REVERSED WAVELET FUNCTIONS AND SUBSPACES

NHAN LEVAN AND CARLOS S. KUBRUSLY

ABSTRACT. Let the operators D and T be the dilation-by-2 and translation-by-1 on $\mathcal{L}^2(\mathbb{R})$, which are both bilateral shifts of infinite multiplicity. If $\psi(\cdot)$ in $\mathcal{L}^2(\mathbb{R})$ is a wavelet, then $\{D^m \, T^n \psi(\cdot)\}_{(m,n) \in \mathbb{Z}^2}$ is an orthonormal basis for the Hilbert space $\mathcal{L}^2(\mathbb{R})$ but the reversed set $\{T^n D^m \psi(\cdot)\}_{(n,m) \in \mathbb{Z}^2}$ is not. In this paper we investigate the role of the reversed functions $T^n D^m \psi(\cdot)$ in wavelet theory. As a consequence, we exhibit an orthogonal decomposition of $\mathcal{L}^2(\mathbb{R})$ into T-reducing subspaces upon which part of the bilateral shift T consists of a countably infinite direct sum of bilateral shifts of multiplicity one, which mirrors a well-known decomposition of the bilateral shift D.

1. Introduction

In the following we will be dealing with the function space $\mathcal{L}^2(\mathbb{R})$, with the usual inner product and norm denoted by $\langle \; ; \; \rangle$ and $\| \; \|$, respectively, as well as with two unitary operators defined on that space, more precisely, two bilateral shifts of infinite multiplicity [3]: the dilation-by-2 operator D on $\mathcal{L}^2(\mathbb{R})$ defined by

$$Df(\cdot) = g(\cdot)$$
 with $g(\cdot) = \sqrt{2} f(2(\cdot))$,

and the translation-by-1 operator T on $\mathcal{L}^2(\mathbb{R})$ defined by

$$Tf(\cdot) = g(\cdot)$$
 with $g(\cdot) = f((\cdot) - 1)$.

Let \mathbb{Z} denote the set of all integers. A unit function $\psi(\cdot)$ in $\mathcal{L}^2(\mathbb{R})$ (i.e., a function $\psi(\cdot) \in \mathcal{L}^2(\mathbb{R})$ such that $\|\psi(\cdot)\| = 1$) is a wavelet if the unit functions $\psi_{m,n}(\cdot)$ — called wavelet functions — generated by $\psi(\cdot)$ as

$$\psi_{m,n}(\cdot) = \sqrt{2}^m \psi(2^m(\cdot) - n) = D^m T^n \psi(\cdot)$$
 for every $(m,n) \in \mathbb{Z}^2$

constitute an orthonormal basis for the Hilbert space $\mathcal{L}^2(\mathbb{R})$ [7, 10]. However, it was shown in [2] that there does not exist a unit function $\varphi(\cdot)$ such that the set of reversed functions $\{T^nD^m\varphi(\cdot)\}_{(n,m)\in\mathbb{Z}^2}$ forms an orthonormal basis for $\mathcal{L}^2(\mathbb{R})$.

In this paper we study the role played by the reversed functions $T^nD^m\psi(\cdot)$ — called reversed wavelet functions — where $\psi(\cdot)$ is a wavelet.

Date: June 7, 2006.

²⁰⁰⁰ Mathematics Subject Classification. 42C40, 47A15.

Keywords. Wavelet; Time-Shifts Generalized Multiresolution Analysis; Sub-Wavelet; Sub-Generalized Multiresolution Analysis; Dyadic-Scaling Reducing Subspaces.

2. Reversed Wavelets

Let D and T be the dilation-by-2 and the translation-by-1 operators on $\mathcal{L}^2(\mathbb{R})$. For each $(m,n) \in \mathbb{Z}^2$ consider the wavelet functions $\psi_{m,n}(\cdot) = D^m T^n \psi(\cdot)$ generated by a wavelet $\psi(\cdot)$ in $\mathcal{L}^2(\mathbb{R})$ so that $\{\psi_{m,n}(\cdot)\}_{(m,n)\in\mathbb{Z}^2}$ is an orthonormal basis for $\mathcal{L}^2(\mathbb{R})$. For each $m \in \mathbb{Z}$ define the *scale subspaces* as follows [10] (also see [1], [4], [5], [6], [8], [9] and [11]).

(1)
$$\mathcal{W}_m = D^m \mathcal{W}_0 = D^m \bigvee_{n \in \mathbb{Z}} T^n \psi(\cdot) = \bigvee_{n \in \mathbb{Z}} D^m T^n \psi(\cdot)$$
 with $\mathcal{W}_0 = \bigvee_{n \in \mathbb{Z}} T^n \psi(\cdot)$.

(The third identity holds since the D is unitary [6, Corollary 3].) $\{W_m\}_{m\in\mathbb{Z}}$ is an orthogonal subspace basis for $\mathcal{L}^2(\mathbb{R})$ in the sense that it is an orthogonal family of subspaces (i.e., of closed linear manifolds) of $\mathcal{L}^2(\mathbb{R})$ that span $\mathcal{L}^2(\mathbb{R})$,

$$\mathcal{L}^2(\mathbb{R}) = \bigvee_{m \in \mathbb{Z}} \mathcal{W}_m = \bigvee_{m \in \mathbb{Z}} D^m \mathcal{W}_0,$$

with $\bigvee_{m\in\mathbb{Z}} \mathcal{W}_m = (\operatorname{span} \bigcup_{m\in\mathbb{Z}} \mathcal{W}_m)^-$; the closure of the span of $\bigcup_{m\in\mathbb{Z}} \mathcal{W}_m$. The above expression can be equivalently written as an orthogonal direct sum,

$$\mathcal{L}^2(\mathbb{R}) = \bigoplus_{m \in \mathbb{Z}} \mathcal{W}_m = \bigoplus_{m \in \mathbb{Z}} D^m \mathcal{W}_0,$$

since $\{W_m\}_{m\in\mathbb{Z}}$ is an orthogonal family of subspaces. This characterize W_0 as a generating subspace for D and, together with the fact that

$$D^k \mathcal{W}_0 \perp D^{k'} \mathcal{W}_0$$
 whenever $k \neq k'$ in \mathbb{Z} ,

 \mathcal{W}_0 is also a wandering subspace for D. Thus \mathcal{W}_0 is a generating wandering subspace for D, confirming that D is a bilateral shift of infinite multiplicity because the multiplicity of D is the dimension of the generating wandering subspace \mathcal{W}_0 , which is not finite [3, 12]). Observe that, since D is unitary, each \mathcal{W}_m is also D-wandering $(D^k \mathcal{W}_m \perp D^{k'} \mathcal{W}_m)$ and generating $(\mathcal{L}^2(\mathbb{R}) = \bigvee_{k \in \mathbb{Z}} D^{k+m} \mathcal{W}_0 = \bigvee_{k \in \mathbb{Z}} D^k \mathcal{W}_m)$.

We now associate with a given wavelet $\psi(\cdot)$ in $\mathcal{L}^2(\mathbb{R})$ the reversed functions $r_{n,m}(\cdot)$ in $\mathcal{L}^2(\mathbb{R})$, which are defined by

$$r_{n,m}(\cdot) = T^n D^m \psi(\cdot)$$
 for every $(n,m) \in \mathbb{Z}^2$.

It is readily verified (see e.g., [6, Proposition 3]) that, for each $(n, m) \in \mathbb{Z}^2$,

(2)
$$T^n D^m = D^m T^{n(2^m)}$$
 or, equivalently, $D^{*m} T^n D^m = T^{n(2^m)}$

since D is unitary (i.e., $D^{-1} = D^*$). Therefore,

$$r_{n,m}(\cdot) = D^m T^{n(2^m)} \psi(\cdot)$$
 for every $(n,m) \in \mathbb{Z}^2$.

This, however, does not imply that $r_{n,m}(\cdot)$ is a wavelet function, unless m is non-negative, since in that case $n(2^m)$ are integers. Therefore, $r_{n,m}(\cdot)$ are actually the wavelet functions $\psi_{m,n(2^m)}(\cdot)$ for every $m \in \mathbb{N}_0$ and every $n \in \mathbb{Z}$, where \mathbb{N}_0 stands for the set of all nonnegative integers (i.e., $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$). That is,

(3)
$$r_{n,m}(\cdot) = D^m T^{n(2^m)} \psi(\cdot) = \psi_{m,n(2^m)}(\cdot)$$
 for every $(n,m) \in \mathbb{Z} \times \mathbb{N}_0$.

Definition 1. Let $\psi(\cdot)$ be a wavelet with respect to the bilateral shifts D and T. The orthonormal functions

$$r_{n,m}(\cdot) = T^n D^m \psi(\cdot)$$
 for every $(n,m) \in \mathbb{Z} \times \mathbb{N}_0$

are called reversed wavelet functions generated from the wavelet $\psi(\cdot)$.

To proceed, we define, for each $m \in \mathbb{N}_0$, the reversed scale subspaces

(4)
$$\mathcal{R}_m = \bigvee_{n \in \mathbb{Z}} T^n D^m \psi(\cdot) = \bigvee_{n \in \mathbb{Z}} D^m T^{n(2^m)} \psi(\cdot) = D^m \bigvee_{n \in \mathbb{Z}} T^{n(2^m)} \psi(\cdot),$$

where the first identity defines each \mathcal{R}_n while the second and third follow from (2) and the fact that D is unitary [6, Corollary 3], respectively. Thus it is plain from (1) that \mathcal{R}_m is a subspace of the scale subspace \mathcal{W}_m :

$$\mathcal{R}_0 = \mathcal{W}_0$$
 and $\mathcal{R}_m \subset \mathcal{W}_m$ for every $m \in \mathbb{N}$

so that $\{\mathcal{R}_m\}_{m\in\mathbb{N}_0}$ is a sequence of orthogonal subspaces,

$$\mathcal{R}_m \perp \mathcal{R}_{m'}$$
 whenever $m \neq m'$.

Since $\bigvee_{n\in\mathbb{Z}} T^{n(2^m)}\psi(\cdot) \subset \mathcal{W}_0$ for each $m\in\mathbb{N}_0$, set

$$\mathcal{W}_{0,(m)} = \bigvee_{n \in \mathbb{Z}} T^{n(2^m)} \psi(\cdot) \subset \mathcal{W}_0$$

for each $m \in \mathbb{N}_0$ so that \mathcal{R}_m can be expressed as

$$\mathcal{R}_m = D^m \mathcal{W}_{0,(m)}$$
 for each $m \in \mathbb{N}_0$.

Next we show that each $W_{0,(m)}$ is also *D*-wandering. Actually, we shall show more than this. For each pair of integers $m \in \mathbb{N}_0$ and $k \in \mathbb{Z}$ define the subspaces

(5)
$$W_{k,(m)} = D^k W_{0,(m)} = D^k \bigvee_{n \in \mathbb{Z}} T^{n(2^m)} \psi(\cdot) = \bigvee_{n \in \mathbb{Z}} D^k T^{n(2^m)} \psi(\cdot).$$

Note that

$$\mathcal{W}_{0,(0)} = \mathcal{R}_0 = \mathcal{W}_0$$
 and $\mathcal{W}_{m,(m)} = \mathcal{R}_m$ for each $m \in \mathbb{N}_0$.

Lemma 1. Any pair of subspaces with distinct indices k taken from the family $\{W_{k,(m)}\}_{(k,m)\in\mathbb{Z}\times\mathbb{N}_0}$ is an orthogonal pair. For each $m\in\mathbb{N}_0$, $\{W_{k,(m)}\}_{k\in\mathbb{Z}}$ is a subfamily of D-wandering subspaces included in the family $\{W_k\}_{k\in\mathbb{Z}}$ of D-wandering scale subspaces. Moreover,

- (i) $\mathcal{W}_{k,(m+1)} \subset \mathcal{W}_{k,(m)}$ for every $(k,m) \in \mathbb{Z} \times \mathbb{N}_0$,
- (ii) $\bigcap_{m \in \mathbb{N}_0} \mathcal{W}_{k,(m)} = \operatorname{span} \{ D^k \psi(\cdot) \}$ for each $k \in \mathbb{Z}$,
- (iii) $\bigcup_{m \in \mathbb{N}_0} \mathcal{W}_{k,(m)} = \mathcal{W}_k$ for each $k \in \mathbb{Z}$.

Proof. Since $\{W_k\}_{k\in\mathbb{Z}}$ are mutually orthogonal and since

$$\mathcal{W}_{k,(m)} \subset \mathcal{W}_k$$
 for every $(k,m) \in \mathbb{Z} \times \mathbb{N}_0$,

it follows that

 $\mathcal{W}_{k,(m)} \perp \mathcal{W}_{k',(m')}$ whenever $k \neq k'$ in \mathbb{Z} for every $(m, m') \in \mathbb{N}_0^2$. In particular, $\mathcal{W}_{k,(m)} \perp \mathcal{W}_{k',(m)}$ if $k \neq k'$ for any m so that

$$D^k \mathcal{W}_{0,(m)} \perp D^{k'} \mathcal{W}_{0,(m)}$$
 whenever $k \neq k'$ in \mathbb{Z} for each $m \in \mathbb{N}_0$.

Therefore the subspaces $\{W_{0,(m)}\}_{m\in\mathbb{N}_0}$ are indeed *D*-wandering. Hence, so are the subspaces $\{W_{k,(m)}\}_{m\in\mathbb{N}_0}$ for every $k\in\mathbb{Z}$. Now observe that $n(2^{m+1})=2n(2^m)$ for any integers $m\in\mathbb{N}_0$ and $n\in\mathbb{Z}$. Thus we have from (5) with k=0 that

$$\mathcal{W}_{0,(m+1)} = \bigvee_{n \in \mathbb{Z}} T^{2n(2^m)} \psi(\cdot)$$
 for each $m \in \mathbb{N}_0$

so that $\mathcal{W}_{0,(m+1)} \subset \mathcal{W}_{0,(m)}$ for every $m \in \mathbb{N}_0$. Similarly, in general,

$$W_{k,(m+1)} \subset W_{k,(m)}$$
 for every $(k,m) \in \mathbb{Z} \times \mathbb{N}_0$,

which shows (i). To verify (ii) take an arbitrary $\psi(\cdot) \in \mathcal{L}^2(\mathbb{R})$. Note that

$$\operatorname{span} \bigcup_{n \in \mathbb{Z}} \left\{ T^{n(2^m)} \psi(\cdot) \right\} = \operatorname{span} \left\{ \left\{ \psi(\cdot) \right\} \cup \bigcup_{n \in \mathbb{Z} \setminus \{0\}} \left\{ T^{n(2^m)} \psi(\cdot) \right\} \right\}$$

for every $m \in \mathbb{N}_0$, and hence

$$\operatorname{span}\left\{\psi(\cdot)\right\} \;\subseteq\; \left(\operatorname{span}\;\bigcup_{n\in\mathbb{Z}}\{T^{n(2^m)}\psi(\cdot)\}\right)^- = \bigvee_{n\in\mathbb{Z}}T^{n(2^m)}\psi(\cdot) \quad \text{ for all } \quad m\in\mathbb{N}_0.$$

Moreover, if a nonzero $\varphi(\cdot)$ lies in span $\bigcup_{n\in\mathbb{Z}\setminus\{0\}}\{T^{n(2^m)}\psi(\cdot)\}$ for all $m\in\mathbb{N}_0$ then $\varphi\not\in \operatorname{span}\{T^{n(2^m)}\psi(\cdot)\}$ for any pair of integers $n\in\mathbb{Z}\setminus\{0\}$ and $m\in\mathbb{N}_0$, which is a contradiction. (Reason: $T^{n(2^m)}\psi(\cdot)=D^{-m}r_{n,m}(\cdot)$ for each $(n,m)\in\mathbb{Z}\times\mathbb{N}_0$ by (3) so that $\{T^{n(2^m)}\psi(\cdot)\}_{(n,m)\in\mathbb{Z}\times\mathbb{N}_0}$ is an orthonormal set by Definition 1 because D^{-m} is unitary for every $m\in\mathbb{Z}$). Thus

$$\operatorname{span} \bigcup_{n \in \mathbb{Z} \setminus \{0\}} \{ T^{n(2^m)} \psi(\cdot) \} = \{0\}.$$

Therefore,

$$\bigcap_{m\in\mathbb{N}_0}\bigvee_{n\in\mathbb{Z}}T^{n(2^m)}\psi(\cdot)=\bigcap_{m\in\mathbb{N}_0}\left(\operatorname{span}\bigcup_{n\in\mathbb{Z}}\left\{T^{n(2^m)}\psi(\cdot)\right\}\right)^-=\operatorname{span}\left\{\psi(\cdot)\right\}.$$

Since each D^k is invertible, it follows from (5) that

$$\bigcap_{m\in\mathbb{N}_0}\mathcal{W}_{k,(m)}=\bigcap_{m\in\mathbb{N}_0}D^k\bigvee_{n\in\mathbb{Z}}T^{n(2^m)}\psi(\cdot)=D^k\bigcap_{m\in\mathbb{N}_0}\bigvee_{n\in\mathbb{Z}}T^{n(2^m)}\psi(\cdot)=D^k\operatorname{span}\big\{\psi(\cdot)\big\}.$$

for every $k \in \mathbb{Z}$, which proves (ii). Furthermore, according to (1) and (5),

$$\mathcal{W}_{k,(m)} \subset \mathcal{W}_{k,(0)} = \mathcal{W}_k$$
 for every $(k,m) \in \mathbb{Z} \times \mathbb{N}_0$

so that (iii) holds true.

3. Reversed Time-Shifts

We now turn to the time-shift subspaces analog of the scale subspaces \mathcal{W}_m [8]:

(6)
$$\mathcal{H}_n = \bigvee_{m \in \mathbb{Z}} D^m T^n \psi(\cdot) \quad \text{for every} \quad n \in \mathbb{Z},$$

so that $\mathcal{H}_0 = \bigvee_{m \in \mathbb{Z}} D^m \psi(\cdot)$. The family $\{\mathcal{H}_n\}_{n \in \mathbb{Z}}$ also constitute an orthogonal subspace basis for $\mathcal{L}^2(\mathbb{R})$ [8]. Then, as before, the reversed time-shift subspaces are defined, for every $n \in \mathbb{Z}$, by

(7)
$$S_n = T^n \bigvee_{m \in \mathbb{N}_0} D^m \psi(\cdot) = \bigvee_{m \in \mathbb{N}_0} T^n D^m \psi(\cdot) = \bigvee_{m \in \mathbb{N}_0} D^m T^{n(2^m)} \psi(\cdot).$$

Again, the first identity defines each S_n , while the second follows from the fact that T is also unitary [6, Corollary 3] and the third follows from (2). Therefore

$$S_n = T^n S_0$$
 for every $n \in \mathbb{Z}$, where $S_0 = \bigvee_{m \in \mathbb{N}_0} D^m \psi(\cdot) \subset \mathcal{H}_0$.

Lemma 2. The reversed time-shift subspaces S_n generated by the reversed wavelet functions $r_{n,m}(\cdot) = T^n D^m \psi(\cdot)$ for each $(n,m) \in \mathbb{Z} \times \mathbb{N}_0$ are mutually orthogonal. Moreover, S_0 is a wandering subspace for the translation-by-1 operator T.

Proof. Recall that $\{r_{n,m}(\cdot)\}_{(n,m)\in\mathbb{Z}\times\mathbb{N}_0}$ is a double indexed orthonormal set of functions (Definition 1) so that $r_{n,m}(\cdot)\perp r_{n',m'}(\cdot)$ whenever $(n,m)\neq (n',m')$; in particular, $r_{n,m}(\cdot)\perp r_{n',m}(\cdot)$ for every $m\in\mathbb{N}_0$ whenever $n\neq n'$ in \mathbb{Z} . Thus we get from (7) that $\{S_n\}_{n\in\mathbb{Z}}$ is an orthogonal family of subspaces so that

$$T^n \mathcal{S}_0 = \mathcal{S}_n = \bigvee_{m \in \mathbb{N}_0} r_{n,m}(\cdot) \perp \bigvee_{m \in \mathbb{N}_0} r_{n',m}(\cdot) = \mathcal{S}_{n'} = T^{n'} \mathcal{S}_0 \quad \text{whenever} \quad n \neq n',$$

and hence S_0 is a wandering subspace for T.

As we saw above, if $\psi(\cdot)$ is a wavelet in $\mathcal{L}^2(\mathbb{R})$ with respect to the bilateral shifts D and T on $\mathcal{L}^2(\mathbb{R})$, then $\{D^m T^n \psi(\cdot)\}_{(m,n)\in\mathbb{Z}\times\mathbb{Z}}$ is a double indexed orthonormal basis for the Hilbert space $\mathcal{L}^2(\mathbb{R})$ so that, according to (1) and (6),

$$\mathcal{L}^{2}(\mathbb{R}) = \bigvee_{(m,n)\in\mathbb{Z}^{2}} D^{m} T^{n} \psi(\cdot) = \bigvee_{m\in\mathbb{Z}} \mathcal{W}_{m} = \bigvee_{n\in\mathbb{Z}} \mathcal{H}_{n}$$

and, since $\{W_m\}_{m\in\mathbb{Z}}$ and $\{\mathcal{H}_n\}_{n\in\mathbb{Z}}$ are both families of orthogonal subspaces of $\mathcal{L}^2(\mathbb{R})$, this can be rewritten as orthogonal direct sums [8],

$$\mathcal{L}^2(\mathbb{R}) = \bigoplus_{m \in \mathbb{Z}} \mathcal{W}_m = \bigoplus_{n \in \mathbb{Z}} \mathcal{H}_n.$$

Now consider the following subspace of $\mathcal{L}^2(\mathbb{R})$.

$$\mathcal{M} = \bigvee_{(n,m)\in\mathbb{Z}\times\mathbb{N}_0} T^n D^m \psi(\cdot).$$

Since $\{T^nD^m\psi\}_{(n,m)\in\mathbb{N}_0\times\mathbb{Z}}$ also is an orthonormal set (Definition 1), it follows that it is an orthonormal basis for the Hilbert space \mathcal{M} . Put, as in (4) and (7),

$$\mathcal{R}_m = \bigvee_{n \in \mathbb{Z}} T^n D^m \psi(\cdot)$$
 and $\mathcal{S}_n = \bigvee_{m \in \mathbb{N}_0} T^n D^m \psi(\cdot)$.

Theorem 1 in [6] exhibited the following decomposition of the bilateral shift D. If $\psi(\cdot)$ is a wavelet in $\mathcal{L}^2(\mathbb{R})$, then $\{\mathcal{H}_n\}_{n\in\mathbb{Z}}$ is a family of pairwise orthogonal subspaces of $\mathcal{L}^2(\mathbb{R})$ that spans $\mathcal{L}^2(\mathbb{R})$:

$$\mathcal{L}^2(\mathbb{R}) = \bigoplus_{n \in \mathbb{Z}} \mathcal{H}_n.$$

Moreover, each \mathcal{H}_n reduces D on $\mathcal{L}^2(\mathbb{R})$ so that

$$D = \bigoplus_{n \in \mathbb{Z}} D|_{\mathcal{H}_n},$$

with $D|_{\mathcal{H}_n}$ being a bilateral shift of multiplicity one acting on each subspace \mathcal{H}_n .

We establish next its counterpart, by exhibiting a similar decomposition of the bilateral shift T.

Theorem 1. If $\psi(\cdot)$ is a wavelet in $\mathcal{L}^2(\mathbb{R})$, then $\{\mathcal{R}_m\}_{m\in\mathbb{N}_0}$ and $\{\mathcal{S}_n\}_{n\in\mathbb{Z}}$ are families of pairwise orthogonal subspaces of \mathcal{M} and both span \mathcal{M} :

$$\mathcal{M} = \bigoplus_{m \in \mathbb{N}_0} \mathcal{R}_m = \bigoplus_{n \in \mathbb{Z}} \mathcal{S}_n.$$

Moreover, \mathcal{M} reduces the bilateral shift T on $\mathcal{L}^2(\mathbb{R})$, and so does each \mathcal{R}_m . Hence

$$T = \bigoplus_{m \in \mathbb{N}_0} T|_{\mathcal{R}_m} \oplus T|_{\mathcal{M}^{\perp}},$$

with each $T|_{\mathcal{R}_m}$ being a bilateral shift of multiplicity one acting on each subspace \mathcal{R}_m , and $T|_{\mathcal{M}^{\perp}}$ is a unitary operator acting on \mathcal{M}^{\perp} .

Proof. By unconditional convergence of the Fourier series we may write either

$$\mathcal{M} = \bigvee_{m \in \mathbb{N}_0} \bigvee_{n \in \mathbb{Z}} T^n D^m \psi(\cdot) = \bigvee_{m \in \mathbb{N}_0} \mathcal{R}_m \quad \text{or} \quad \mathcal{M} = \bigvee_{n \in \mathbb{Z}} \bigvee_{m \in \mathbb{N}_0} T^n D^m \psi(\cdot) = \bigvee_{n \in \mathbb{Z}} \mathcal{S}_n.$$

Since $\mathcal{R}_m \perp \mathcal{R}_{m'}$ for $m' \neq m$ $(m' \in \mathbb{N}_0)$ and $\mathcal{S}_n \perp \mathcal{S}_{n'}$ for $n' \neq n$ $(n' \in \mathbb{Z})$ (according to Lemmas 1 and 2), we get

$$\mathcal{M} = \bigoplus_{m \in \mathbb{N}_0} \mathcal{R}_m = \bigoplus_{n \in \mathbb{Z}} \mathcal{S}_n.$$

Moreover, since $S_n = T^n S_0$ for every $n \in \mathbb{Z}$,

$$\mathcal{M} = \bigvee_{n \in \mathbb{Z}} \mathcal{S}_n = \bigvee_{n \in \mathbb{Z}} T^n \mathcal{S}_0$$

is invariant for both T and T^* . Indeed, T is unitary so that $T^* = T^{-1}$ and

$$T^{\pm 1}(\mathcal{M}) \,=\, T^{\pm 1} \bigvee_{n \in \mathbb{Z}} T^n \mathcal{S}_0 \,=\, \bigvee_{n \in \mathbb{Z}} T^{\pm 1} T^n \mathcal{S}_0 \,=\, \bigvee_{n \in \mathbb{Z}} T^n \mathcal{S}_0 \,=\, \mathcal{M}.$$

This means that \mathcal{M} reduces T. Since direct summands of a unitary operator are again unitary operators, it follows that $T|_{\mathcal{M}}$ is unitary, as well as $T|_{\mathcal{M}^{\perp}}$, where $\mathcal{M}^{\perp} = \mathcal{L}^2(\mathbb{R}) \ominus \mathcal{M}$ is the orthogonal complement of \mathcal{M} . The same argument (T is unitary) shows that each

$$\mathcal{R}_m = \bigvee_{n \in \mathbb{Z}} T^n D^m \psi(\cdot)$$

also is T-reducing. Therefore, since

$$\mathcal{M} = igoplus_{m \in \mathbb{N}_0} \mathcal{R}_m,$$

it follows that

$$T|_{\mathcal{M}} = \bigoplus_{m \in \mathbb{N}_0} T|_{\mathcal{R}_m},$$

where each $T|_{\mathcal{R}_m}$ is unitary. Summing up: with respect to the decomposition

$$\mathcal{L}^2(\mathbb{R}) = \mathcal{M} \oplus \mathcal{M}^\perp$$

the bilateral shift T on $\mathcal{L}^2(\mathbb{R})$ can be written as

$$T = T|_{\mathcal{M}} \oplus T|_{\mathcal{M}^{\perp}} = \bigoplus_{m \in \mathbb{N}_0} T|_{\mathcal{R}_m} \oplus T|_{\mathcal{M}^{\perp}}.$$

It remains to check whether or not these unitary direct summands of the bilateral shift T are bilateral shifts themselves. For each $(n, m) \in \mathbb{Z} \times \mathbb{N}_0$ put

$$r_{n,m}(\cdot) = T^n D^m \psi(\cdot)$$

so that $\{r_{n,m}(\cdot)\}_{(n,m)\in\mathbb{Z}\times\mathbb{N}_0}$ as in Definition 1 is an orthonormal basis for

$$\mathcal{M} = \bigvee_{(n,m)\in\mathbb{Z}\times\mathbb{N}_0} r_{n,m}(\cdot).$$

Similarly, for each $m \in \mathbb{N}_0$, $\{r_{n,m}(\cdot)\}_{n \in \mathbb{Z}}$ is an orthonormal basis for

$$\mathcal{R}_m = \bigvee_{n \in \mathbb{Z}} r_{n,m}(\cdot).$$

Take an arbitrary $m \in \mathbb{Z}$ and observe that

$$T|_{\mathcal{R}_m} r_{n,m}(\cdot) = T^{n+1} D^m \psi(\cdot) = r_{n+1,m}(\cdot).$$

Hence each $T|_{\mathcal{R}_m}$ shifts the orthonormal basis $\{r_{n,m}(\cdot)\}_{n\in\mathbb{Z}}$ for each Hilbert space \mathcal{R}_m , and so each $T|_{\mathcal{R}_m}$ is a bilateral shift of multiplicity one acting on \mathcal{R}_m .

Remark 1. Observe that, according to (4) and (5),

$$\mathcal{M} = \bigvee_{m \in \mathbb{N}_0} \mathcal{R}_m = \bigvee_{m \in \mathbb{N}_0} \mathcal{W}_{m,(m)} = \bigvee_{m \in \mathbb{N}_0} D^m \mathcal{W}_{0,(m)}.$$

Thus \mathcal{M} is not necessarily D invariant because $\mathcal{W}_{0,(m)}$ depends on m. However, since D is unitary, it follows from Lemma 1(i) that

$$D(\mathcal{M}) = \bigvee_{m \in \mathbb{N}_0} D^{m+1} \mathcal{W}_{0,(m)} \subseteq D(\mathcal{W}_0) \cup \bigvee_{m \in \mathbb{N}} D^{m+1} \mathcal{W}_{0,(m)}$$

$$= D(\mathcal{W}_0) \cup D^2 \bigvee_{m \in \mathbb{N}} D^{m-1} \mathcal{W}_{0,(m)} \subset D(\mathcal{W}_0) \cup D^2 \bigvee_{m \in \mathbb{N}} D^{m-1} \mathcal{W}_{0,(m-1)}$$

$$\subseteq D(\mathcal{W}_0) \cup D^2 \bigvee_{m \in \mathbb{N}_0} D^m \mathcal{W}_{0,(m)} = D(\mathcal{W}_0) \cup D^2(\mathcal{M}),$$

and hence

$$\mathcal{M} \subset \mathcal{W}_0 \cup D(\mathcal{M}).$$

Even though the reversed wavelets do not span the space $\mathcal{L}^2(\mathbb{R})$, the subspace \mathcal{M} spanned by them can be useful for studying details on \mathcal{M} since the translation-by-1 operator T behaves very simply on the subspaces \mathcal{R}_m of \mathcal{M} .

Remark 2. It is worth noticing that the results in this paper can be framed in an abstract approach by replacing the concrete function space $\mathcal{L}^2(\mathbb{R})$ with an arbitrary infinite-dimensional separable Hilbert space \mathcal{H} , and assuming that D and T are noncommuting bilateral shifts of infinite multiplicity acting on \mathcal{H} and satisfying relation (2) or, equivalently, such that $DT^2 = TD$ — see [6, Proposition 3].

References

- 1. I. Antoniou and K. Gustafson, Wavelets and stochastic processes, Math. Comput. Simulation 49 (1999), 81–104.
- X. Dai and D.R. Larson, Wandering Vectors for Unitary Systems and Orthogonal Wavelets, Mem. Amer. Math. Soc. Vol. 134, no. 640, Providence, 1998.
- 3. P.R. Halmos, Shifts on Hilbert spaces, J. Reine Angew. Math. 208 (1961), 102-112.
- 4. T.N.T. Goodman, S.L. Lee and W.S. Tang, Wavelets in wandering subspaces, Trans. Amer. Math. Soc. 338 (1993), 639–654.
- C.S. Kubrusly and N. Levan, On generating wandering subspaces for unitary operators, Adv. Math. Sci. Appl. 14 (2004), 41–48.
- C.S. Kubrusly and N. Levan, Abstract wavelets generated by Hilbert space shift operators, Adv. Math. Sci. Appl. 16 (2006), 643–660.
- P.-G. Lemarié and Y. Meyer, Ondelettes et bases hilbertiennes, Rev. Mat. Iberoamericana, 2 (1986), 1–18.
- 8. N. Levan and C.S. Kubrusly, A wavelet "time-shift-detail" decomposition, Math. Comput. Simulation 63 (2003), 73–78.
- N. Levan and C.S. Kubrusly, Time-shifts generalized multiresolution analysis over dyadic-scaling reducing subspaces, Int. J. Wavelets Multiresolut. Inf. Process. 2 (2004), 237–248.
- 10. S.G. Mallat, Multiresolution approximations and wavelet orthonormal bases of $L^2(\mathbb{R})$, Trans. Amer. Math. Soc. **315** (1989), 69–87.
- J.B. Robertson, On wandering subspaces for unitary operators, Proc. Amer. Math. Soc. 16 (1965), 233–236.
- B. Sz.-Nagy and C. Foias, Harmonic Analysis of Operators on Hilbert Space, North-Holland, Amsterdam, 1970.

Department of Electrical Engineering, University of California in Los Angeles, Los Angeles, CA 90024-1594, USA

E-mail address: levan@ee.ucla.edu

Catholic University of Rio de Janeiro, 22453-900, Rio de Janeiro, RJ, Brazil $E\text{-}mail\ address:}$ carlos@ele.puc-rio.br