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MULTILEVEL DECOMPOSITION IN HILBERT SPACE

SOMDEB MAJUMDAR, NHAN LEVAN, AND CARLOS S. KUBRUSLY

ABSTRACT. By decomposing an element of a sequence — of Hilbert space
bounded linear operators into the sum of a lower level element and sev-
eral higher level elements, one obtains a Multilevel Decomposition (MLD) of
the element. Moreover, as we shall show, such a decomposition can result in a
Multilevel Approximation (MLA) of vectors of the space. In particular, for the
function space £2(R), the MLD of elements of a sequence of orthogonal pro-
jections Py, results in the well known Multiresolution Approximation (MRA)
of Wavelet Theory. Also for the sequence of elements P, D™, where D is the
£2(R)-dyadic-scale operator, MLD also yields an approximation for functions
of the space £L2(R). An interesting feature of MLD is that it leads to a new
interpretation of the Dilation-by-s operator as a “time-varying” shift operator.

1. INTRODUCTION

We study application of what we define as a natural multilevel decomposition, of
elements of sequences of Hilbert space bounded linear operators, to approximation
of vectors in the space.

Let Z stand for the set of all integers, and H for a (nonzero, complex, infinite-
dimensional) separable Hilbert space. By an operator on H we mean a bounded
linear transformation of H into itself. Let {A,,}mcz be a family of operators on H.
Each A,,, to be referred to as the level-m element, can be naturally decomposed as

(1.1) Am = Am1+ (A — A1), meZ,

which is simply the sum of the lower level element A,,_; and the “difference”
element A,, — A,,_1. Repeating the decomposition with A; on the right hand side
instead of A,,_1, for any j,m € Z such that j < m, we obtain

m m—1 m—1 m—1
Am= A+ Am = A=A+ D A=Y A=A+ A = Y Ap,
k=7 k=3 k=3

k=j+1

which yields a Multilevel Decomposition (MLD) of A,,,
m—1

(12) "47”:"4]+ ZEka Jj<m, j,mGZ,
k=j

where A; is a lower level element and Ey, called difference element at level-k (or ,
a la Wavelet Theory, fluctuation or detail element), is defined as

(13) Ey = Ak—H — A, ke [j, m — 1]
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We therefore conclude that any element A, of the family {A,,} of operators can be
decomposed into the sum of any lower level element and the difference elements for
all levels not greater than m — 1. Let R(A,,) denote the range of A,, and suppose

k=j

for each m € Z. Moreover, if the orthogonal projection of any h € H onto R(A,,)
can be computed in terms of those of h onto the subspaces on the right hand side,
then one obtains an approximation of h at level-m, in terms of the approximation
at level-j and the difference-approximations at levels k € [j, m —1]. These begin to
sound like Multiresolution Approximation (or Analysis) (MRA) of Wavelet Theory.

This paper is a “follow-up” of [8] in which we show that Multiresolution Approx-
imation involves both scale subspaces as well as time-shift subspaces. Here we show
that approximation of vectors of a separable Hilbert space H can be obtained from
a natural multilevel decomposition of “suitable” sequences of operators defined on
the space — instead of multilevel-decomposing the vectors themselves. We begin
in Section 2 by considering a sequence of orthogonal projections { Py, }mez on H.
This, for the function space £2(R), results in the well known Wavelet Theory Mul-
tiresolution Approximation. We then turn to the case of a sequence of powers of
an operator, in particular, powers of the dyadic-scale operator D on L£2(RR), defined
for every function f € £2(R) by

(1.5) (Df)(t) = V2 f(2(t))

(for almost all ¢ in R with respect to Lebesgue measure). We then combine those
two cases to obtain a new algorithm for computing approximation at any level-m of
a L2(R) function. We close the paper with an original interpretation of the dyadic-
scale operator D, via multilevel decomposition of powers of a “scaling” scalar.

2. MULTILEVEL DECOMPOSITION OF ORTHOGONAL PROJECTIONS

Let { P, }mez be a sequence of orthogonal projections on H. According to (1.2)

m—1
(2.1) P, = P+ Z(Pk+1 - P,

k=j

—

m—

(2.2) :Pj+ZQk7 for j<m, mezZ,
k=j

where the difference element Ej, of (1.2) is now re-denoted by
QkZ:PkJrl—Pk, kE[j,m—l].
It then follows that, for every h € H,

m—1
(2.3) Pnh=Pih+ Y (Peyth—Pih), j<m, meL.

k=j
Thus the level-m approximation P,,h can be “decomposed into”, or “computed
from”, the sum of the approximation at level-j and the differences of the approxi-
mations at consecutive levels in the interval [j, m — 1]. We note that (Py+1 — Pk)h
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needs not be an approximation of kA on the range space R(Pr+1 — Px) — unless
Py, 11— Py is also an orthogonal projection. This important case is discussed below.

Now, as in the case of a £2(R) MRA (see Definition 1 below), suppose

(2.4) Py = lim P, =1,
(2.5) P_ = lir£1 P, =0,

where [ stands for the identity operator and O for the null operator, both on
‘H. It is worth noticing that the above limits are to be interpreted in the strong
topology (and not in the uniform topology), which means that ||(P, — I)h| — 0
and ||(P-n, — O)h|| — 0 as m — oo for every h € H. Thus, according to (2.2),

(2.6) > (Pey1 —P)h=>_ Qih= lim Pyh— lim Pj=TIh=h
ke keZ meee I
for every h € H. The operators @Q; need not be orthogonal projections. However,
it is easy to see that @)y are orthogonal projections if and only if
(2.7) Vi CVir1, ke€Z,
where Vj, denotes the range R(Py) of Py, that is,
Vi i=R(P), keL.

It is worth noticing that each of the preceding equivalent assertions (viz. (i) Q. are
orthogonal projections and (ii) Vi C Viy1, for every k € Z) are still equivalent to
each of the following: (iii) Pg41Px = Pk, (iv) PxPri1 = P, or (V) Piy1 PePry1 =
Py, for every k€ Z (cf. [6, Problem 2.9]). Moreover if (2.7) holds, then @y is
actually the orthogonal projection onto the orthogonal complement of Vi in Vjy1.
That is, with © standing for orthogonal complement, if (2.7) holds, then @y, is the
orthogonal projection onto the subspace

(2.8) W =Vikr16Vk, keZ

(i.e., R(Qr) =W, for each k € Z). We refer to Wy, as the difference subspace at
level-k. Observe that, according to (2.7) and (2.8), if j,m € Z with j < m, then

m—1 m—1
Vi =V, & Vim0 V) =V; & P Vi1 6 V) =V, & P Wi,
k=j k=j

where @ stands for orthogonal direct sum. More is true if (2.7) holds. Indeed, put
(2.9) Pl:=1-PF, kez,

which is the orthogonal projection onto the subspace Vit = H © Vy, (i.e., P/ is the
complementary projection of Py) so that

(2.10) P!Pei1 = (I — Py) Pyost = Pot1 — Pe Por

(2.11) = Pyry1— P = Qx

because of (2.7). Since Pyh is called the level-k approximation of h, the vector
P!h=h— Pih

can be regarded as the error-vector between h and its approximation at level-k.
We call such vector a k-error-vector. Consequently, Vi is simply the subspace of
all k-error-vectors. It then follows from (2.10) and (2.11) that Qxh is, on the
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one hand the difference between the two consecutive approximations of h at levels
k and k 4+ 1 and, on the other hand, the approximation on the subspace V,ﬂ- of
the approximation Pyi1h. In MRA Qh is simply referred to as the detail (or
fluctuation) at level-k of h.

We summarize the above results in the next proposition.

Proposition 1. If {P,,}mez is a family of orthogonal projections on a separable
Hilbert space H, then each P,, admits the multilevel decomposition
m—1

Pn=Pi+> (Poy1—Po), j<m, meL
k=j
Therefore, any h € H admits the level-m approzimation
m—1
P,h = Pjh+ Z(Pkﬂh —Pch), j<m, mel.
k=j
If, in addition,

lim P,,=1 and lim P,=0

m—00 m——0Q0

strongly, then

S (Poyr—Po) =1

keZ
strongly. Moreover, the difference operators
Qk = Pry1— Py, kEZ,
are orthogonal projections if and only if the ranges Vi, := R(Px) of Py are nested,
Vk - Vk+1, k e Z,
and, in this case, Qg is the orthogonal projection onto the difference subspace
Wi = Vi1 © Vg, ke,

and V,, admits the multilevel orthogonal decomposition

Vin = R(Po) = Pu(H) = (P + 7HZ__1QQH,

m—1
:Vj@®Wk, j<m, méeZ.
k=j

This shows that the approximation at level-m of any vector h € H can be com-
puted from the approximation P;h and from the approximations QJxh on the dif-
ference subspaces W:

m—1
(2.12) Pph=Pih+> Qih, heH

k=j
which is a Multilevel Approximation (MLA) on H. Note that computation of P, h,
in general, requires the knowledge of a basis of V,,,. However, the right hand sides
of (2.12) offer an alternate effective method for computing P,,h.

To proceed, let us recall the Definition of an £2(R) MRA [10, 11].
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Definition 1. An £2(R) MRA — with the scaling function ¢ € L?(R) — is a se-
quence of closed subspaces {V,,,(¢)}mez, called approzimation subspaces, satisfying
the following properties:

(0) Generation of Vo(¢): Vo(¢) is spanned by the orthonormal set {¢(- — n)}nez,
(i) Generation of Vi (¢):  Vin(®) := D™Vo(¢) = \/,,cz, D" @(- —n) for m € Z,
(ll) Vm(d)) C vm+1(¢)7 me Za

(ii)) Upez Vim(0) = L*(R),
(V) ez V(@) = {0},
where D is the dyadic-scale operator defined in (1.5).

Remark 1. Consider the operator D on £?(R) defined in (1.5), which is unitary (in
fact, it is a bilateral shift of infinity multiplicity on £2(R)). Now consider another
bilateral shift (thus unitary) on £2(R), also of infinity multiplicity, which will be
denoted by T and defined for every function f € £L2(R) by

(THE)=ft—1)
(for almost all ¢ in R with respect to Lebesgue measure). Properties (o) and (i) of
Definition 1 are written in terms of the bilateral shifts D and T as follows

(0) {T"p}nez is an orthonormal family and Vy(¢) = \/ T™¢,
nez
(i) V(@) = D™Vo(¢) = \/ D™T"¢ for each m € Z.
neZ

Since {T"¢}necz is an orthonormal family that spans Vy(¢), and since D is unitary,
{D™T"}} ez is also an orthonormal family for each m € Z (spanning each subspace
Vi), and so each V,,,(¢) in (i) can be identified with the orthogonal direct sum

V() = P DT
nez
However, D™T™¢ is not orthogonal to D¥T"¢ if k # m, since Vy,(¢) C Vint1(9)
as in Definition 1(ii), and therefore

{D™T" ¢} (m,n)ezxz is a family of unitary vectors but not an orthogonal family,

although, by using all items of Definition 1, we can infer that it spans £2(R),
\/ Dr1re=\/\/ D"T"¢ = L2(R).
m,nELXZ mEZnEL
Now recall that a wavelet on £2(IR) (with respect to the bilateral shifts D and T)

is precisely a function ¢ € £L2(R) such that {D™T"} (m,n)ezxz is an orthonormal
basis for £2(IR), and so it also spans £2(R) but, unlike {D™T™ ¢} (m n)ezx s

{D™T" Y} (mnyezxz is an orthonormal family.

However, a wavelet 1 can be constructed from a scaling function ¢. Indeed, for
each m € Z, consider the orthogonal differences (equivalently, the orthogonal com-
plements) Vy,11(¢) © Vin(¢) — cf. Definition 1(ii). It happens that there exists a
wavelet 1 such that, for each m € Z,

D™\ T = \/ DT = Vypi1() © Vin(8) = DVin() © Vin(9);

nez neEL
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in particular, for each scaling function ¢ there exists a wavelet 1) such that

\/ Tv=D\/T"¢e \/ T"¢.

nez ne”Z nez
In other words, given a scaling function ¢ as in Definition 1, there exists a (not
necessarily unique) function v in £2(R) that satisfies the above expressions and is

a wavelet — i.e., such that {D™T™9}(, n)ezxz is an orthonormal basis for L2%(R))
— see e.g., [4, Proposition 2.13, p.57].

Let ¢ be a wavelet constructed from the scaling function ¢ and define the detail
orthogonal subspaces

(2.13) Wi(y) = \/ D¥¢(- -n), keZ,
so that net
(2.14) Vins1(0) = Vin(6) @ Wi (¥), m € Z.

This means that the finer approximation subspace Vy,11(¢) is obtained from the
coarser approximation subspace Vp,(¢) by adding the detail subspace W, (1)) to
it. The orthogonal projection Py, onto V,,(¢) (cf. Proposition 1) now describes the
Discrete Wavelet Transform (DWT) [5]

m—1

(2.15) Pr(L2(R)) = Vim(9) = Vi(¢) © P We(¥), j<m, meL.
k=j

The following result on families of orthogonal projections on £?(R) follows from
Proposition 1 and from the above discussion.

Proposition 2. Let {P,,}mez be a sequence of L2(R) orthogonal projections sat-
isfying equations (2.4) and (2.5). Moreover suppose that the difference operators

Qm =Pnt1 —Pn, mel,
are also orthogonal projections over L2(R). Then the subspaces
Vi = R(Pn), mEZ,
are nested and {Vin ymez is an L2(R) MRA if and only if
Vo=\/ o(- —n) = Vo(9),

nez
and

for some scaling function ¢ € L2(R) which is such that {¢(- — n)}nez is an ortho-
normal family. Consequently,

R(Qo) = Wo(v) = \/ ¥(- —n),

nez
and

R(Qm) = Wm(¥) = D" Wo(¥), meZ,

where 1 is a wavelet constructed from the scaling function ¢.

Note that Proposition 2 explains why a MLA needs not be a MRA (cf. [1]).
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3. MULTILEVEL DECOMPOSITION OF POWERS OF AN OPERATOR

We now turn to a class of sequences of powers of a (bounded linear) operator.
Let A be an operator on H. For any integers 0 < j < m, we get from (1.2) that

m—1
(3.1) A™ = AT 43 (AR - A,
k=j

which holds for every j,m € Z such that j < m, whenever A is invertible.

Remark 2. Equation (3.1) leads to the following generalizations. For any pair
{A, B} of operators on H, and any pair of integers 0 < j < m,

m—1 m—1
A™ _Aij—j — A™ _Aij—j + Z AkBm—k _ Z AkBm—k
k=j+1 k=j+1
m m—1
— Z Akpm—k _ Z Ak gm—k
k=j+1 k=j
m m—1
_ A( Z Ak—le—k) _ ( Z AkBm—k—1>B
k=j+1 k=3

m—1 m—1
_ A( Z AkBm7k71> _ < Z AkBmfkfl)B.
k=j k=j
Particular cases: If B = I, then we get (3.1):

m—1
(3.2) A" — A =(A-1)) A~
k=j
If 7 =0, then

A™ B — A(T:Z_:_:AkBm‘k‘l) _ (gAkBm—k—l)B.

From now on suppose A and B commute. In this case,

m—1
A™ — AIB™ T = (A-B) Y AFBmH!
k=j
and, for j =0,
m—1
A™ _ B™ — (A—B) Z AkBm—k—l
so that k=0

(A™ — A7) = (B™ — BY) = (A" — B™) — (4 — BY)

j—1

Ak gm—k-1 _ Z Akijk71>

k=0 k=0

j—1 m—1
AkBj*kfl(Bmfj _I)+Z AkBmfkfl)

k=0 k=j
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If, in addition, B is invertible, then
j—1
(3.3) (A=A —(B™—B')=(A—B)Y AHB™—B))B~ DA™ — AT ™),
k=0
Observe that if A and B are invertible, then all the above expressions hold for every
j,m € Z such that j < m.

Now put A = D, the dyadic-scale operator on £2(R), which is invertible (since
it is unitary). In this case we get from (3.1) that

m—1
(3.4) D™ =D+ ) (DM - D)
k=j
m—1
(3.5) =D/ +Ey Y D, j<m, meL,
k=j

where FEj is the difference element at level-0:
Ey:=D-D=D -1

Note that conditions (2.4) and (2.5) certainly do not apply to the sequence {D™} ez
since D is unitary.

If {Pp}mez is the £2(R) family of orthogonal projections of a MRA, then we
have the following important relationship between P, and D™:

(3.6) R(Pm) = Pn(L3(R)) = Vin(¢) = D™ (Vo(9)),

that is, the range space of P, is the image of the level-0 approximation subspace
Vo(¢) under D™. We have seen from (2.15) that P, (£?(R)) describes a DWT. We
now show that this can also be obtained directly from (3.5). To see this, we begin
with

(3.7) EoVo(¢) = (D — I)Vo(9),

and, by Definition 1(i),

(3.8) DVo(¢) = V1i(9).

Moreover,

(3.9) Vo(#) LWo(¥)  and = Vi(¢) = Vo(¢) © Wo(¥).
Thus (3.7) can be rewritten as

(3.10) EoVo(¢) = DVo(¢) © Vo(¢) = Wo(¥).

Next let us act both sides of (3.5) on the scaling subspace Vy(¢) to get

m—1

(D7 + 3" D Eo ) Vi(0),

k=j

D™ (Vo(9))

m—1
= DjV0(¢) S3) @ DkWO(i/)),
k=j
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where we have made use of (3.10) and of the fact that

DI (Vo(¢)) = Vi(¢) L D*Wo() = Wi(v), j <k

Therefore,

D™ (Vo(#)) = Vim(9) = V5(¢) & 63 Wi (),

which indeed describes a DWT.

We summarize the above results as follows.

Proposition 3. A DWT is described by the range space of a multiresolution decom-
position of the orthogonal projection Pp,: L2(R) — L2(R) such that R(Py,) = V()
— i.e., of the unique orthogonal projection onto Vy;,(¢) — as well as the image of
the scaling subspace Vo(@) under a multilevel decomposition of the operator D™,

m—1

(3.11) P (L2(R)) = Vi(9) = Vi(¢) & @ We(v) = D™ (Vo(9)).-

k=j

To proceed, we define D™ f as the level-m dyadic-scale-transform of f, then

m—1
(3.12) D"f=D'f+Y D*Eof, je[0,m—1].
k=3

This leads to the following further result.

Proposition 4. Let f € L2(R) then its level-m dyadic-scale-transform D™ f can
be computed from any lower level transform DJ f, and from the transforms — at
all levels in [j, m — 1] of the difference vector Eyf.

Setting j = 0 in (3.5) we obtain

m—1
(3.13) D"=I1+> D'Ep
k=0

so that the identity I on £?(R) admits the multilevel decomposition

m—1

(3.14) I=D"+ Y DFE,
k=0

where

(3.15) Ey:=—-FEy=1-D.

Consequently, any f € £2(R) admits the multilevel dyadic-scale-transform repre-
sentation

m—1
(3.16) f=D"f+> D'Eof, feLR).
k=0
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4. MULTILEVEL DECOMPOSITION OF {P,,D™},.¢cz,

Let {Pn,}mez be a sequence of orthogonal projections of an £2(R) MRA and
consider the sequence {P,,D™},cz. We have, as in equation (1.2), the multilevel
decomposition

m—1

(4.1) PpD™ =P,D' + Y (Pepy DM — P.DF), meZ.
k=t

We now recall from [7] that

(4.2) Py D" = D¥ Py,

(4.3) DYPy, = Pyy, DV

The above results connect a level-m projection with a lower-level or a higher-level
projections. What is interesting is the fact that the connection is achieved by
means of a dyadic-scale transform and its adjoint transform. It follows from (4.2)
that (4.1) becomes

(4.4) P,,D™ = D™P,

m—1
(4.5) = [p'+ Y @ - DY R,

k=t
Equation (4.4) shows that the level-m approximation of D™ f is the level-m scale
transform of the level-0 approximation Py f, while equation (4.5) implies that D™ Py
can be computed from a MLD.

If f € £L2(R), then, by (4.4), its level-m approximation can be expressed as
(4.6) P, f = D"P,D*™f.
This suggests the following three steps for computing Py, f.
(i) Calculate D*™ f from a MLD
m—1
D () =D fC)+ Y B f().
k=¢
(ii) Calculate the level-0 approximation of D*™ f from Definition 1(o)
PoD*™f(-) =Y (D" f(-);0(- = n)) ¢(- — n).

nez
(iii) Calculate D™ PyD*™ f directly.

These have been applied to Audio Signal Analysis [9)].

5. SCALING-BY-s OPERATOR AND TIME-VARYING SHIFT

We close the paper with a characterization of the scaling-by-s operator Dy on
L2(R), defined for every function f € £?(R) as
(5.1) (Dsf)(t) = Vs f(s(t))
(for almost all ¢ in R with respect to Lebesgue measure), where the real scalar s > 2
is called a scale. We note that s™ for each m > 0 is called the level-m scale while
L for each m > 0 is the level-m resolution. Also the dyadic-scale operator D is

sm

now the operator Ds.
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If f € L%(R), then, for each t € R, f(t — 7) for every 7 < t in R is simply f(t)
“delayed” by a time-shift of T units, or simply a time-shift 7. This can be expressed

in terms of the unitary group {T'(7), 7€ R} of bilateral right-shift operators over
the space L2(R) as

(5:2) T(r)ft) = f{t—7),
and the adjoint group {T(7)*, 7€ R} is the group of bilateral left-shift operators
(5-3) T(r) f(t) = f(t+7)
(for almost all ¢ in R with respect to Lebesgue measure). Setting 7 = 1 we obtain
(5-4) TWf(t) = f(t-1),

which is the translation-by-1 bilateral shift operator 7" defined in Remark 1. The
operator T and the dyadic-scale operator D play a central role in Wavelet Theory.
What interesting is the fact that both 7" and D are bilateral shifts of infinite mul-
tiplicity, and the families {T"},,cz and {D™},cz are discrete groups of bilateral
shifts over £2(R). However, T is time-invariant while D is time-varying, yet they
are unitarily equivalent — since they have the same multiplicity [3, 12].

To proceed we represent s' by the level-0 decomposition
(5.5) st =59+ (s' — 59)s° = 5% + g s,
where o, defined by
(5.6) ap = st — s,

is the “difference” scale at level-0, that is, it is the scalar counterpart of the differ-
ence element Ey. It then follows that (with ¢ € R)

Dsf(t) = Vs f(st)
(5.7) =Vi+ao f(t+ [ozoso]t).

This “looks” like (5.3) except that the time-shift 7 now depends on as® and t. We
therefore define the time-scale-shift function 1y as

(5.8) 70(t) = [a0s®]t, tER.
Hence (5.7) becomes
(5.9) Dy f(t) = vV1+ao f(t+10(t)).

The operator D, can therefore be considered as a left-time-varying shift — with
the time-shift function 9. We note that time-varying amplitude and time-varying
phase have been defined for analytic signals, see [2] and the references therein.

In general we have, for m > 0,
m—1
(5.10) s =s"+ Z ag s*.
k=0

This can be considered as an “unfolding” of the level-m scale s™ into scales at levels
not greater than m — 1, beginning with the “initial” scale s°. It is easy to see that

(5.11) DI f(t) =vVItao f(t+Tm1(t)),
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where 7,,,_1(t) is defined by

(5.12) Tm—1(t) = [ sF]t, m>1,

11 =
5.13 _— = — — —, > 1’
(5.13) sm g0 I;) fo sk =
where
1 1 st — 0 ap
5.14 == - —= = 0.
( ) Fo s sl st 14+ ap >
It is easy to see that the adjoint operator D} is given, for each t € R, by
1 1
5.15 DI f(t) = —= (— t)
(515) FORE¥IC

1 1
1 = .
(5 6> \/1+O(Of(1+aot)
But, from (5.14)

1
1+« =1- ﬂ0~
Therefore
(5.17) DZf(t)Z\/l—ﬁof([l—ﬂosio]t)’
or

(5.18) D f(t) = /1= Bo f(t —Teo(t)).
Consequently, the operator D} is a right-time-varying shift, with the time-reso-
lution-shift function given, for each t € R, by
1
(519) T*70(t) = ﬂo S_O t.
Finally,

(5.20) D) =\T— DBy f(t = Tem(t)),
where, for each t € R,
m—1

(5.21) Temo1= Y (ﬂo Sik) t, m>1.

k=0

The above establish another connection between the two bilateral shifts D and
T. Application of this in Wavelet Theory will be reported elsewhere.

We have in this paper shown that the “natural” Multilevel Decomposition of a
sequence of bounded linear Hilbert space operators can, under suitable conditions,
lead to Multilevel Approximation of vectors in the space. This is indeed the case
of the Multiresolution Approximation of Wavelet Theory, as well as the case of the
sequence of the operators P,,D™. A new interpretation of a Dilation-by-s operator
as a time-varying shift operator was also obtained from a MLD of the scale s.
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