4) - 0(B) U 0(A) - 0,(B), and
both A and B satisfy Weyl’s theorem together with their tensor product A ® B —
this will be verified in Remark 2.

The present paper is organized as follows. Notational preliminaries are posed in
Section 2. The structure of parts of the spectrum of tensor products is explored in
Section 3, where the spectral properties that will be required later are proved. The
problem of giving conditions on A and B enough to ensure the identity
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ow(A® B) =0y,(A)-0(B) U d(A) - 0yu(B)

is considered in Section 4. We close the paper in Section 5 by establishing conditions
on A and B for transferring Weyl and Browder’s theorems from them to their tensor
product A ® B, which extend the previous results along this line.

2. PRELIMINARIES

Let H be a nonzero complex Hilbert space (with inner product ( ; ) being linear
in the first argument). The single tensor product of € H and y € H is a conjugate
bilinear functional x ® y: H x H — C defined by

(z®@y) (u,v) = (z;u)(y;v) forevery (u,v)eH xH.

The tensor product space H ® H is the completion of the collection of all (finite)
sums of single tensors, which is a Hilbert space with respect to the inner product

<Z$i®yi§zwj®zj> :Zz<xi;U)j><yi;Zj>

for every 3, 7; ® y; and ; w; ® z; in H ® H. By an operator we mean a bounded
linear transformation of a normed space into itself. The tensor product of two
operators A and B on H is the operator A ® B defined by

(A®B)Zmi®yi:ZAxi®Byi for every in@)yi ceH®H,

which in fact is bounded and linear on H ® H. For an expository paper containing
the essential properties of tensor products needed here, the reader is referred to [9].

Let T be an operator on a Hilbert space H, let o(T") stand for the spectrum of
T and op(T) for the point spectrum (i.e., the set of all eigenvalues) of T, and let
R(T) = T(H) and N(T) = T~1{0} be the range and kernel of T, respectively. We
recall in Proposition 0 below some well-known fundamental properties related to
the spectrum of tensor products that will be required later in the sequel.

Proposition 0. Let A and B be operators on a Hilbert space H. Take the tensor
product A® B on H® H. The following assertions hold true.
(1) 0(A)-0(B)=0(A® B).
(2) op(A)-op(B) g op(A® B).
Moreover, (2.a) if 0 € op(A)Uop(B), then 0 € op(A® B) even if one of

op(A) or op(B) is empty. Furthermore, (2.b) if 04 v € op(A® B) has an
eigenvector that is a single tensor, then v € op(A) - op(B).

(3) R(A)®R(B) = R(A® B).
(4) N(A)®N(B) S N(A® B).

The identity in (1) is a classical result from [3]. The remaining results are readily
verified. It can be shown that the inclusion in (2) may be proper by using a unilat-
eral shift. Indeed, if S is a unilateral shift (of any multiplicity) on a Hilbert space,
then op(S) is empty and op(S*) is the open unit disc, and so op(S*) - 0p(S) = @.
However, op(S* ® S) = {0} (cf. [8, p.473,474]). Thus op(S* ® S) € op(S*) - op(S).
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Moreover, the reverse inclusion in (4) fails whenever one of A or B is not null
and the other is not injective. In fact, if N(A) # H and N (B) # {0}, then take
zg€N(A)and 0# y e N(B)sothat z @ y ¢ N(A) @ N(B) but s @ y € N(A® B)
since (A® B)(z®y)=Az® By=Az®0=0.

3. SOME SPECTRAL PROPERTIES OF TENSOR PRODUCTS

We discuss some basic spectral properties of tensor products that will be needed
next. For any operator T let opp(T') be the set of all eigenvalues of finite multiplicity:

opr(T) = {A € op(T): AimN(A-T) < oo} ={A e C: 0 <dimN (A -T) < co}.

Proposition 1. If A,B are operators on an infinite-dimensional Hilbert space, then

0 ¢ UPF(A® B)

Proof. Property (4) of Proposition 0 is a particular case of
(5) W(A)®H)UHON(B)) S N(A B).

Indeed, if z = Y, z; ® y; € N(A) @ H, then each z; lies in N'(A) so that (A ® B)z =
(A®B)Y ,z;®y; =y, Az; ® By; = 0, and hence z € N(A® B). Therefore,
(NM(A)®@H) € N(A® B). Similarly, (H®N(B)) € N(A® B). The reverse in-
clusion fails if both A and B are not null and not injective. In fact, if A # O
and B # O, then take u € N(A), z ¢ N(A), veN(B) and y € N(B) so that
(A®B)(u®y+z®v) = Au® By + Az® Bv = 0, and hence uQy +z Qv €
N(A® B). However, u ® y+z @ v ¢ (N(A) @ H)U(H @ N(B)) (because z ¢ N(A)
and y ¢ N (B)).
Moreover, A ® B is injective if and only if A and B are injective. That is,

(6) N(A)=N(B)={0} <= N(A® B)={0}.
To verify the direct implication quickly suppose that H is separable. If N (A) = {0}
and NV (B) = {0}, then N(A® I) = {0} and N(I ® B) = {0} (because I ® B &
@D, B and Al = I®A = @, A, where = means unitary equivalence) and
so N(A® B) = {0}, since A® B = (A®I)(I ® B). (Recall: if N(S) = {0} and
N(T) = {0}, then N'(ST) = {0}). The converse follows by (5): if N(A® B) = {0},
then A(A) = {0} and N(B) = {0}.

Furthermore, (5) also ensures that (if H is infinite-dimensional)
(7) dimN(A) #0 or dimN(B) #0 — dimN(A® B) = oc.
In fact, since dim (N (A4) ® H) = dim N (A) - dimH (cf. [11, p.49]) and, similarly,

dim (H @ N(B)) = dimH - dim N(B), it follows by (5) that dim N (A ® B) = oo
whenever dimN'(A4) # 0 or dimN(B) # 0.

Therefore,
0 ¢ opF (A (9 B)

Reason: If 0 € opp(A® B), then 0 € op(A® B) — i.e., N(A® B) # {0}, and
hence NV (A) # {0} or N(B) # {0} according to (6) — and dim N (A ® B) < 0o so
that N(A4) = N(B) = {0} according to (7), which leads to a contradiction. O
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Proposition 2. Take an arbitrary pair {A, B} of Hilbert space operators.
(a) O'p(A)'O’p(B) N UPF(A®B) g UPF(A)~UPF(B).

Moreover, the identity op(A)-op(B) N oppr(A® B) = opp(A) - opp(B) holds if
and only if opp(A) - opr(B) C opr(A® B). Furthermore,

(b) (or(A)\orr(A))-0p(B) Uop(A)-(op(B)\orr(B)) & op(A® B)\opr(A® B).

Proof. Observe that (A\] — A) @ B+ A ® (ul — B) = Aul — A® B for every pair
of scalars {\,pu}. If z = >, z; ®y; lies in N(A — A) @ N(ul — B), then each
z; lies N (A — A) and each y; lies in N (ul — B), and therefore (Al — A® B)z =
(M —A)® Blz+ M @ (ul —B)lz =3, (M—A)z; ® By;+)_, Ax; ® (ul —B)y; = 0.
Hence,

(8) NIM —A)@N(ul —B) CN(A\ul — A® B),

which extends the property (4) of Proposition 0. Since the dimension of the tensor
product of two Hilbert spaces is the product of their respective dimensions [11, p.49],
it follows by the inclusion in (8) that if 0 < dim (M — A), 0 < dim N (ul — B),
and dim N (A\ul — A ® B) < oo, then we may infer that 0 < dim N (A — A) < oo,
0 < dimN(ul — B) < 00, and 0 < dim N (Al — A ® B). Therefore, if A € op(A),
€ op(B) (so that Ay € op(A ® B) by (2) in Proposition 0), and A € opp(4A @ B),
then A € opp(A) and p € opp(B), which proves the inclusion in (a):

O’p(A) . O’p(B) N JPF(A®B) - UPF(A) -OPF(B).

Since opp(A) - opp(B) C op(A) - op(B) holds trivially, we may infer that, if the
inclusion opp(A) - opr(B) C opr(A ® B) holds, then we get the identity

op(A)-op(B) N opr(A® B) = opr(A) - opr(B);

and the converse is clear: the above identity implies opp(A) - opp(B) C opp(A ® B).
Observe that the inclusion in (b),

(or(A)\opr(A)) - op(B) U op(A) - (op(B)\opr(B)) € op(A® B)\opr(A® B),

also follows from property (8), since the dimension of the tensor product of two
Hilbert spaces is the product of their respective dimensions. To verify that the
inclusions in the proposition statement are all proper, just let one of A or B (or
both) have zero as an eigenvalue of finite multiplicity, and apply Proposition 1. O

For every operator T let 0i50(T") denote the set of all isolated points of o(T) and
put oace(T) = 0(T)\iso(T'), the set of all accumulation points of o (7).

Proposition 3. Let A and B be Hilbert spaces operators.
(a) If 0iso(A) # @ and oiso(B) # 9, then

Uiso(f4 ® B) ; Uiso(A> . Uiso(B)~
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(b) If either 0is0(A) = @ or oiso(B) = &, then
Uiso(A ® B) g {0},

and (b1) 0 € 0is0(A) U 0550 (B) whenever iso(A ® B) = {0}.
(c) If 0iso(A) = 0iso(B) = @, then
Oiso(A® B) = @.

Proof. First consider assertions (a) and (b). If 0iso (A ® B) = &, then the inclusions
in (a) and (b) hold trivially. Thus suppose 0iso(A® B) # &. If one of A or B
is quasinilpotent, then the results in (a) and (b) also hold trivially (the inclusions
become the identity ois0(A ® B) = {0}). Thus suppose 0(A) # {0} and o(B) # {0}.
If v € 0i50(A ® B), then v = Ay is an isolated point of 0(A ® B) = 0(A).0(B) with
A€ 0(A) and p € o(B), and so the inclusion in (a) is equivalently stated as follows.

VETs(A®RB) = v =MAu for some A€ gi5,(A) and p € oiso(B).

We shall split the proof of (a) into three parts, viz. (a1), (a2) and (ag). Then assume
that 0is0(A) # @ and 0is0(B) # @, and take an arbitrary v = Ay € 0i50(A ® B).

(a1) Suppose Ay # 0 so that A # 0 and p # 0. If one of them, say A € o(A), is not
an isolated point of 0(A), then 0 # X € 0acc(A). Thus there exists a sequence {\, }
of distinct points in o(A)\{A} such that A, — A. Therefore, since u # 0, {\,p} is
a sequence of distinct points in o(A) - o(B)\{Au} such that A, u — Ay, and so Ay
is and accumulation point of ¢(A) - o(B), which is a contradiction.

(a2) Now suppose Ay = 0 so that one of A or p is zero, say A = 0. If 0 = X € 0acc(A),
then there exists a sequence {A,} of distinct nonzero points in o(A4)\{0} such
that A, = A=0. If u # 0, then {\,u} is a sequence of distinct nonzero points in
o(A)-o(B)\{0} such that A, it — Ay = 0, and so A = 0 is an accumulation point of
o(A) - o(B), which is again a contradiction. If y is also zero, then (as o(B) # {0})
take any nonzero p’ € o(B) so that Ay = A\p/ = 0 with A =0 and p’ # 0, thus
reducing to the above case.

Therefore, in any case (either Ay # 0 or Ay = 0), if v € 0is0(A ® B), then v = Au
for some A € 0i5(A) and some p € 0350(B). This proves the inclusion in (a).

(ag) Moreover, such inclusion may be proper (even if gis(A® B) # &): take
o(A)={1}U[2,3]U{4} and o(B) = {1} U {2} so that

o(A)-o(B) = {1} U[2,3] U {4} U {2} U[4,6]U {8} = {1} U[2,3] U[4,6] U {8},

and hence {1,2,4,8} = 0iso(A) - iso(B) € 0iso(A® B) = {1,8}.

(b) Suppose one of the operators, say A, is such that ois0(A) = &. If there exists 0 #
V=AU E Oiso(A® B), then 0 # X € 0,.c(A) and 0 # p € o(B) so that, following
the same argument in (a1), ¥ = Au is an accumulation point of o(A) - o(B), which
is a contradiction. Thus ois0(A® B) C {0}. This proves the inclusion in (b),
which may be a proper one as well. For instance, if gi50(A) = &, 0 € 0,4.c(A) and
0(B) = 0iso(B) = {0, 1}, then 0(A) - 0(B) = 0acc(A) so that 0i50(A® B) = @ (i.e.,
0(A® B) = 0acc(A) = 0acc(A® B)). Moreover, (by) if 0is0(A ® B) = {0}, then
0 €0(A)-o(B) and hence 0 lies in the spectrum of one of A or B, say, 0 € o(A4).
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If 0i50(A) = @, then 0 € 0acc(A) and so (since o(B) # {0}) the same argument as
in (ag) leads to a contradiction, and therefore 0 € gjgo(A).

(¢) If 0(A) = 0acc(A) and 0(B) = 0acc(B), then it is trivially verified (applying the
same argument as above) that 0(A ® B) = 0acc(A ® B). |

Remark 1. The hypotheses 0is0(A) # & and 0i50(B) # & in Proposition 3(a) can-
not be dismissed:

Oiso(A® B) € 0is0(A) - 0iso(B)  if one of 0iso(A) or giso(B) is empty.
In particular,
Oiso(A) = @ or (but not and) 0i0(B) =& == 0iso(A® B) =2,

which means that o5, (A ® B) may be nonempty when just one of gi50(A) or oiso(B)
is empty. For instance, if A has no isolated point in its spectrum (g0 (A4) = @) and
B is quasinilpotent (0(B) = 0is0(B) = {0}), then 0(A ® B) = 0is0(A ® B) = {0}.
However, 0j50(A4) - 0is0(B) = &. Also note that

Oiso(A) # @ and 030(B) # 8 =  0is0(A® B) # @.

That is, 0is0(A ® B) may be empty when both ;5 (A) and 0is0(B) are not empty.
Sample: if 0(A) = [2,3]U{4} U[5,6] and o(B) = {1} U[2,10], then o(A) - 0(B) =
[2,3] U {4} U [5,6] U [4,30] U [8,40] U[10,60] = [2,3] U [4,60]. Finally, recall that

Oacc(A® B) C 0acc(A) - 0(B) U 0(A) - 0acc(B)

(as it is well known, and readily verified once cacc(A ® B) is the set of all accumula-
tion points of the product o(A) - o(B) of compact sets), and note that the inclusion
may be proper. Indeed, if A is quasinilpotent, then so is A ® B for every B. Thus
Oacc(A® B) = @ for every B, and 0(A) - 0acc(B) = {0} if 0ace(B) # 9.

An operator T is isoloid if isolated points of the spectrum are eigenvalues; i.e., if

Uiso(T) g O'p(T).

Corollary 1. If A and B are isoloid operators on a Hilbert space H, then so is
the tensor product A® B on H® H.

Proof. If 0is0(A) # @ and 0is0(B) # @ then, by property (2) in Proposition 0 and
Proposition 3(a), 0iso(A® B) C 0is0(A) - 0iso(A) € op(A) - op(B) C op(A® B)
and A ® B is isoloid. Suppose just one of gis0(A) or g5 (B) is empty, say oiso(A) =
@, so that gis0(A ® B) C {0} according to Proposition 3(b). If ois0(A ® B) = {0},
then 0 € 050(B) by Proposition 3(b;), and so 0 € op(B), which implies by property
(2.a) of Proposition 0 that 0 € op(A ® B), and hence 0i,(A® B) C op(A® B),
so that A ® B is again isoloid. If oiso(A ® B) = &, then A ® B is trivially isoloid,
which happens when oi5,(A) = 0i50(B) = & by Proposition 3(c). |

Corollary 1 cannot be extended by replacing point spectrum with the set of
eigenvalues of finite multiplicity. That is,

Uiso(A) - UPF<A) and Jiso(B) - UPF<B) ?Q’ Jiso(A b2 B) - UPF<A & B)
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For instance, take the diagonal A = diag{0, k/(k 4+ 1)},>1 on £%. This is an isoloid
operator with oiso(A) = op(A) = opr(A) = {0, k/(k + 1) }k>1 for which 0 lies in
Oiso(A ® A) but not in opr(A ® A) by Proposition 1. However, when the eigenval-
ues of finite multiplicity are intersected with the isolated points of the spectrum we
get the following useful result for isoloid operators, which will play a central role in
the next section.

Proposition 4. If A and B are isoloid operators acting on an infinite-dimensional
Hilbert space, then

O'iSO(A®B> n UPF(A® B) - (O'iso(A) ﬂapF(A)) . (Uiso(B) ﬂO’pF(B)).

Proof. If 0i50(A) C {0} or giso(B) C {0}, then 0is(A ® B) C {0} by Proposition
3(a,b,c), and s0 0iso(A ® B) N oprp(A® B) = & by Proposition 1 (since A and B
act on an infinite-dimensional space), and the above inclusion holds. Thus suppose
Oiso(A) € {0} and 0i50(B) € {0}. By Proposition 3(a),

Uiso(A® B) N O'pF(A@B) - Uiso(A) . Uiso(B) n O'pF(A® B)

Take an arbitrary v € 0iso(A® B)Noprp(A® B) so that v = A with A € o(A) and
u € o(B) by property (1) of Proposition 0. Thus, according to the above inclusion
and assuming that A and B are isoloid,

A€ 0iso(A) Cop(A),  p€0iso(B) S op(B),
and A\ € opp(A ® B) so that, by Proposition 2(a),
M€ op(A)-op(B) N opr(A® B) C opp(A) - opp(B).
Hence (cf. proof of Proposition 2(a)), A € opp(A) and p € opp(B). Therefore,
N € Oio(A) Nopr(A)  and 1 € 01e0(B) Nopr(B),

so that v = Ay € (O’iSO(A) N JpF(A)) . (O'iso(B) N UPF(B)). O

Observe that the preceding inclusion for isoloid operators clearly leads to

Uiso(A® B) N O'pF(A(X)B) - Uiso(A) 'Uiso(B) n UPF(A) . O'pF(B).

Corollary 2. Let A and B be operators on an infinite-dimensional Hilbert space.
If either

(a) 0Oiso(4) - Tiso(B) € {0} (equivalently, one of A or B, say A, is such that
iso(A) € {0}),
or
(b) A and B are isoloid and 0iso(A) - 0iso(B) Nopr(A) - opr(B) C {0} (in particu-
lar, A and B are isoloid and one of A or B, say A, is such that opp(A) C {0}),

then
Uiso(A X B) n UPF(A X B) = .
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Proof. Consider the hypothesis in (a). If 0is0(A) - iso(B) C {0}, then Proposition
3 ensures that oi50(A ® B) C {0}. Thus, according to Proposition 1 (since A and
B act on an infinite-dimensional space),

Uiso(A X B) n UPF(A X B) = .

Now consider the hypothesis in (b). Since A and B are isoloid operators acting on
an infinite-dimensional space, we get

Uiso(A ® B) N UPF(A ® B) g Jiso(A) : Giso(B) N JPF(A) . JPF(B) g {0}
by Proposition 4 whenever (b) holds, and so
Oiso(A® B)Nopr(A® B) =2

according to Proposition 1. O

4. THE WEYL SPECTRUM IDENTITY FOR TENSOR PRODUCTS

Let T be an arbitrary operator on a Hilbert space H. Set

oo(T) = {A€op(T): RIAI-T)" =R(M —T) #H and
dim N (A — T) = dim N'(X] — T*) < oo},

ow(T) = a(T)\oo(T) and 0y (T) = o(T)\(0iso(T) N 0o (T)),

where 0,,(T) is precisely the Weyl spectrum of T' (i.e., 0,(T) ={A € C: (A\I = T)
is not a Fredholm operator of index zero} — see e.g., [5]), and op(7") is the Browder
spectrum of T'. Also consider the essential spectrum of 7', defined as follows.

0e(T) = {A € C: (A —T) is not a Fredholm operator}.

Clearly, 0.(T) C 0,(T) Cop(T) Co(T), 0o(T) Copr(T), ace(T) C op(T) and
0b(T) = 04 (T) U 0ace(T'). Moreover, it is also known that (7)) = 0.(T) U Gace(T),
and 80 0 (T)\0e(T) C Tace(T) (see e.g., [6]). But, in general, 09(7") may not consist
of isolated points only or, equivalently, gac.(T) may not be included in o, (7). An
operator T is said to satisfy Weyl’s theorem if

00(T) = 0iso(T) Nopp(T),
and it is said to satisfy Browder’s theorem if
00(T) C 0iso(T) Nopr(T),
which means that T satisfies Browder’s theorem if and only if
00(T) C 0is0(T), thatis, 0acc(T) C 0w (T), equivalently, o, (T) = ou(T).

These are the usual terminologies, and we shall stick to them, although saying
that T' “satisfies Weyl’s (or Browder’s) property”, rather than “satisfies Weyl’s (or
Browder’s) theorem”, would certainly be more appropriate. It is also usual to write
70(T) = 0i50(T) Noo(T) and 7eo(T') = 0iso(T) Nopr(T), but we shall refrain from
using additional notations. It is plain that, if T satisfies Weyl’s theorem, then it
also satisfies Browder’s theorem. Note that, if 04,(T) = 0acc(T), then T satisfies
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Weyl’s theorem. (Reason: 0, (T') = 0acc(T) means 0o(T") = 0i50(T"), which implies
00(T') = 0iso(T) Nopp(T) because oo(T) C opp(T).) In fact,
T satisfies Browder’s theorem but not Weyl’'s = 0, (T)Noiso(T)Nopp(T) # 2.

The following results on Browder and Weyl spectra for the tensor product of any
pair {A, B} of Hilbert space operators are well known.

(i) 0(A® B) = 0.(A)-0(B) U o(A) - 0.(B),
(ii) 0w(A® B) C 0u(A)-0(B) U o(A) - 0u(B),
(ii) oy(A® B) = oy(A) - o(B) U o(A) - 0u(B),

[7, Theorem 4.2(c,f,a)]. These will be referred to as the essential spectrum identity,
the Weyl spectrum inclusion, and the Browder spectrum identity, respectively. It
is not known if the inclusion is proper. In other words, it is still unknown whether
the Weyl spectrum identity

ow(A® B) = 0,(A)-0(B) Uo(A)-0u(B)
holds for every pair of Hilbert space operators A and B. Since in a finite-dimensional
setting the Weyl spectrum identity holds trivially (because, in this case, the Browder
spectrum is empty, and so are the Weyl and the essential spectra), it follows that
the next results are significant only on infinite-dimensional spaces. For instance,

put H = E_%_, let A and B be arbitrary operators on E_%_, and let D be an injective
diagonal on (2. It is easy to show that opp(D ® B) = opp(A® D) = &, so

ow(D®@B)=0c(D®B) and o0,(A®D)=0(A® D),
and this leads to the Weyl spectrum identity (cf. Corollary 3 below).
For the complement o¢(A ® B) of 0,,(A ® B) we get the following basic result.
Proposition 5. For every pair {A, B} of operators on a Hilbert space H,
(a) 0 & 00(A® B) whenever H is infinite-dimensional, and
(b) o(A® B)\(O’w(A) -o(B) Uag(A) 'Jw(B)) C 09(A4) - 09(B).
Therefore, if the Weyl spectrum identity holds for A and B, then

(b) 00(A® B) C 0o(A) - 0o(B).

Proof. Proposition 1 says that, if A and B act on an infinite-dimensional Hilbert
space, then 0 & opr(A ® B). Since 09(T") C opp(T) for every Hilbert space operator
T, we get the result in (a). Since 0(A ® B) = 0(A) - 0(B), it follows that

O'(A®B)\(00(A)-Uo(3))
= {veo(A)-o(B): v+mp, for all (m,p) € 59(A) x 0o(B)}
C{v=Mu: Aeo(A)and p € o(B), A€ oo(A) or u & o0(B)}
={v=Au: Neo(A)and p € 0(B), A € 0,(A) or pu € 0 (B)}
= 0w(A)-o(B)Ua(A) - 0u(B),
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which ensures the inclusion in (b), and hence the inclusion in (b’). |

Remark 2. The inclusions in Propositions 4 and 5 may be proper, even if the
operators are isoloid, satisfy Weyl’s theorem together with their tensor product, and
the Weyl spectrum identity holds for them. That is, there exist isoloid operators
A and B such that A, B, and A ® B satisfy Weyl’s theorem, and

ow(A® B) = 04(A)-0(B) Uoa(A)-ou(B)
but
Uo(A) . O’Q(B) g Uo(A (%9 B)

or, equivalently (since they all satisfy Weyl’s theorem),
(Uiso(A) n UPF(A)) . (Uiso(B) n UPF(B)) g O'iso(A ® B) n O’pF(A ® B)

Indeed, take
1

A:3@1:<3 > and B = diag{1,2} ®6] = [ 2
I
61
on {} so that 3B
B
A®B:3B€BI®B:<3B I®B> _ 5

Hence

U(A) = 0is0(A) = op(A) = {173}7 U(B) = UiSO(B) =op(B) = {172’6}7
00(A) = opr(A) = {3}, ow(4) ={1}, oo(B)=o0pr(B)={1,2}, ou(B) = {6},
0(A® B) =0i50(A® B) ={1,2,3,6,184 and 00(A® B) =o0pr(A® B) = {3}.
Therefore,

4 {3} = O'O(A ® B) C Uo(A) : Go(B) = {376}

{1,2,18} = 0(4® B)\(UO(A) : UO(B))
C ow(A)-o(B)Uoc(A) 04(B)=0,(A® B)=1{1,2,6,18}.

Since A, B and A ® B are self-adjoint, they all satisfy Weyl’s theorem. Thus the
inclusions in Propositions 4 and 5 may be proper even if A and B are isoloid
operators that satisfy Weyl’s theorem (with A ® B being isoloid and also satisfying
Weyl’s theorem), and for which the Weyl spectrum identity holds.

By Proposition 5(a), which holds in an infinite-dimensional setting, it follows
that, if 0 € 0(A® B), then 0 € ,,(A® B). Recall that ¢,(T) is never empty if
T acts on an infinite-dimensional Hilbert space, and T is a commutator when-
ever 0 € 0,,(T). Hence, on an infinite-dimensional space, A ® B is a commutator
whenever 0 € 0(A ® B) or, equivalently, whenever 0 € o(A) Uo(B) — cf. [2].

Proposition 6. Let A and B be operators acting on an infinite-dimensional Hilbert
space and take their tensor product A ® B. Each of the following conditions
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(a) ow(A® B) =0,(A® B),
(b) oe(AN\{0} = 0w (A0} and 0.(B)\{0} = 0w (B)\{0},
(€) ow(A) =0ouw(B)={0},
implies the Weyl spectrum identity
ow(A® B) =0,(A)-0(B) Uoa(A)-oy,(B).

Proof. Since 0, (T) C op(T") for every Hilbert space operator T, it follows by (ii)
and (iii) that, if (a) holds, then

ow(A®B) C 0y(A)-0(B) Ud(A)- 0y (B)

oy(A) - 0(B) U o(A) - 0p(B) = 0o(A® B) = 0(A® B),

NN

and so (a) implies the Weyl spectrum identity. That is, if A ® B satisfies Browder’s
theorem, then the Weyl spectrum identity holds for A and B. Since 0.(T") C 0., (T)
for every Hilbert space operator T, it follows by (i) and (ii) that, if (b) holds, then

0u(A® B0} € 0, (A0} - (B0} U 0(A)\{0} - 0., (B)\{0}
= 0 (A0} - o(B)\{0} U o(A)\{0} - 0e(B)\{0}
= 0.(A® B)\{0} C 0u,(A® B)\{0},

and so (b) implies
0w(A @ B)\{0} = 0, (A)\{0} - o(B)\{0} U 0(A)\{0} - 00 (B)\{0},

which in turn implies the Weyl spectrum identity because 0 € o(A) U o (B) if and
only if 0 € 0,,(A ® B) by Propositions 0(1) and 5(a). Recall that the Weyl spectrum
is nonempty on an infinite-dimensional setting [2]. If (c¢) holds (i.e., if 0,,(A4) =
ow(B) = {0}; e.g., if A and B are compact on an infinite-dimensional space [1]),
then 0, (A ® B) = {0} by (ii), thus satisfying the Weyl spectrum identity. O

Corollary 3. On an infinite-dimensional space, each of the following conditions
(&) ow(A®B)=0(A® B),
(a") 0.(A® B) =0,(A® B),
(a’”) O'Q(A & B) = Uiso(A & B) N UPF(A (9 B),
(b)) 0acc(A) C{0} and o0acc(B) C {0},
implies the Weyl spectrum identity for A and B.
Proof. Recall that o.(T) C 0,,(T) C 0u(T) C o(T) and 04, (T)\0e(T) C 0ace(T) for
every Hilbert space operator T. Thus any of (a’) or (a”) implies the condition
(a) of Proposition 6, and (b") (which holds, for instance, if A and B are compact)
implies the condition (b) of Proposition 6. Since an operator that satisfies Weyl’s

theorem necessarily satisfies Browder’s theorem, it follows that (a”’) also implies
the condition (a) of Proposition 6. |
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5. ON WEYL AND BROWDER’S THEOREMS FOR TENSOR PRODUCTS

If A ® B satisfies Browder’s theorem, then the Weyl spectrum identity holds by
Proposition 6(a). The first part of our next result ensures the converse when each
of the operators satisfies Browder’s theorem. The second part establishes sufficient
conditions for transferring Weyl’s theorem from isoloid operators to their tensor
product. We assume throughout this section that all operators act on an infinite-
dimensional space.

Proposition 7. Suppose the Weyl spectrum identity holds for a pair of Hilbert
space operators A and B:

ow(A® B) =0y,(A)-0(B) U d(A)-ou(B).

(a) If both A and B satisfy Browder’s theorem, then the tensor product A ® B
satisfies Browder’s theorem.

(b) If A and B are both isoloid and satisfy Weyl’s theorem, then
00(A® B) C 0iso(A® B) N opp(A® B) C ao(A) - o0(B).

Proof. (a) Recall from Remark 1 that
Oacc(A® B) C 0acc(A) - 0(B) U 0(A) - 0acc(B).

Thus, if A and B satisfy Browder’s theorem, which means that c,..(A4) C 0, (A)
and 0,¢c(B) C 0y (B), and if the Weyl spectrum identity holds, then

Oacc(A® B) C 0y(A) - 0(B) Uo(A)-0,(B) = 0u(A® B),
and hence A ® B satisfies Browder’s theorem, completing the proof of (a).

(b) If A and B satisfy Weyl’s theorem, then they satisfy Browder’s theorem, and
so A ® B satisfies Browder’s theorem according to item (a), which means that

00(A® B) C 0iso(A® B)Nopr(AR® B).
If A and B satisfy Weyl’s theorem and are isoloid, then Proposition 4 ensures that
Oiso(A® B) N oppr(A® B) C 00(A) - ao(B).
Thus 0o(A® B) C 0iso(A® B) N opr(A® B) C 0¢(A) - 0o(B), proving (b). O

Sufficient conditions for the transference of Weyl’s theorem from A and B toA® B
are obtained from Proposition 7(b) as in the forthcoming Corollaries 4 and 5.

Corollary 4. Suppose the Weyl spectrum identity holds for a pair of Hilbert space
operators A and B. If

(a) (0u(A) - 3(B) U 0(A) - 0 (B)) N (00(A) - 00(B)) = 2,
then
(b) [(UO(A) -00(B))\0o(A ® B)] N Gise(A® B) N opr(A® B) = @.

Moreover, if A and B are both isoloid and satisfy Weyl’s theorem, and if (b) holds,
then the tensor product A ® B satisfies Weyl’s theorem.
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Proof. Suppose the Weyl spectrum identity holds for the operators A and B. If (a)
holds, then og(A) - 09(B) C 0o(A ® B), which implies (b). Now suppose A and B
are both isoloid and satisfy Weyl’s theorem. According to Proposition 7(b)

Uiso(A(X)B) N UPF(A® B) C gO(A) 'O'()(B)
so that

(0is0(A® B) N opr(A® B))\oo(A @ B)
Thus, if (b) holds, then
(diso(A® B) N opp(A® B))\oo(A® B) = 2,

N

(O'Q(A) . O'Q(B))\O’o(A X B)

equivalently,
O'iSO(A®B) n UPF(A®B) g 0'0(A®B)

Therefore, since Proposition 7(b) also ensures that

00(A® B) C 0i50(A® B) N opr(A® B),
we get
00(A® B) = 0iso(A® B) N opr(A® B),

which completes the proof. |

Consequences of the preceding corollary are summarized as follows.

Corollary 5. If the Weyl’s spectrum identity holds for A and B, both being isoloid
and satisfying Weyl’s theorem, and if either

(a) 00(A)-09(B) Coo(A® B), or

(b) one of them, say A, is such that oo(A) C {0}, or

(c) oiso(A® B)Nopr(A® B) C {0},
then the tensor product A ® B satisfies Weyl’s theorem (and, in case of (b) or (c),
with 0g(A ® B) = &).

Proof. Corollary 4 (cf. Propositions 1 and 5). |

Observe from Proposition 5(b’) that assuming the inclusion in Corollary 5(a) —
or, equivalently, the intersection in Corollary 4(a) — is equivalent to assuming the
identity 0o(A ® B) = 0¢(A) - 09(B).

Finally, Proposition 7(a) is enough to ensure that Browder’s theorem transfers
from A and B to A® B if and only if the Weyl spectrum identity holds.

Corollary 6. A ® B satisfies Browder’s theorem whenever both A and B satisfy
Browder’s theorem if and only if the Weyl spectrum identity holds.

Proof. Proposition 6(a) and Proposition 7(a). O

For another necessary and sufficient condition for the transference of Browder’s
theorem from A and B to A ® B see [4, Theorem 2.1].
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