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A CONCISE INTRODUCTION TO TENSOR PRODUCT

CARLOS S. KUBRUSLY

ABSTRACT. A brief introduction to tensor product in Hilbert space is organized
into five sections. The inner product space H ® K of Hilbert spaces H and IC,
as well as the tensor product A ® B of operators A and B are discussed in § 1.
Their completion, leading to the concept of tensor product space, is the topic
of §2. Kronecker product comprises the subject of §3, and commutativity of
the tensor product of operators is focused in §4. Finally, tensor product for
classes of operators closes this expository paper in §5.

1. THE INNER PRODUCT SPACE H ® K

Let H and K be nonzero complex Hilbert spaces with ( ; )» and ( ; )x denoting
their respective inner products (defined to be linear in the first argument). We shall
define the concept of tensor product space in terms of the single tensor product of
vectors as a conjugate bilinear functional on the Cartesian product of H and K.
(see e.g., [6] and [13]). For an abstract approach see e.g., [3] and [17].

Definition 1. The single tensor product of x € H and y € K is a conjugate bilinear
functional

r®y: HxK—-C
defined by

(z®y) (u,v) = (z;u)n (y;v)c for every (u,v) € H X K,

Remark 1. Recall that the outer product of a pair of vectors x € H and y € K is
a rank-one bounded linear transformation of K into ‘H

roy: K—H
defined by
(zoyv=(v;y)cx forevery vekK.

Thus z @ y has range equal to span{z}, lies in B[H, K], and
lz©yll = llzllx lyllc
for |2 © | = sup gyt (@ © 9)oll = ] Sup oyt (03 9] =zl Iyl Also,
(zOy) =y
as (z O y)v;uyn = (v;y)c (T;wn = (v; (y © x)u)y for (u,v) in H x K. Moreover,
(youwz;vie = (z;u)yyly;v)c = (@ y)(u,v) for every (u,v) € H XK
so that single tensor products and outer products are related as follows.
(z@y)(-, ) =(y® )z; )k on HxK.

Date: January 29, 2006.
2000 Mathematics Subject Classification. Primary 47A80; Secondary 47B20.
Keywords. Tensor product, Hilbert space operators, Kronecker product.

1



2 C.S. KUBRUSLY

It is worth noticing that, since H and KC are linear spaces over the same field,
the Cartesian product H x K can also be made a linear space, still over the same
scalar field, if vector addition and scalar multiplication are coordinatewise defined:

(z1,91) + (¥2,92) = (1 + 72, 1 +y2) and  a(z,y) = (az,ay)
for every (z1,y1), (z2,¥2) and (z,y) in H x K and every « in C.

Remark 2. With scalar multiplication of functionals on H x K defined pointwise,
and since H and K are linear spaces (over the same scalar field), it follows that
scalar multiplication of a single tensor is again a single tensor. Indeed,

af(z®y) =azx® By = fx® ay for every o, € C and every (x,y) € H x K,

where the above expressions, namely, af(z ® y), az ® By and Sz ® ay, are differ-
ent notations for the same conjugate bilinear functional (u,v) — af (x;u)n (y;v)k.
(This is similar to the fact that the function that shifts every real number v by
the unity can be equivalently expressed either by v +— %(27 —2) or simply by
v+ v —1.) In other words, pointwise equality holds for the functionals az ® Sy
and Bz ® ay on the same domain H x K, and hence this unique single tensor prod-
uct may be represented by many distinct pairs of vectors from H x K (such as
(a, By), (3z,ay), (afz,y), (z,a8y), and 50 on) — the natural map (z,y) — = @ y
from the Cartesian product H x IC to the collection of all conjugate bilinear func-
tionals of the single tensor type is not injective.

The single tensor product operation deserves its name; it is distributive with
respect to addition (i.e., with respect to pointwise defined addition of the associated
conjugate bilinear functionals). Indeed, for every z,w in H and y, z in K,

2@ WY+z)=rQy+r®z and (z+w)ey=zy+wey (1)
so that
+tw)@Y+z)=ry+twey+rer+wdz,
and hence addition of single tensors is not necessarily a single tensor:
rYUtwez=(24+w)@Y+z2)—zRz—wRyY.

Thus consider the collection

H®K:{Zai(axi®yi): a; €C, (z5,y:) EHXK, neN} (2.a)
=1

of all (finite) linear combinations of single tensors on H x K, which is clearly a linear
space (over the same complex filed C) — addition of a couple of elements from
H ® K is an element of H ® IC. The origin of the linear space H ® K is the single
tensor product 0 ® 0, which coincides with x ® 0 or 0 ® y according to Remark 2.
Actually, we saw in Remark 2 that scalar multiplication of single tensors are again
single tensors, and also that «;(z; ® y;) in (2.a) can be written as a;x; ® y;, or
T; ® Q;Y;, O even as ai%xi ® ai%yi. Then the definition of the linear space H ® K
in (2.a) can be equivalently written as

H@Kz{zn:xiG?yi: (z5,9;) € HX K, nEN}. (2.b)
i=1
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Again, with addition and scalar multiplication defined pointwise we can show that,
for arbitrary «;, 5; in C, (x;,y;) in H x K, and n,m in N,

n

ZZO@@ xl®y3 UU ZZaZﬁ] Ziju <yj’ >

=1 j=1 =1 j=1
n m m
= E E ;T3 U /Bjij IC—< E ;55U > < § /Bjyj§v>
H\ < K
=1 j=1 j=1

= [(;aixi) (Zﬁjyj)} u,v) for every (u,v) € H x K.
Therefore,
(Xow) o (X Bw) =2 by wwy) 3)
i=1 j=1 i=1 j=1

for every a;, 5; in C, every (z;,y;) in H x K, and every n,m in N. Both sides of
the above equation clearly lie in H ® KC since they are linear combination of single
tensors; the one at the left-hand side being a trivial linear combination of just one
single tensor ( S aixi) ® ( Z;":l ﬁjyj) and the other at the right-hand side being
a linear combination of possibly many single tensors -7, 377 | i Bj(2; ® y;).

Now consider the functional
(; ) HeK)x(He®K)—=C

defined, on the Cartesian product (H ® K) x (H ® K) of the linear space H ® K
with itself, as follows.

m

<iai($i®yz Z w]®z]> ii i widm (i 250k (4)

for arbitrary Y., a;(z; ® y;) and Z _ 1 Bi(w; ® z;) in H® K. In particular,
(z@y;we2) = (T;wnly;2)c = (z@y) (w, 2)

for every x,w in ‘H and y, z in . Since single tensors are conjugate bilinear func-
tionals, it is easy to show that the functional ( ; ) is a Hermitian sesquilinear form

n (H®K)x (H®K). To verify that it is an inner product on the linear space
H ® K, we need to show that it induces a positive quadratic form.

Proposition 1. The sesquilinear form defined in (4) is an inner product on H &® K.

Proof. Let Y1 | x; ® y; be an arbitrary element from H ® K (cf. (2.b)), and let

{ex}7_, and {fi}} ”1 be orthonormal basis for the subspaces of H and K spanned
by {z;}7, and {y;}?,, respectively. Thus consider the Fourier series expansions

’ "
n n

;= Z(Sﬁi;ek>ﬂek and y; = Z<yi s fuch

k=1 =1

of each z; and y; in the finite-dimensional spaces span {e, }7-, = span {z;}}~, CH
and span { f;}7, = span {;}?; C K so that, according to (3),
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’

i Qy; = (i(x“@k H‘%)@(i (vis fi Kfl) = z":i: (zisen)r (Yis i)k (ex®@f1).

k=1 =1 k=11=1
Put vi; = > (i er)n (yi; fi)xc for each pair of positive integers {k,1}. Thus

’I'L n

in®yz Zzzxz»ek (Wis f)x (ex @ f1) ZZ’Yklek@fz
i—1

i=1 k=1 1=1 k=11=1

Since all sums are finite, we may reorder the final sum (and reindex the vectors in
each single tensor product) to get

dm@yi=Y (e ® fo) ()
=1 =1

with m =n’-n’”. However, according to (4),

n 9 n n n n
HZ%@)% = <Z$i®yi;zmi®yi> = <Z%/(el®fl);2%é (€k®fk)>
=1 =1 i=1 =1 k=1
non n n
=D > A Tilesen)n (fii frle = Y i el (6)
=1 k=1 k=1 k=1 1=1

Therefore < ST QUi e T ® yi> is always nonnegative, and it is zero only if
Y1,k = 0 for all {k,{}, which implies >, z; ® y; = 0 (the origin of the linear space
H® K). Outcome: ( ; ) in (4) induces a positive quadratic form || || (the induced
norm on H ® K) so that it is an inner product on H ® K. O

Consider the inner product spaces (H® K, ( ; )) and (K@ H,( ; )). From (4),

n
HZ%‘@%
i=1

n

2=<Z$i®yi§zfﬂj®yj> szu% (isyie, (7.a)
i=1 j=1

i=1 j=1

and so n n
“Zﬂfi@yi = szi(@m ; (7.b)

i=1 i=1

for every Y. | x; ® y; in H ® K. In particular,
lz @yl = [zl [yl (7.c)

Indeed, [z @ y||* = (z @ y; 2@ y) = (;2) (y;9)c = ll2lF lyll§ for any 2@y in
H® K. Now let B[H], B[K] and B[H ® K] be the normed algebras of all (bounded
linear) operators on H, K and H ® I, respectively.

Definition 2. The tensor product on the inner product space H ® K of two oper-
ators A € B[H] and B € B[K] is the transformation

ARB: HOK - H®K

of H ® K into itself such that

(A®B)in®yi:ZAxi®Byi for every Zxﬂ@yi eH®K.

=1 =1 =1
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Observe that 1 ® I = al ® a1, for any nonzero scalar «, is the identity op-
erator on ‘H ® KC, where the left-hand side I is the identity on H and that on the
right-hand side is the identity on K. Similarly, O® O = A® O = O ® B, for every
A on ‘H and every B on K, is the null operator on H ® K, where the left-hand side
O is the null operator on H and that on the right-hand side is the null operator on
K. Thus A ® B is null if and only if one of A or B is null.

Proposition 2. For every «, 5 € C, A, A1, A2 € B[H] and B, By, B2 € B[K],
(a) af(A® B)=aA® (B,

(b1) A® (B1+ By) = A® B + A® Bs,

(b2) (A1 +A3)®B=A;® B+ A, ® B,

(b3) (A1 +Ag) ® (B1+ B2) = A1 ® B + A2 ® By + A1 ® By + Ay ® By,

(¢) (A1 ®B1)(A2® By) = A1A3 ® B1Bs.

If A and B are invertible, then so is A® B and
(d) (AB)'=A"1® B L.

Proof. Take an arbitrary > ., z; ® y; in H ® K. Recalling Remark 2 we have

af (A®B) Z T;Qy; = of Z Az;®By; = Z aAr;®By; = ((A®[B) Z T; QY5
i=1 i=1 i=1 i=1
which proves (a). According to (1) we get

n

[A® (By + By)] Zﬂﬂz‘ ®yi = ZA%‘ ® (B1 + Ba)y; = ZA%‘ ® (B1yi + Bay;)
=1 i=1 i=1

= Z [Az; ® Bry; + Az; ® Boy;| = ZAIZ' ® Bry; + Z Az; @ Boy;
im1 im1 i1

= (A®Bl)2n:xi®yi+(A®B2)zn:xi®yi =[A® B+ A® By zn:aji@yi
and, shnilawlyiz1 - -
[(A1 + 42) ® B] i%‘@yi =[A1® B+ Ay ® B] imi@)yia
i=1 =1
which proves (b;) and (by). From (by) and (bg) we get (bs) at once:
(A1 + A2) @ (B1 + Ba) = (A1 ® A2) ® By + (A1 + A2) ® By
=A41®B1+A2® B+ A1 ® By + A2 ® Bo.

Next we get (c) as follows.

[(A1 ® B1) (A2 ® By)] Zwi ®y = (A1 ® By) {(Az ® Bs) Ziﬁz ® yz:|

i=1 i=1
=A41® B1)Z Aoz @ Bay; Zzz‘hz‘bfﬂi ® B1Boy; = (A1 42 ® B1B2)Z i @ Yis
im1 im1 im1
and (c) implies (d): (A®@ B)(A™' @B Y)=I®l=(A"1'®B ') (A® B). O
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Tensor product of bounded linear transformations is again bounded and linear.
(We shall use the same notation || || for the norms in B[H], B[K] and B[H ® K].)

Proposition 3. If A € B[H] and B € B[K], then A® B € B[H ® K] and
1A Bl = [ A[|B]]-

Proof. Linearity is verified as follows. Take Y.  x;®y; and > *  w; ® z; in
H® K, and take @ and 8 in C. Put a; = a for each i =1,...,n, and put o; = 3,

T; = Wi—p and y; = z;_, for each ¢ = n+1, ... ,n+m. Observe that
m—+n
i=1
m+n

= Z Aaﬁxl@Baﬂyl = a(Zsz@)Byz) +ﬂ(ZAwl®Bzz)

i=1

:a(A®B)in®yi+6(A®B)Zwi®zi.
i=1 i=1
For boundedness and the norm identity, proceed as follows. Take arbitrary vectors
z € H and y € K and note from (7.c) that

Az @ By|| = [|Az||+ || Byllx- (8)

Now take any > ., z; ® y; in H ® K, consider the setup of the proof of Proposition
1, and observe that {Arer ® fr} is an orthogonal set. Indeed, by (4),

(Aex, ® fr; Aer ® f1) = (Aex; Aet)w (fr; fi)kc = | Aer3, Ok

where Jy; is the Kronecker function (8,5 = 0 if £ # [ and i = 1). Thus by (5),
Remark 2, Definition 2, Proposition 2(a) and the above relation followed by the
Pythagorean Theorem, and also (8), (6),

H(A®I) Zn:% D Yi
i=1

= H(A® I) i%é (ex ® fk)HQZ H(A ® 1) ivé%@c ® vé%fk‘f
k=1 k=1

n 9 n ) A
= HZWQ%A% ®7é%ka = HZ%; (Aey, ®fk)H = Zhﬁ? | Aer @ fi2
k=1

3)

AP eelfe < 4IF zw A2 HZ%@%
k=

with I being the identity on IC. Then A ® I is a bounded operator and
[Ae I <Al

)

Analogously (applying exactly the same argument, and with I now being the iden-
tity on H), I ® B also is bounded and

1 Bl <|B
Observe from Proposition 2(c) that
AB=(A®I)I®B)=(I®B)(A®I), (9)
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where the identity on K makes the tensor product with A and the identity on H
makes the tensor product with B. Recall that the product of bounded operators is
again a bounded operator with a bound not greater than the product of the bounds
of each factor. Thus A ® B is a bounded operator according to (9) and

[A@ Bl = (Ao T)(I@B)| < (A= DI (I @ B) < [|A[B].
On the other hand, since A ® B is bounded, we also get from (8) that

[Az|l# |Bylx = [|Az © By| = [(A® B)(z @ y)||
<A@ B[z @yl = (A B)| Izl vl

and hence
[A[ 1Bl = sup [[Az|ly sup [Bylx < [[(A® B
lzll, =1 lylle=1
Therefore, ||A® B = ||All ||B]|- |

2. TENSOR PRODUCT SPACE
The inner product space H ® K is not necessarily complete.

Definition 3. The tensor product H & K of the Hilbert spaces H and K is the com-
pletion of the inner product space H ® K. The tensor product A ® B in B[H & K]
of two operators A € B[H] and B € B[K] is the extension of the tensor product
A ® B in B[H ® K] of Definition 2 over the completion H & K of H ® K.

Remark 3. In the above definition, the tensor product A ® B of two operators
A€ B[H] and B € B[K] on H ® K is extended by (uniform) continuity over H ® K
according to a standard result concerning extensions of operators over completions
(see e.g., [10, Theorem 5.23]):

If H® K is the completion of H® K, then A® B in B[H ® K| has an extension
A® B in B[H ® K]. Moreover, A® B is unique up to unitary transformations and

lA® Bl = A B||.

Proposition 4. For every a, 8 € C, A, A1, A2 € B[H] and B, By, B2 € B[K],
(a) aB(A® B)=aA® BB,
(b1) A® (Bi+B) =A® B +AQ B,
(b2) (A1 4+ A2) @ B=A4, 8 B+ A4, ® B,
(b3) (A1+A2)® (B1+ Bz) = A ® By + Ay ® By + A1 ® By + Ay ® B,
(c) (A1 ® By) (A ® By) = AjAy @ BBy,
(d) (A® B)* = A*® B*.
If A and B are invertible, then so is A® B and
() (A®B)"'=A"'® B~ "
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Proof. Recall that if H & K is the completion of H ® K and A ® B in B[H & K] is
the extension of A ® B in B[H ® K], then there exists a unitary transformation
U:HoK—-RU) C HOK,
where C means densely included, such that
(A® B)lray =U(A® B)U". (10)
That is, the range R(U) of U is a dense linear manifold of the Hilbert space H ® K,

and the restriction of A ® B to R(U) is unitarily equivalent to A ® B. Note that,
according to (10) and Proposition 2(a,b,ba,c),

[aB(A® B)] \R(m = aB[(A® B)|lrawy] =aB[UA® B)U*]
UlaB(A® B)|U* =U(aA® BB)U* = (A & BB)|rw),

[A® (Bi+B2)]| gy = U[A® (B1+B2)| U'=U(A® Bi+A® By) U*
=UA®B)U'+UA® B)U"
= [A8 Bi]|g )+ [A® Bal| gy = [A® Bi+ A& Bsl| 1y

similarly,

(A1 +A45) ® B A ®B+A;®B

”’R(U) - [ ”R(U)

and, since R(U) is A ® B-invariant for every A ® B in B[H & K] by (10),

(41 @ B1) (42 @ Bo)] [y = (41 @ B)lr(w) (42 & Ba)lrqw)
= U(A1 ® B1) U*U(Az ® Bz) U* = U(A1 ® Bl) (A2 X Bg) U*
= U(A142 ® B1By) U* = (A1 As ® By Bs)|r).-

Therefore, since R(U) is dense in H ® K and the above tensor products restricted to
R(U) are (uniformly) continuous (because they are unitarily equivalent to tensors
products on H ® K by (10), which are (uniformly) continuous by Proposition 3),
we get the results in (a), (b1), (b2) and (c) by extension by continuity (see e.g., [10,
Theorem 3.45]). From (by) and (bs) we get (bs) at once:

(A1+A2)®(31+Bz) = (A ®A2)®Bl+(A1+A2)®Bz
= A1 ®B1+A4;® B, + A ® By + Ay ® Bs.

Now, to verify (d), consider the tensor product A® B of A € B[H] and B € B[K]
on the inner product space H ® K, take arbitrary vectors in R(U) C 'H ® K, say
ZHEi@yi and ijj@zjv put Z?:l Ty @Ys = U*(szzééyz) andzgll w; ®zj =
U*(Zj w; ® z;) in H ® K, and observe by (10) and (4) that

<(A<§§ B)|R(U)in®yi;2wj(§)zj> = <U(A®B) U*in®yi;2wj®zj>
i j i j

= <(A®B)U*in®yi; U*ij®zj> = <(A®B)zn:xi®yi;§:wj®zj>
i j i=1 j=1
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Il
H'Eﬂ\s

Az; @ Byi; Y w; ®Zj> =D > (Awisw)w (Byis )k (11)
i=1

1 j=1 =1j=1

(@i A"wj)n (yi; B'zj) <Zmz®yz,ZA wJ®BzJ>

I
NE
1M

I
A

1y

<Zx1®y1, ®B*)iwj®zj><U*in®yi;(z4*®B*)U*ij(§>zj>
<Zx1®yz, (A*® B*) U*ij®zj> <sz®yl,(A ® B*) |R(U)ij®z]>

which extends by continuity to A ® B on H & K by the same argument of the pre-
vious paragraph (i.e., R(U) is dense in H ® K, A® B and A* ® B* are (uniformly)
continuous, as well as the inner product, and composition of uniformly continuous
mappings is again uniformly continuous (see e.g., [10, Problem 3.28]). Therefore,
with 37, 2; ®y; and 3 ;5 Wj ® z; denoting arbitrary elements of H & K, the identity

<(A®B)in®yi;zwj®zj> = <in®y¢;(A* ®B*)ij@zj>
i j i J

holds in the Hilbert space H ® K. Then, since existence and uniqueness of the
adjoint is ensured for Hilbert space operators, the above identity ensures the result
in (d): the adjoint (A ® B)* of A® B is A*® B* Finally, assertion (e) follows
directly from (c): (A® B)(A"'®@ B ) =I®I=(A"'® B ") (A® B). O

20

Since there exists a unitary transformation U: H ® K — R(U) € H ® K, for
every Y oz, Quin HOKput Y o i@y =UY i 2@y =y iy Uz @ y;)
in H ® L. We shall identify these and write

n n
in®yi = Zfﬂz @ Yi-
i=1 i=1

In particular, N
rTRY=xRXY.

With >, z; ®y; and > 5 Wj ® zj denoting arbitrary elements of H ® K and putting
Yo i@y = U (Y2 ®y;) and YT w; @ 25 = U* (Y, w; ® 2;) in H® K, we
get from 4 and 7 (since U is unitary)

<Zmi®yi;2wj®zj> ZZ i 5w (Yis 2K (12.a)
7 J

so that

HZ”’@% ZZ%% (yisyil, (12.b)
Hsz@yi ZHZ%@@.

Moreover, from Definition 2 and (10), extending (11) by continuity from R(U) to
‘H ® K, and using the same argument applied to prove part (d) above, we also get

and hence
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and i i

<(A & B) Zml DY ij ®z3> = ZZ(A@ swiyrn (Byi s 25) K. (12.e)

Furthermore, note that according to Proposition 4(a),
ARB=A4,3By,=aA®a 'B, (12.f)
with A, = o A and B, = a~' B for every nonzero scalar a so that

1A ® Bl = [|Aall | Ball (12.g)

for every 0 # a € C by Remark 3 and Proposition 3.

3. KRONECKER PrODUCT

Remark 4. Suppose H = C" and K = C™. Take vectors z = (&1, ...,&,) in C"
and y = (v1, ..., V) in C™ The Kronecker product x ® y of x and y is the vector

T®Y = (£1y7 7£ny) = (glvlv 7£1Um7 o 7£n'U1, 7577«7)777«) in @?:1 C™=C""

With scalar multiplication and addition in C* defined as usual (i.e., coordinatewise),
it follows that scalar multiplication of a Kronecker product is again a Kronecker
product (but not uniquely determined — as in Remark 2). However, there are
vectors in C™ that are not Kronecker products (e.g., (0,1,1,0) in C* is not a
Kronecker product for any pair of vectors (z,y) in C*x C?). Moreover, the sum of
Kronecker products is not necessarily a Kronecker product. Indeed, with z1, x5 in
C™ and y1,y2 in C™, it is readily verified that

T @Y+ T2 @y = (11 +22) ® (y1 +1y2) —T1 D Y2 — T2 B Y1.

Thus consider the collection C™ ® C™ of all (finite) linear combinations or, equiv-
alently, of all (finite) sums of Kronecker products in C™"™:

N
C"eC™ = {Z$i®yi: (z5,9:;) €C"x C™, NEN},
i=1

which is clearly a (complex) linear space — as in (2.a) and (2.b). We claim that
crm=C"®C™.

Indeed, take an arbitrary vector z = (Ci 1, ..., Cims =+ 3 Cnpts -ov s Gnom) In C™™, and
observe that z = >, e; ® z;, where {e;}I, is the canonical basis for C" and each
z; in C™ is given by 2z; = (Ci,1, ..., (4i,m) so that C™™ C C™ @ C™. The converse is
clear: C"® C™ C C™. Thus C™ = C" ® C™. Also note that

<x®y;w® z>cnm = <§1y, by wiz, 7wnz>(cnm

= (& (V1,5 Um), o En (U1, o Um) 5 w1(Cs e Gy o wn (G - ,Cm)>(cnm

= <§1ful7 ey E1Umy 3 En ULy e, EnUm 5 W1CTy e s W1Cmy Wy - ,wnCm>Cnm
=&uwiG + o F GQUnwiGn s F G uiwnC -+ G Umwn G

=&wi(ViG + o+ UmGn) + o Gawn(VIG F - UnGn) = (@5 w)en (Y 2)em
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for every z,w in C™ and every y, z in C™. Applying the same argument of Propo-
sition 1, it can be shown that the expression below defines an inner product on the
linear space C" ® C™,

N M N M N M
<Z T;®Y; ;Z wj®2j> :Z Z <$i®yi ; wj®zj>(cnm = Z Z(ivi swjyen (Vi s 25)cm
i=1 j=1 i=1 j

i=1 j=1 i=1 j=1

for arbitrary 21{1 r; ® y; and Z]A{I w; ® z; in C" ® C™, inducing the norm

N
HZM@%‘ = (ZZ Ti®Y; s T;RY, cnm) (ZZ Ti;Ti)cn yl,y]>(cm)_.
i=1

=1 j=1
In particular,

Yl
Now observe that the natural mapping P:C"®C™ — C" ®C™ defined by

(sz®yz) Z<xi§ Sen(Yis - )em Zixi@)yi

i=1 i=1

lz @yl = [l @®yllcom = llzllc-[yllc

is clearly linear, injective, surjective and, moreover, preserves inner product:

<¢(ixi®yi);¢(iwj®2j)> = <imi®yi;iwj®zj>
:ZZ Ti;wji)cn yl,zj>(cm—<Zl‘z®yzyzw3®'z]>
j=1 i=1 j=1

for every ZZI\LI z; ® 1; and ijl w; ®z;inC"®C™ ThusC"®C™ and C" @ C™
are unitarily equivalent inner product spaces (Hilbert spaces, actually, once C™ and
C™ are finite-dimensional):

C"eC™~ C"@C™,
and therefore C"™ = C" @ C™. Thus C"™ and C" @ C™ are identified with each
other and such an identification will, as usual, be written with = instead of =:
cC"m=C"eC™
Finally, take arbitrary linear transformations A in B[C"] and B in B[C™], and let

them be represented with respect to the canonical basis for C™ and C™ by the
square (n x n and m X m) matrices

Qi ... Qg P oo Pim
A= and B =
Qnl .- Qpn Bm1i o Bmm
The Kronecker product A ® B of the matrices A in B[C"] and B in B[C™] is
anB ... ai,B
A® B = : : in B[@;_,C™] =B[C™],
amB ... ap.B

a square (mn X mn) matrix. Observe that
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N
(4@ B) (@ (Zauszy,...,Zan,isiBy)=Aa:®By,
i=1

and hence
N N N

(A®B)Z$i®yi=Z(A®B) (z: ®yi) ZZA%'@B%

=1 =1 i=1

for every Zf\;l T, ®y; €eCP®C™ = C™. Since ® is a unitary transformation,
it follows that tensor products ® and Kronecker products ®, of both vectors and
matrices, are unitarily equivalent. That is,

r®y 2zrz®y and A®B = A® B,
which means that
Pzdy) =2z®y and P(A®B) = (AxB)P
so that these products are identified with each other. Such an identification is
usually expressed by writing = for 2:

r®y=xxy and A®B=ARB.
Indeed,

Y(A® B)® (sz@@yz)

N N
_1(A®B)le®yl = q)_l(Zsz@Byl)

=1 i=1
N N

=Y Az;®By; = (A®B)Y 2 ®y;
i=1 1=1

for every ZZ 12 ®y; € C"®C™= C"™. Thus all properties in Propositions 2, 3,
4(d), including equations (8) and (9), hold if the tensor product ® is replaced w1th
the Kronecker product ®. For more properties of Kronecker products, see e.g., [1].

Remark 5. The same discussion of Remark 4 can be readily extended from finite-
dimensional to separable spaces, as follows. Suppose H is any infinite-dimensional
separable Hilbert space and let K be an arbitrary Hilbert space. Since H is separa-
ble, it is unitarily equivalent to £? = ¢#(C) so that we can assume the identification
H =1(2. Put

@y =(Gy, &y, ...) n @ K=LF(K)
for arbitrary z = (£1,&2,...) in H = £2 and y in K so that
o0 o0
|z ® yll?i(;q = > lullE = Il 16l = llyllk ||35||?i = [lzl1% lyl%,
k=1 k=1
and consider the collection

N
H@’C:{Z‘%Z@yz (xi,yi)EHxlC, NEN}

which is a linear space. We claim that H ® K is densely included in €7 (K):
HeK C £2(K).
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Indeed, H® K C (2(K) trivially. Moreover, take any z = (z,2,,...) in £2(K).
Since z = > ;2 ex ® zj, where {e}72, is the canonical orthonormal basis for H,

Hz—Zek® ez ) H Z ek@zk Y Z lzllk — 0.

k=N+1 &5 kE=N+1
Thus H ® K is dense in (2(K) (ie., (H®K)™ = EE(IC)) Hence

H® K = (3(K),

that is, (?r (K) is the completion of H® K. Now, as in Remark 4, the expression

N M
<Z$i®yi§zwj®zj> ZZ Iz@)yz,wg@% e2(K) = ZZ l’sz] yz,Z]>/c
i=1 j=1

=1 j=1 =1 j=1

for every Zf\;l x; ® y; and Z]M:1 w; ® z; in H ® K, defines an inner product on the
linear space H ® K. Again the natural mapping ®: H ® K — H ® K defined by

(le@)yl) —Z(%? Dr (Wi '>K=§:xi®yi
i=1

i=1

is unitary so that H ® K and ‘H ® K are unitarily equivalent inner product spaces:
HeK =2HRK,

and so (see e.g., [10, Corollary 4.38]) there exists a unitary ®: H & K — H & K of
the completion H ® K of H ® K onto the completion H ® K of H ® K. Therefore
H ® K and H ® K are unitarily equivalent Hilbert spaces. Then

(2(K) 2 He K.

Since Kf(lC) and H ® K are unitarily equivalent, they are identified with each other
and such an identification is, as usual, written with = instead of = so that

2(K)=H&K:

The tensor product of a separable 'H and any K is the Hilbert space KJZF(IC) =
@D, K consisting of the orthogonal direct sum of countably many copies of K.
Now take any A in B[H] and any B in B[K], and consider the matrix representation
of A with respect to the canonical orthonormal basis for H = (2 = (3(C),

a1 Q12 ce
A= | @an a2 ... in B[H],
and define
OénB OzlgB
A®B=|anB oanB ... | i B@Z, K] =BIiK).

Observe that

(A48 B)(x (Za“@ByZau@By,...)=Axc¥>By,
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and hence
N N N

(A®B)Y zi®yi=) (A®B)(z;®y) =Y Az, ® By,

i=1 i=1 i=1
for every Zf;l T; ®y; € H® K so that
(AC;) B)le ® Yi = ZA%' ® By
for every Y, x; ® Yi € (’H ®K)™ = £2(K) because (A® B): (2(K) — L2(K) is
continuous. Since : H® K — H ® K is a unitary transformation, it follows that
t®y 2@y and A®B = AR B,
which means that

dz®y) =z0y and OA® B) = (AR B)D,

so that these products are identified with each other. Such an identification is
usually expressed by writing = for 2:

r®y=2Qy and A®B=AQB.
Indeed,

(A& B)® (le@)yl) N ABB)Y m By =0 (Y Avi B By)

for every >, z; ® y; € (H® K)~ = £2(K).

4. COMMUTATIVITY

Remark 6. Suppose H and K are infinite-dimensional separable Hilbert spaces so
that we can identify H = K = ¢?. Let {ex} be the canonical orthonormal basis for
(3. Throughout this remark all matrix representations of operators in B[(}] will
be with respect to the orthonormal basis {ey}. For each pair of positive integers
{k, 1} consider the outer product

er e € B[éi]

The matrix representation of each e, ® e; has 1 as the (k,1) entry and zeros else-
where. Now consider the tensor product (cf. Remark 5)

(erOe) @ (erOer) = (er@e) ® (e @ey) € Bl(F @ €3],

Again, the matrix representation of each (ex @ ¢;) ® (e; ® e) has 1 as the (I, k)
entry of the (k,1) block and zeros elsewhere. Define the permutation operator

O=Y(cx0e)d(@oe) € B2 8 (2],
k,l
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whose matrix representation has precisely a smgle 1 in each row and i in ¢ each column,
which implies that I is invertible. In fact, Misa symmetry; that is, Misa unitary
self-adjoint. Indeed, take arbitrary z = (51, &, ...) and y = (v1,v9,...) in £3. Then

I(z®y) = (Z(ek Oe)® (e ® ek))(a: ®y) = (er@e)z® (e Oer)y
k.l %l
= Z@?;el)zi@k ® <y;€k>e§€l = Z<y;€k>e$€k ® Z<$;€l>z§€z =y
k.l % 7

according to (3) and Definition (2) — extended by continuity. Thus, by (7.c),
Mz @ y)|| = lly @ z| = [lz @yl
Since 11 is linear and continuous and H DT ® ylH = H > Y ® le by (12.c),

ﬁ(zxz @yz) = Zyz @fﬂi and Hﬁ(zwz ®yz) ’ = Hzxz GA@%

for every » . x; ® y; in 03 ® (3 so that Il is an isometry. Then II is an invertible

isometry, which means that IT is unitary. Moreover, since (ex @ €;)* = e; © e,

=Y (0a) ®@oea) =) (a0 d (@oa) =T
k,l k.l

and 11 is self-adjoint as well. Hence Misa symmetry and so an involution. That is,
O !'=I*=1I sothat I[%=1.
Therefore, for every pair A and B of operators in B[¢?],
= (B® A)(Zyl ® xl) =(B® A)ﬁ(le ® y1>
for every >, z; ® y; in Zfr R Zﬁ so that
[I(A® B) = (B® A)I
In other words, the tensor products A ® B and B ® A are unitarily equivalent.

This can be generalized without assuming that H and K are necessarily infinite-
dimensional and separable as follows. Let H and X be arbitrary Hilbert spaces and
define the mapping I1: H® K — K @ H by

H(Zm@yi) = Zyi@)ﬂ?i
=1 =1

for every 7 | z; @ y; in H® K. This is clearly invertible: II7* (Y7 | y; ® z;) =
Yo @y for every -7 | y; ® 2 in K ® H. It is readily verified that

M(aY w@y+8Y wiosn)=al( Y aey)+ (Y wes)
=1 i=1 i=1 =1

for every a, in C and every Y . ; 2; @ y; and Y -, w; ® z; in H ® K. Moreover,
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(S o) = Emon] =[Smom
=1 =1 i=1

for every """ |, z; ® y; by the very definition of II and according to (7.b). Thus
IT is an invertible linear isometry (i.e., a unitary transformation) from the inner
product space H® K to the inner product space K ® ‘H, and so is its extension
II from the completion H ® K to the completion K & H. Therefore, applying the
same argument of Remark 6, for every pair of operators A € B[H] and B € B[K],

048 B)(Y @ 8u) = (B3 4) (le@@yl)

for every >, x; ® y; in H ® K so that

[(A® B) = (B® A)I
Outcome: A ® B and B ® A are unitarily equivalent. That is,
A®B =~ B® A. (13)

We refer to this fact by saying that the tensor product of a pair of operators is
unitarily equivalent commutative.

Observe that, according to Remark 5 (and up to unitary equivalence),

(é g>®E<é§§ ggg) in B[H & K] (14)
for any A € B[H'], B € B[H",H'], C € B[H',H"], D € B[H"] and E € B[K], where
the above operator matrices lie in B[H] and B[H ® K], with H = H' & H". (Note:
the tensor products B ® E and C' ® F are defined exactly as the definition A ® F
and D ® E in Definition 2.) The identity in (14) can be proved in the general case
(without the assumption of Remark 5 that H is separable) as follows. Let H’, H”
and K be Hilbert spaces, and consider the Hilbert space H = H’' @& H", where @&
stands for (orthogonal) direct sum. Take the tensor product spaces H’ ® K and
H" @ K, their direct sum (H' ® K) @ (H” ® K), and consider the natural mapping
V:HEK — (H &K)® (H” & K) given by

‘T/<sz (55(%) = (ng ® i, Zl’y 59%)

with each z; € H written as z; = (), z/) € H' & H" where 2}, € H' and z} € H".
This is clearly linear and invertible. Moreover, it is also an isometry by (12.b):

[#(Seau)[<|(Set o et 8u)[ | St & ul | Tt @ u
Z Lis JH, y“yﬁ ’C—’_Z T3 ] 'H” yzayj>
_ Z s g <Jcl ,37]>H”) (Wi vk = Z((x“ xi)§($}7$}/)>H <yi;yj>1c

4,3
- § $17$j

2
 ® yi
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Thus U is a unitary transformation. Then H & K and the

for every > . x; ® y;.
K) @ (H" ® K) are unitarily equivalent, and we write

i ®y
direct sum (H @

o~ o~

HIK=MH@K)e (H'®K). (15.a)

Moreover, since (3, 7} ® y;, >, 2 ® y;) is the unitary image of 3_, z; ® y; under
W, we shall also identify them and write

in®yi:(2x§®yi72x§’®yi). (15.b)

In particular
z@y=(z'®y, 2" ®y)

for every x @ y with x = (2, 2”") € H ="H' @ H"” and y € K. Therefore, by taking
A e B[H'], Be B[H",H], C € Bl[H',H"], D € B[H"] and FE € B[K], we get

(¢ p)eeeen=[(c 5)oe(X)e]

x [ Az’ + Bz" _ ( (A" + Bz") ®
< )( ”>}®Ey_<0x’+Dx”>®Ey_<(C’az + Dz") ®

{ ) ®
<Ax®Ey+Bﬂ®£w> (?A@Eﬂf®w+%B®E ”®y3
( }

w)

Cz' ® By + Dx" ® Ey (CRE)(rd2y)+ (Do E)(z"®y

ARE B®E\(2oy\ (ABFE B®E [ 5
C®E D®E)\2"®y) \C®E DXE z”
_(A®E B®E

(C@E D@E)@®”

fore@y=(2,2")Y@y=(¢'Ry, 2" ®@y) with x = (¢/, 2") e H=H ®H" and
y € K. Thus following the result in (14) since

A B\ -~ ~ ARFE B®E ~
MO D) ®E}Z%®yl’<cgﬁj D%E)in@yi

for every . x; Qy; = o, 2 Ry = (le; R Y, P ® yi) in H® K.
Note that, since unitary equivalence is indeed an equivalence relation, thus transi-
tive, it follows by (13) and (14) that

~ (A B\ _[(E®A E®B) . ~
E®(C D)(E@C E@D) in B[K® H] (16)

5. CLASSES OF OPERATORS

We shall be dealing with the following well-known classes of operators. An oper-
ator T is self-adjoint if T* = T, unitary if T* = T~!, nonnegative (i.e., O <T) if
it is self-adjoint and 0 < (Tz;x) for every x, normal if TT* = T*T, quasinormal
if T commutes with T*T', subnormal if it has a normal extension, hyponormal if
TT* <T*T, quasihyponormal if O < T*(T*T —TT*)T, semi-quasihyponormal if
|T|? < |T?|, paranormal if | Tz||?> < ||T%x|| ||x|| for every =, normaloid if r(T") = ||T||
(where r(T) stands for spectral radius), and spectraloid if 7(T") = w(T") (where w(T)
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stands for the numerical radius). It is also well-known that these classes are related
by proper inclusion as follows (see e.g., [11]).

Nonnegative C Self-Adjoint C Normal and Unitary C Normal,

Normal C Quasinormal C Subnormal C Hyponormal C Quasihyponormal
C Semi-Quasihyponormal C Paranormal C Normaloid C Spectraloid.

Proposition 5. If A € B[H] and B € B[K] are either (a) self-adjoint, (b) unitary,
(¢) nonnegative, (d) normal, (e) quasinormal, (f) hyponormal, (g) quasihyponormal,
(h) semi-quasihyponormal, or (i) normaloid, then sois A® B H ® K.

Proof. Assertion (a) is trivial by Proposition 4(d): If A* = A and B* = B, then

(AR B)* =A*"® B* = AQ® B.
Assertion (b) is also trivial by Proposition 4(d,e): If A* = A=! and B* = B~!, then
(ARB)*=A*@B*"=A"'@B'=(A® B)~..
Assertion (c) follows by Proposition 4(c,d): If O < A = A* and O < B = B* then

take their unique nonnegative square root so that, for every >, x; Ry in H & K,

<(A ® B) in®yi;2xi®yi> = <(A% ® B%) (A%QA@ B%) Z$i®yi§ziﬁi®yi>

= (A3 @ BHY e Gy (A2 @ BHY w8y = (4T 8 BHY w: G|

> 0.

Assertion (d) is trivial by Proposition 4(c,d): If A A* = A*A and BB* = B*B, then
(AR B)(A® B)* = (A® B) (A*® B*) = AA* & BB*
= A*AQB'B=(A*"®B*)(A® B) = (A® B)*(A® B).
Assertion (e) is also trivially verified by Proposition 4(c,d): If A*A A = A A*A and
B*B B = B B*B, then
(A®B)*(A®B)(A®B)=(A*"®B*)(A®B) (AR B)=A"AA® B*BB
= AA*"A®BB*B=(A®B)(A*®B*)(A® B)=(A® B)(A® B)*(A® B).
Assertion (f) needs an auxiliary result. Take arbitrary operators S, Sy, S2 € B[H)]
and T, Ty, Ty € B[K], and note that, if O < S and T} < Ty (i.e., O < Ty — T}), then
O<SR(MH-T)=S®Th-S®T
by Proposition 4(a,b;) and assertion (c). Similarly, if O < T and S; < Sy, then
O0<(S2-8S)RT=88T-5.8T
by Proposition 4(a,bs) and assertion (c¢) again. Summing up:

O<S and T, <T, implies S®T; <S®T, (17.a)
O<T and S <S, implies S1RT<S T, (17.b)

and therefore,
0<5 <8 and OL<T,<T, implies S;®TI <S®Ty.  (17.c)



TENSOR PRODUCT 19

Recall that O < AA* and O < B B* for every A € B/H] and B € B[K]. Thus, if
AA* < A*A and BB* < B*B then, by Proposition 4(c,d) and (17.c),

(A® B)(A® B)* = (A® B)(A*® B*) = AA* ® BB*
< A"A®B*B=(A"®B*)(A® B) = (A® B)*(A® B).

Assertion (g) also follows by the inequalities in (17). Recall that the absolute value
|T) of any T in B[H] is defined as the unique nonnegative square root of the non-
negative operator |T'|? = T*T in B[H]. Note that, according to Proposition 4(c,d),

[A® B> =(A"® B*)(A® B) = A*"A® B*B = |A]* ® |BJ?, (18.2)
and hence, by uniqueness of the nonnegative square root of nonnegative operators,
|A® B|=|A| & |B|. (18.b)
Therefore, if |A]* < |A?|? and |B|* < |B2|? then, by the inequality in (17.c),
A® BI' = (AP & B =|A' & |B/!
< |42 8 | B2 = (1A% & |BY)? = |42 & B2,
Assertion (h) is similar. If |A|> < |A4?| and |B|? < |B?| then, by (17) and (18),
|A® B> =|A? ® |B|* < |A%| ® |B? = |A* & B?|.

Assertion (i) is readily verified by Propositions 3 and 4(c). Indeed, a trivial induc-
tion shows that, according to Proposition 4(c),

(A® B)" = A" ® B", (19.a)
and hence, by Proposition 3 and Remark 3,
I(A& B)"|| = [lA™] |1B"| (19.b)
for every nonnegative integer n. Thus if ||A™|| = ||A||™ and ||B™|| = || B||", then

I(A& B)"|| = [ A™[IB"|| = [AI*1BII" = (Al BI)" = |A & B|"

for every nonnegative integer n. O

Proposition 6. If A in B[H] and B in B[K] are subnormal, then so is their tensor
product A® B in H & K.

Proof. Let A and B be subnormal operators, and let N and M be the normal
extensions of A and B:

A X B W
o (A F) waow(B 1)
According to (14),

~ o (A X\ s, [(A®M X
N®M—<O Y>®M—< O Y,).

Now recall from (13) that the tensor product of a pair of operators is unitarily
equivalent commutative which together with (14) implies (16), and therefore,
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~ . s(B W\_[(A®B W

Hence
A®B W X7
N®M = ) 7' ,
o) Yy’

Since, by Proposition 5(d), N ® M is normal, and since normality is preserved
under unitary equivalence, it follows that A @ B is subnormal. |

Remark 7. The proof of Proposition 6, ensuring subnormality of the tensor prod-
uct of subnormal operators, followed a path that is different from that in the proof
of Proposition 5 (which relies on the concept of adjoint). The same happens with
other properties, not only with tensor products. For instance, it also happens with
direct sums of subnormal operators. Indeed, recall that (cf. [4, p. 43]), if

(é g) in BH®H] and (g ‘;/) in BK®K]
are normal, then X X* = A*A - AA* X*X = YY*—Y*Y, XY* = A*X; and
similarly, WW* = B*B — BB*, W*W = ZZ*— 7Z*7Z, 6K WZ* = B*W. This implies
that the operator below, which is made up of direct sums, also is normal:

A 0 X O
g g 8 VOV :(AgB )f,%VZV) in BHeKaH oK.
0O 0 0 X

Thus A @ B is subnormal whenever A and B are.

This can be generalized: If each

(Bk Wi

o Zk) in B[, @ KL

is normal, then the operator below is still normal:

<@kOBk %’;gf:) in B[@.Kr ® DK}

Thus a countable direct sum €, By of subnormal operators By, is subnormal.

Now suppose H is separable (so that, if it is infinite-dimensional, then we may
identify H = ¢?). According to Remark 5,

B
I®B = B | =,B in B@:L]

which is subnormal whenever B is. This can be trivially extended from the identity
to any diagonal operator (and hence to any diagonalizable operator). In particular,
this can be extended to any orthogonal projection. Indeed, any orthogonal projec-
tion P can be decomposed as P =1® O on H = R(P) ® N(P), where R(P) is
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the range of P and N (P) is the null space (kernel) of P, so that I = P|gp) and
O = P|x(p)- Therefore, by Remark 5 again,

B
B

P@B=(I30)®B= O :@kB@@EO:@kBQBO,
o)

which is subnormal whenever B is. Thus the above result extends naturally to
compact normal operators by the Spectral Theorem (according to Remark 5, and
so under the assumption that H is separable): Let N = @, Ar P; be the spectral
decomposition of a compact normal operator N on H, with {\z} = op(N) denoting
the point spectrum of N (i.e., the set of all eigenvalues of N), so that

N&B-= (@k)\k Pk) &B=@ M (P& B).

We may proceed formally to extend the above result from compact normal to plain
normal operators, again by the Spectral Theorem (and still according to Remark
5, thus under the assumption that H is separable): Let N = @/\ea(N) APy be
the spectral decomposition of a normal operator N on H (with ¢(/N) denoting the
spectrum of N) so that

NeB= (®)\€0’(N))\P>\) ®B= ®)\€U(N))\ (P)\ ® B>

Thus N ® B is subnormal whenever B is subnormal and N is normal. Therefore,
still under the assumption that H is separable, Remark 5 says that if the subnormal
A on H has a normal extension N = (é i,() acting on a separable space, then

~ - (A X\, (A®B X

is subnormal, and hence it has a normal extension, say

<N®B X,,) (A@B X/) o

y o Y
0o Y O v

which is a normal extension for A ® B too, and so A ® B is subnormal. This leads
to an alternate proof for Proposition 6 which is entirely based on Remark 5, and
hence restricted to the assumption that H is separable

Propositions 5 and 6 exhibited some classes of operators that, as it is well known,
are preserved when taking the tensor product. The converse to many of those state-
ments also holds true. If A ® B is either normal, quasinormal, subnormal or hypo-
normal, then so are both A and B (if they are nonzero) [16]. Moreover, this has been
verified for other classes of close to normal operators. For instance, p-hyponormality
[5], quasi-p-hyponormality, w-hyponormality and log-hyponormality [7], as well as
posinormality [12], are also preserved when taking tensor products. However, such
a preservation may fail for some important classes of operators. Indeed, there exist
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paranormal or spectraloid operators A and B for which A ® B is not paranormal
or spectraloid. That is, the properties of being either paranormal or spectraloid are
not preserved when taking tensor products [14, pp. 629,631].

Tensor products of operators comprise a most useful way for providing examples
and counterexamples (e.g., see [14, Section 6]). One of the main reasons for that
comes from the fact that 0(A ® B) = 0(A)o(B) — the spectrum of A ® B is the
product of the spectra of A and B [2] (see also [15]). In particular, the first example
of a strongly stable operator that is not similar to any contraction was obtained
in [8] by means of the tensor product S* & F on £? & (02 & (%) = (2(¢2 @ £2) of
the adjoint of the canonical unilateral shift S* on E?r with the Foguel operator F
on (2 @® L2 (see [9, Section 8.2]). For a discussion on stability for tensor products
of Hilbert space operators see [5] and [12].
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