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AN INTRODUCTION TO TIME-SHIFT EQUATIONS

NHAN LEVAN AND CARLOS S. KUBRUSLY

ABSTRACT. Dilation Equations play an important role in Wavelet Multiresolu-
tion Approximation. A dilation equation is a difference equation for fixed scale
summing over all time-shifts. In this note we introduce a class of equations
called Time-Shift Equations. A time-shift equation is a difference equation
for fixed time-shift summing over all scales. Analysis leading to derivation of
these equations will occupy the rest of the note.

1. INTRODUCTION

This note is a brief introduction to a class of equations — called Time-Shift
Equations (TiEq) — which is an analog of the class of Dilation Equations (DiEq).

Dilation Equations “live” in Wavelet Multiresolution Approximation (MRA), see
for instance the paper of Strang [12] and the book of Keinert [4, Chapter 1]. The
basic DiEq, also called “refinement equation”, is a two-scale difference equation, of
the form
(1.1) 0() =D end(2() —n) =Y _cnDT"(),

nez neZ
where ¢(-) € L2(R) called scaling function — generating a MRA L£2(R)-subspaces
{Vm }mez — is normalized so that [12]

(1.2) / pydt=1 = Y en=2

B ne”Z
Here and in what follows D and T are, respectively, dyadic-scale and unit-time-shift
L2(R)-operators defined by

(1.3) Df(-)=v2f(2(:)) and Tf():= f((-)—1).

The basic Time-Shift Equation to be derived is the difference equation of the
form (for some ¢(-) € L2(R))

(1.4) P() =D BuVZ 0 (27() = 1) = Y BuDTTi().

meZ meZL

We note that m always stands for scale level and 2™ is scale while n is time-shift.
Thus the right hand side of equation (1.1) is for scale level m = 1 or for scale 21,
over all time-shifts, while that of equation (1.4) is at time-shift 1 over all scale
levels.

Background and steps leading to TiEq will be presented in Section 2. The Con-
nection between TiEq and DiEq is shown in Section 3.
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2. WHY TIME-SHIFT EQUATIONS?

Let ¢(-) € L%(R) be a wavelet and let 1., ,(+), (m,n) € Z?2, be the wavelet func-
tions generated from 1 (-) by time-shiftings followed by dyadic-scalings, that is,
(21) Ymn() = V2 H(27() = n) = DMTH() = D™(() = n),  (m.n) € 72,

Then, by definition, {1, ,(-)} is a double-indexed £?(IR)-orthonormal basis (0.n.b.)
[5, 9]. As a consequence the “scale detail subspaces” Wy, (1) constructed from

Ymon(-) as
(2:2) Wi (¥) :="\/ D™$((-) —n), mez,

ne”Z

constitute an £2(IR)-orthogonal subspaces basis (0.s.b.) [7]. Therefore the space
L?(R) admits an orthogonal scale detail subspaces decomposition

(2.3) LXR) = P Win(¥).
mEZL
Moreover, since D has a bounded inverse, we also have

(2.4) L2(R) = @ D" Wo(v),
where
(2.5) Wo() = \/ ¥((-) = n),

is a generating — because of (2.4) — and D-wandering subspace — because
(2.6) D™ Wo()) L D™ Wo(¢)), whenever m #m'.

What is interesting is the fact that (2.4) actually defines D as a bilateral shift whose
multiplicity is the dimension of its generating wandering subspace Wy (¢) [3]. This
fact will be used in Section 3.

Now, if a wavelet 9(-) is “derived” from a scaling function ¢(-) — generating
a MRA {V,,}mez — that is, the subspaces V,,, — called scaling approximation
subspaces — satisfy the following properties [9, 10, 11]:
(0) Vo:=V,ez0((:) —n) and Viy1 = DV, (m,n) € Z2,
(1) Vm C Vm+1, m € 7,
(i) ez Von = 0},

(iii) Usnez Vim = L2(R).

Then we also have
(2.7) Vi1 = Vim @ Wi (¢¥), meZ.

This establishes relationship between the scaling function ¢(-) and the associated
wavelet 1(-). Note that in property (o), the functions ¢((-) —n), n € Z, are taken
to be orthonormal.

The place where DiEq were born is in the “nested” property (i).
It follows from property (o) that

(2.8) V= \/ D"¢((-)—n), meL.

neZ
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Moreover, each V,, can also be “represented” in terms of the scale detail subspaces

Wi (1), —co <m/ <m —1, as

m—1
(2.9) V= @ Ww), meL

m’=—00

This is a consequence of (2.7).

To distinguish between V,,, in (2.8) and its representation in (2.9) we denote the
right hand side of (2.9) by V,, ()

m—1
(2.10) V(@)= @ Ww(), mez,
to indicate that, since it depends on the wavelet functions )y, ,(-), it depends on
the wavelet ¢(+) as well. Moreover, V,,,(¢), m € Z, automatically satisfy the MRA
properties (i), (ii) and (iii).

It is evident that dyadic-scaling plays a central role while time-shifting is some-
what neglected! In other words, Wavelets and MRA are basically “scale-based”
theories.

An important fact which we feel has been “overlooked” is the fact that one
can also construct “time-shift detail subspaces” Hy(v), n € Z, from the wavelet
functions ¥y, »(+), (m,n) € Z2, as [6],

(2.11) Ha() = \/ D™¥(() —n), nez

meZ
Moreover, these H, (1)) are also orthogonal and form a second o.s.b. for £2(R).
Consequently, we now have, in addition to (2.3), the time-shift orthogonal decom-
position
(2.12) L(R) = P Ha(v).

nez

This suggests that one ought to explore “time-shift-based” approach to Wavelets
and MRA. Preliminary results along these lines were reported in [7, 8].

To derive the proposed TiEq we begin with the time-shift detail subspaces G, (¢)
defined by

n—1
(2.13) Gu(¥) = @ Hw(¥), nez.
These are simply a time-shift analog of the scale subspaces V,, (). Moreover, it is
a simple matter to verify that {G, (1)} also satisfies the MRA properties (i), (ii)
and (iii).

The difference between {V,,(¢) }mez and {G,, () }nez is that the former consists
of scale detail subspaces and it represents the original MRA {V,, } mez, while the
latter consists of time-shift detail subspaces, hence it cannot represent the scaling
subspaces { Vi, }mez. This is also due in part to the fact that G,(v) is D-reducing
while V,, is only D*-invariant.

Suppose now that there is a function ¢(-) € £2(R) such that
(2.14) e(()—n) LD™p((-) —n), V(m,n)eZ?
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Let the subspaces 7,,, n € Z, be defined by
(2.15) T, :=\/D"¢(() —n), nez,

and satisfy the following properties:
(i) 7n CTpt1, n€Z,
(i) Nper T = {0},
(1)) Upez Tn = L2(R).
Moreover,
(2.16) Tot1 =T ® Ho(¥), ne,

where H,, (1) is as previously defined. Then clearly 7,, also admits the representa-
tion

n—1
(2.17) T.= @ Hw@®):=0.(v), nez.

We note that 7,, as defined by (2.15) is D-reducing and so is G, (¢).

It follows from (2.15) and property (i) that
(2.18) To:=\/ D"¢() ¢ Ti=\/ D"p(()-1).
meZ meZ

Therefore, since ¢(+) also lives in 77 it can be represented in terms of the orthonor-
mal functions Dmgo((-) — 1), m € 7 — spanning 7; — as

(2.19) P() =D BuDmo(() = 1).

This is the basic Time-Shift Equation announced in (1.4). We also have, as in the
case of the DiEq (1.1),

- _ B _
(2.20) /_oo ptydt=1 = mzez il 1.
In general we have the TiEq
(221> (:D(() - n) = Z ﬁm,n Dm@((') - (n + 1))7 n € 2.
meZ

3. A CONNECTION BETWEEN TIEQ AND DIEQ

We close by showing that a TiEq can be converted — up to a unitary operator
into a DiEq and vice versa.

First, given a wavelet ¢(-) € £L2(IR), then the space £2(R) automatically admits
the scale detail subspaces orthogonal decomposition (2.4)

(3.1) L2(R) = @ Win(¥) = @ D™ Wo(v) := L*(R; D),

meZ mezZ
where Wy (1)) defined by (2.5)

Wo(¥) == \/ ¥((-) = n),

ne”L
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is a D-wandering generating subspace, and £2(R; D) indicates that (3.1) is a D-
wandering subspaces representation of £2(R).

For the unit time-shift operator T, unfortunately, there is no decomposition in
terms of the wavelet functions ¢, () — similar to (3.1). However, since T is
also a bilateral shift of countably infinite multiplicity, the space £?(R) can admit a
T-wandering subspaces orthogonal representation of the form
(3.2) L2(R) = P T Wor = LX(R; T),

neEZ
where Wy r is a T-wandering generating subspace.

It is well known that bilateral shifts of equal multiplicity are unitarily equivalent
[13, Chapter 1]. This for the case of the bilateral shifts D and T' can be seen as
follows.

Next, let f(-) € £L2(R; D) so we have the dyadic-scale orthogonal representation
(33) f() =D D™wn(), wn() € Wo(¥), m € Z, and Y Jwm()II* = [IF()II

meZ mEZ

Let w: Wo(y) = Wo,r

be a unitary operator sending Wy (1) onto Wy 7. Then the operator

Q: L%(R; D) — L*(R,T),
defined by
(3.4) Qf() =D T wwn(),
mEZL

is clearly unitary. Moreover, it is easy to see that
(3.5) QD =T,

that is, D and T are unitarily equivalent (both are bilateral shifts of the same
cardinality).

We summarize the above in the next proposition.

Proposition 1. Let ¥(-) € L2(R) be a wavelet then the space L2(R) admits a dy-
adic-scaling representation L2(R; D) defined by the orthogonal decomposition (3.1),
as well as a unit-time-shift representation L?(R;T) defined by (3.3). The former is
unique while the latter needs not be.

Now, return to the basic TiEq (1.4)

(3.6) ()= BuDmo(() =1) = D BuD"Te(-),

meZ mEZ

which can be rewritten as

(37) Do) = 3 Bl () - 1).

meZ
Substituting for D from (3.5) we obtain
(3.8) Dp() =Y BT 'Qp(() - 1),

ne”L
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where, since the right hand side is summing with respect to time-shifts, we have
replaced m by n. Then, since Q* is also unitary, we can have

(3.9) OD* () =Y BT 'Q0p((-) - 1)

neEZ
This is clearly a Dilation-Type Equation. To see this, let us rewrite the basic DiEq
(1.1) as

(3.10) D*¢(-) = enT™'o((-) - 1),

neZ
which is simply equation (3.9) for = I, and in which ¢(-) as well as (3, are replaced
by ¢(-) and ¢,. We have therefore shown that a TiEq of the form (3.8) is connected
to a DiEq of the form (3.9) via the “Dilation-Type Equation” (3.10). In exactly
the same way, a DiEq of the form (3.10) is connected to a TiEq of the form (3.7)
via the “Time-Shift-Type Equation”

(3.11) QD) =Y _en D" (() - 1).

ne”Z

This note is intended as a brief introduction to TiEq. Further work on these
equations as well as on Time-Shift MRA will be reported elsewhere.

ACKNOWLEDGMENTS

Research supported in part by NASA grant NCC4-121 (for NL), and by Brazilian
National Research Council (CNPq) (for CSK).

REFERENCES

1. I. Antoniou and K. Gustafson, Wavelets and stochastic processes, Math. Comput. Simulation
49 (1999), 81-104.
2. T.N.T. Goodman, S.L. Lee and W.S. Tang, Wavelets in wandering subspaces, Trans. Amer.
Math. Soc. 338 (1993), 639-654.
3. P.R. Halmos, Shifts on Hilbert spaces, J. Reine Angew. Math. 208 (1961), 102-112.
. Fritz Keinert, Wavelets and Multiwavelets, Chapman & Hall/CRC, New York, 2004
5. P.-G. Lemarié and Y. Meyer, Ondelettes et bases hilbertiennes, Rev. Mat. Iberoamericana, 2
(1986), 1-18.
6. N. Levan and C.S. Kubrusly, A wavelet “time-shift-detail” decomposition, Math. Comput.
Simulation 63 (2003), 73-78.
7. N. Levan and C.S. Kubrusly, Time-shifts generalized multiresolution analysis over dyadic-
scaling reducing subspaces, Int. J. Wavelets Multiresolut. Inf. Process. 2 (2004), 237-248.
8. N. Levan and C.S. Kubrusly, Multiresolution approzximation scale and time-shift subspaces,
Multidimens. Syst. Signal Process. 17 (2006), 343-354.
9. S.G. Mallat, Multiresolution approzimations and wavelet orthonormal bases of L?(R), Trans.
Amer. Math. Soc. 315 (1989), 69-87.
10. S.G. Mallat, A Wavelet Tour of Signal Processing, Academic Press, New York, 1998.
11. Y. Meyer, Ondelettes et functions splines, Séminaire sur les équations aux dérivées partielles,
1986-1987, Exp. No. VI, Ecole Polytechnique, Palaiseau, 1987.
12. G. Strang, Wavelets and dilation equations: A brief introduction, SIAM Review, 4, (1989),
614-627.
13. B. Sz.-Nagy and C. Foias, Harmonic Analysis of Operators on Hilbert Space, North-Holland,
Amsterdam, 1970.

W~

DEPARTMENT OF ELECTRICAL ENGINEERING, UNIVERSITY OF CALIFORNIA IN LOS ANGELES, LOS
ANGELES, CA 90024-1594, USA
FE-mail address: levan@ee.ucla.edu

CATHOLIC UNIVERSITY OF RIO DE JANEIRO, 22453-900, R10 DE JANEIRO, RJ, BRAZIL
E-mail address: carlos@ele.puc-rio.br



