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REVERSED WAVELET FUNCTIONS AND SUBSPACES

NHAN LEVAN AND CARLOS S. KUBRUSLY

ABSTRACT. Let the operators D and T be the dilation-by-2 and translation-
by-1 on £2(R), which are both bilateral shifts of infinite multiplicity. If ¢(-) in
£2(R) is a wavelet, then {D™ T™P ()} (m,n)ez2 is an orthonormal basis for the
Hilbert space £2(R) but the reversed set {T" D™ ()} (n,m)ez2 s not. In this
paper we investigate the role of the reversed functions T D™4(-) in wavelet
theory. As a consequence, we exhibit an orthogonal decomposition of £2 (R)
into T-reducing subspaces upon which part of the bilateral shift T' consists
of a countably infinite direct sum of bilateral shifts of multiplicity one, which
mirrors a well-known decomposition of the bilateral shift D.

1. INTRODUCTION

In the following we will be dealing with the function space £?(R), with the usual
inner product and norm denoted by ( ; ) and | ||, respectively, as well as with
two unitary operators defined on that space, more precisely, two bilateral shifts of
infinite multiplicity [3]: the dilation-by-2 operator D on £2(R) defined by

Df(-)=g(-) with g¢(-)=V2[(2(-)),
and the translation-by-1 operator T on £2(R) defined by

Tf()=g() with g()=f(()-1).

Let Z denote the set of all integers. A unit function ¥(-) in £L2(R) (i.e., a function
¥(-) € L2(R) such that [|1(-)]| = 1) is a wavelet if the unit functions ¥, ,(-)
called wavelet functions — generated by 9(-) as

Ymn() = ﬁmw(2m(~) —n) =D"T"(-) forevery (m,n) € 72

constitute an orthonormal basis for the Hilbert space £2(R) [7, 10]. However, it
was shown in [2] that there does not exist a unit function ¢(-) such that the set of
reversed functions {T™D™p(-)}(n,m)ezz forms an orthonormal basis for £2(R).

In this paper we study the role played by the reversed functions T™"D™(-) —
called reversed wavelet functions — where 1(-) is a wavelet.
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2. REVERSED WAVELETS

Let D and T be the dilation-by-2 and the translation-by-1 operators on £?(R).
For each (m,n) € Z?* consider the wavelet functions ¢, () = D™ T™)(-) generated
by a wavelet ¢(-) in £2(R) so that {¢m n(-)}(m,n)ezz is an orthonormal basis for
L2(R). For each m € Z define the scale subspaces as follows [10] (also see [1], [4],
[5], [6], [8], [9] and [11]).

(1) Wi =D"Wo=D"\/ T™()=\/ D" T"() with Wo=\/ T"%().
nez nez nez

(The third identity holds since the D is unitary [6, Corollary 3].) {Wi}mez is an
orthogonal subspace basis for £2(RR) in the sense that it is an orthogonal family of
subspaces (i.e., of closed linear manifolds) of £2(R) that span £2(R),

L2R) = \/ Wn = \/ D™W,,

meZ meZ

with \/,,,c; Wi = (span U,,cz, W) ; the closure of the span of J,,,c; Win. The
above expression can be equivalently written as an orthogonal direct sum,

LX(R) = P W = E D" W,
meZ me7Z

since {Wn bmez is an orthogonal family of subspaces. This characterize Wy as a
generating subspace for D and, together with the fact that

D*W, L D¥W, whenever k # k' inZ,

W is also a wandering subspace for D. Thus W, is a generating wandering subspace
for D, confirming that D is a bilateral shift of infinite multiplicity because the
multiplicity of D is the dimension of the generating wandering subspace Wy, which
is not finite [3, 12]). Observe that, since D is unitary, each W,, is also D-wandering
(D*W,,, L D¥W,,) and generating (£L2(R) = \/ ;e D*F™Wo = V ey D"Wi,).

We now associate with a given wavelet 1 (-) in L2(R) the reversed functions
Tnm(-) in L2(R), which are defined by

Trm(-) = T"D™p(-)  for every (n,m) € Z2.
It is readily verified (see e.g., [6, Proposition 3]) that, for each (n,m) € Z2,
(2) T"D™ = D™ T™?")  or, equivalently, D*™T"D™ =T™2")
since D is unitary (i.e., D~! = D*). Therefore,
Fnm(-) = DT y(.)  for every  (n,m) € 72

This, however, does not imply that r,, ,,,(-) is a wavelet function, unless m is non-
negative, since in that case n(2™) are integers. Therefore, 7, ,,(-) are actually the
wavelet functions vy, 2= )() for every m € Ng and every n € Z, where Ny stands
for the set of all nonnegative integers (i.e., No = NU {0}). That is,

(3) Tn,m(') =D" Tn(2m),¢]() = wm,n(Z’")(') for every (TL, m) € Z X Ny.
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Definition 1. Let ¢(:) be a wavelet with respect to the bilateral shifts D and T
The orthonormal functions

Tom(-) =T"D™Y(-)  for every (n,m) € Z x Ny

are called reversed wavelet functions generated from the wavelet i (-).

To proceed, we define, for each m € Ny, the reversed scale subspaces

4 Ry =\ TD7e() = \/ DT () = D™/ T (),
nez nez nez

where the first identity defines each R,, while the second and third follow from (2)
and the fact that D is unitary [6, Corollary 3], respectively. Thus it is plain from
(1) that R,, is a subspace of the scale subspace Wp,:

Ro =Wo and Rm C Wy, forevery meN
so that {R, }men, is a sequence of orthogonal subspaces,

R L Ry whenever m #m'.

Since \/,,cz T )4(-) € Wy for each m € N, set
Woamy =\ T"w() € Wo
nez
for each m € Ny so that R,, can be expressed as

Rm = D" Wy (m) foreach m € Np.

Next we show that each Wy () is also D-wandering. Actually, we shall show
more than this. For each pair of integers m € Ny and k € Z define the subspaces

(5) Wi m) = DEWo (my = DF\/ Ty () = \/ DF T ().
neZ nez
Note that

Wo,0) = Ro = Wo and Win,(m) = Rm  for each  m € No.

Lemma 1. Any pair of subspaces with distinct indices k taken from the family
{We,(m) } (k,m)ezxn, 18 an orthogonal pair. For each m € No, {Wy (m)}rez is a sub-
family of D-wandering subspaces included in the family {Wk}rez of D-wandering
scale subspaces. Moreover,

(i) Wh,(m+1) C Wi,m) forevery (k,m) e Z x N,
(i) Npeny We,(m) = span {D*y(-)}  for each k€ Z,
(i) Upeng Whi(m) = We  for each k€ Z.

Proof. Since {W }rez are mutually orthogonal and since

Wi, (m) C Wi for every  (k,m) € Z x Ny,
it follows that

Wi,(m) L Wir (my  whenever k # k" in Z  for every  (m, m') € N2
In particular, Wy (m) L Wi (m) if k # k' for any m so that
DF Wo,(m) L DkIWO,(m) whenever k # k' in Z  for each m € Np.
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Therefore the subspaces {Wp () }men, are indeed D-wandering. Hence, so are the
subspaces {Wj, (m) }men, for every k € Z. Now observe that n(2™*!) = 2n(2™) for
any integers m € Ny and n € Z. Thus we have from (5) with k£ = 0 that

Wo,(m+1) = \/ T2n(2m)w(~) for each m €Ny
neZ
so that Wy, (m+1) C Wo,(m) for every m € Ny. Similarly, in general,
We,(m+1) C Wi, (m) for every  (k,m) € Z x Ny,
which shows (i). To verify (ii) take an arbitrary ¥(-) € £L2(R). Note that
span |J {7 ()} = span {{v()} U J {77 w()}}
nez nez\{0}

for every m € Ny, and hence

span {¢(-)} C (span U{T"(zm)w(-)})_ = \/ T )yp(-)  forall  m € Ny.

neZ neZ
Moreover, if a nonzero ¢(-) lies in span U, ¢z 1y {T™*")9(:)} for all m € Ny then

¢ & span {T™2")y(-)} for any pair of integers n € Z\{0} and m € Ny, which is a
contradiction. (Reason: T™2™)4(-) = D=™r, () for each (n,m) € Z x Ny by (3)
so that {T”(Z"L)w(-)}(n’m)ezmo is an orthonormal set by Definition 1 because D~™
is unitary for every m € Z). Thus

span U {T"(2m)w(~)}:{0}.

neZ\{0}
Therefore,
N V200 = () (san (T ) = span ()
meNg ne€Z meNo ne€z

Since each D is invertible, it follows from (5) that
N Wi = () D\ T°@0() = DF () \/ T () = Dspan {()}.
meENy meENy neZ meNy n€Z
for every k € Z, which proves (ii). Furthermore, according to (1) and (5),
ka(m) C ka(o) =Wy forevery (k,m)€Z xNy
so that (iii) holds true. |

3. REVERSED TIME-SHIFTS
We now turn to the time-shift subspaces analog of the scale subspaces W, [8]:
(6) Hy = \/ D™ T"(-) forevery né€Z,
meEZ

so that Ho = V/,,c;, D™ (). The family {H,}nez also constitute an orthogonal
subspace basis for £2(R) [8]. Then, as before, the reversed time-shift subspaces are
defined, for every n € Z, by

() Sa=1"\ D) =\ T"D™y() = \/ DTEY().

meENp meENg meENg
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Again, the first identity defines each S,,, while the second follows from the fact that
T is also unitary [6, Corollary 3] and the third follows from (2). Therefore

S,=T"Sy forevery neZ, where So = \/ D™y(-) C Ho.

m&ENp

Lemma 2. The reversed time-shift subspaces S,, generated by the reversed wavelet
functions vy m(-) = T™"D™(-) for each (n,m) € Z x Ny are mutually orthogonal.
Moreover, Sy is a wandering subspace for the translation-by-1 operator T .

Proof. Recall that {7y m(-)} (n,m)ezxN, is a double indexed orthonormal set of func-
tions (Definition 1) so that 7, () L 7p/ ms(-) whenever (n,m) # (n’,m’); in par-
ticular, 7 m(-) L 7 m () for every m € Ng whenever n # n' in Z. Thus we get
from (7) that {S,}nez is an orthogonal family of subspaces so that

T"Sy =S, = \/ Tnm() L \/ T/ m() =S = T”'SO whenever n # n/,
meENy meENy
and hence Sy is a wandering subspace for 7. O
As we saw above, if ¥(-) is a wavelet in £2(R) with respect to the bilateral shifts

D and T on L*(R), then {D™ T"(-)}(m n)ezxz is a double indexed orthonormal
basis for the Hilbert space £2(R) so that, according to (1) and (6),

LR = \/ DY) =\ Wi =\ Ha
(m,n)€Z? meZ nez

and, since {Wy,tmez and {H,, }nez are both families of orthogonal subspaces of
L2(RR), this can be rewritten as orthogonal direct sums [8],

LY R) = P Wi = P Ha.
meZ ne”L

Now consider the following subspace of £2(R).

M = \/ T"D™y().

(n,m)€ZxNg
Since {T" D™} (n,m)en, xz also is an orthonormal set (Definition 1), it follows that
it is an orthonormal basis for the Hilbert space M. Put, as in (4) and (7),
Rm=\/T"D™y() and Sp= \/ T"D"y().

nez m&ENp

Theorem 1 in [6] exhibited the following decomposition of the bilateral shift D.
If Y(-) is a wavelet in L2(R), then {H,}tnez is a family of pairwise orthogonal
subspaces of L2(R) that spans L2(R):

L*(R) = D Hn.

neL
Moreover, each H,, reduces D on L2(R) so that

D=EFD

nez

Hn o

with Dly, being a bilateral shift of multiplicity one acting on each subspace Hy,.
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We establish next its counterpart, by exhibiting a similar decomposition of the
bilateral shift T'.

Theorem 1. If ¢(-) is a wavelet in L2(R), then {Rum}tmen, and {Sp}nez are
families of pairwise orthogonal subspaces of M and both span M:

M= @ R - DS,
meENp nez
Moreover, M reduces the bilateral shift T on L£2(R), and so does each R,,. Hence
T = @ T\r,, @ T|me,
meENg

with each T|r,, being a bilateral shift of multiplicity one acting on each subspace
R, and T|pqo is a unitary operator acting on M.

Proof. By unconditional convergence of the Fourier series we may write either
M=\ N TD"() =\ Ru or M=\ \/TD"() =\/ S,
meENy neZ meNy neZ meNy nez

Since Ry, L Ry form’ #m (m’ € Ng) and S,, L S,y for n/ # n (n’ € Z) (according
to Lemmas 1 and 2), we get

M= @ Ru=@s.
meENy nez
Moreover, since S,, = T"Sy for every n € Z,
nez ne”L
is invariant for both 7" and T*. Indeed, T is unitary so that 7* = T~' and
TE (M) = T\ TSy = \/ TH'T"S; = \/ T"Sp = M.
nez nez nez

This means that M reduces T. Since direct summands of a unitary operator are
again unitary operators, it follows that T'|a¢ is unitary, as well as T'|,q., where
M+ = L2(R) © M is the orthogonal complement of M. The same argument (T is
unitary) shows that each

neL
also is T-reducing. Therefore, since

M= P R,

m&ENp

Tim= P Tlr..,

meNg

it follows that

where each T'|r,, is unitary. Summing up: with respect to the decomposition

L2R) = M & M+
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the bilateral shift 7 on £2(R) can be written as
T=TIm®T|pr = @ Tlr, & T|pe-
meENg

It remains to check whether or not these unitary direct summands of the bilateral
shift T are bilateral shifts themselves. For each (n,m) € Z x Ny put

Tnm () =T"D"Y(:)
so that {77,m ()} (n,m)ezxn, as in Definition 1 is an orthonormal basis for
M =\ raml)
(n,m)EZXNg
Similarly, for each m € Ny, {7, m(-)}nez is an orthonormal basis for
R = \/ Tnm()-

ne”L

Take an arbitrary m € Z and observe that
TR, Tnm(-) = TTL—Hme(') = Tnt1,m(").

Hence each T'|g,, shifts the orthonormal basis {ry m(-)}nez for each Hilbert space
Rum, and so each T'|g, is a bilateral shift of multiplicity one acting on R,. |

™m

Remark 1. Observe that, according to (4) and (5),
meENp meENp meENy

Thus M is not necessarily D invariant because Wy (,n) depends on m. However,
since D is unitary, it follows from Lemma 1(i) that

D(M) = \/ Dm+1W07(m) - D(W()) U \/ Dm+1W07(m)

meENg meN
= DWo) U D*\/ D™ "Wy (my € DWo) U D> \/ D™ "Wy (1)
meN meN
C DWo) U D* \/ D™Wo m) = D(Wo) U D*(M),
meNg

and hence
M C WyU D(M).

Even though the reversed wavelets do not span the space £2(IR), the subspace M
spanned by them can be useful for studying details on M since the translation-by-1
operator T" behaves very simply on the subspaces R, of M.

Remark 2. It is worth noticing that the results in this paper can be framed in an
abstract approach by replacing the concrete function space £2(R) with an arbitrary
infinite-dimensional separable Hilbert space H, and assuming that D and T are
noncommuting bilateral shifts of infinite multiplicity acting on H and satisfying
relation (2) or, equivalently, such that DT? = TD — see [6, Proposition 3].
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