AN INTRODUCTION TO TIME-SHIFT EQUATIONS

NHAN LEVAN AND CARLOS S. KUBRUSLY

ABSTRACT. Dilation Equations play an important role in Wavelet Multiresolution Approximation. A dilation equation is a difference equation for fixed scale summing over all time-shifts. In this note we introduce a class of equations called Time-Shift Equations. A time-shift equation is a difference equation for fixed time-shift summing over all scales. Analysis leading to derivation of these equations will occupy the rest of the note.

1. Introduction

This note is a brief introduction to a class of equations — called Time-Shift Equations (TiEq) — which is an analog of the class of Dilation Equations (DiEq).

Dilation Equations "live" in Wavelet Multiresolution Approximation (MRA), see for instance the paper of Strang [12] and the book of Keinert [4, Chapter 1]. The basic DiEq, also called "refinement equation", is a two-scale difference equation, of the form

(1.1)
$$\phi(\cdot) = \sum_{n \in \mathbb{Z}} c_n \phi(2(\cdot) - n) = \sum_{n \in \mathbb{Z}} c_n DT^n \phi(\cdot),$$

where $\phi(\cdot) \in \mathcal{L}^2(\mathbb{R})$ called scaling function — generating a MRA $\mathcal{L}^2(\mathbb{R})$ -subspaces $\{\mathcal{V}_m\}_{m\in\mathbb{Z}}$ — is normalized so that [12]

(1.2)
$$\int_{-\infty}^{\infty} \phi(t) dt = 1 \implies \sum_{n \in \mathbb{Z}} c_n = 2.$$

Here and in what follows D and T are, respectively, dyadic-scale and unit-time-shift $\mathcal{L}^2(\mathbb{R})$ -operators defined by

(1.3)
$$Df(\cdot) = \sqrt{2}f(2(\cdot)) \quad \text{and} \quad Tf(\cdot) := f((\cdot) - 1).$$

The basic Time-Shift Equation to be derived is the difference equation of the form (for some $\varphi(\cdot) \in \mathcal{L}^2(\mathbb{R})$)

(1.4)
$$\varphi(\cdot) = \sum_{m \in \mathbb{Z}} \beta_m \sqrt{2}^m \varphi(2^m(\cdot) - 1) = \sum_{m \in \mathbb{Z}} \beta_m D^m T \varphi(\cdot).$$

We note that m always stands for scale level and 2^m is scale while n is time-shift. Thus the right hand side of equation (1.1) is for scale level m=1 or for scale 2^1 , over all time-shifts, while that of equation (1.4) is at time-shift 1 over all scale levels.

Background and steps leading to TiEq will be presented in Section 2. The Connection between TiEq and DiEq is shown in Section 3.

Date: October 11, 2005.

²⁰⁰⁰ Mathematics Subject Classification. 42C40, 47A15.

Keywords. Wavelet Multiresolution Approximation; Dilation Equations; Time-Shift Equations; Time-Shift Multiresolution Approximation.

2. Why Time-Shift Equations?

Let $\psi(\cdot) \in \mathcal{L}^2(\mathbb{R})$ be a wavelet and let $\psi_{m,n}(\cdot)$, $(m,n) \in \mathbb{Z}^2$, be the wavelet functions generated from $\psi(\cdot)$ by time-shiftings followed by dyadic-scalings, that is,

(2.1)
$$\psi_{m,n}(\cdot) := \sqrt{2}^m \psi(2^m(\cdot) - n) = D^m T^n \psi(\cdot) = D^m \psi((\cdot) - n), \quad (m,n) \in \mathbb{Z}^2.$$

Then, by definition, $\{\psi_{m,n}(\cdot)\}$ is a double-indexed $\mathcal{L}^2(\mathbb{R})$ -orthonormal basis (o.n.b.) [5, 9]. As a consequence the "scale detail subspaces" $\mathcal{W}_m(\psi)$ constructed from $\psi_{m,n}(\cdot)$ as

(2.2)
$$\mathcal{W}_m(\psi) := \bigvee_{n \in \mathbb{Z}} D^m \psi((\cdot) - n), \quad m \in \mathbb{Z},$$

constitute an $\mathcal{L}^2(\mathbb{R})$ -orthogonal subspaces basis (o.s.b.) [7]. Therefore the space $\mathcal{L}^2(\mathbb{R})$ admits an orthogonal scale detail subspaces decomposition

(2.3)
$$\mathcal{L}^2(\mathbb{R}) = \bigoplus_{m \in \mathbb{Z}} \mathcal{W}_m(\psi).$$

Moreover, since D has a bounded inverse, we also have

(2.4)
$$\mathcal{L}^2(\mathbb{R}) = \bigoplus_{m \in \mathbb{Z}} D^m \mathcal{W}_0(\psi),$$

where

(2.5)
$$\mathcal{W}_0(\psi) := \bigvee_{n \in \mathbb{Z}} \psi((\cdot) - n),$$

is a generating — because of (2.4) — and D-wandering subspace — because

(2.6)
$$D^m W_0(\psi) \perp D^{m'} W_0(\psi)$$
, whenever $m \neq m'$.

What is interesting is the fact that (2.4) actually defines D as a bilateral shift whose multiplicity is the dimension of its generating wandering subspace $W_0(\psi)$ [3]. This fact will be used in Section 3.

Now, if a wavelet $\psi(\cdot)$ is "derived" from a scaling function $\phi(\cdot)$ — generating a MRA $\{\mathcal{V}_m\}_{m\in\mathbb{Z}}$ — that is, the subspaces \mathcal{V}_m — called scaling approximation subspaces — satisfy the following properties [9, 10, 11]:

- (o) $\mathcal{V}_0 := \bigvee_{n \in \mathbb{Z}} \phi((\cdot) n)$ and $\mathcal{V}_{m+1} = D\mathcal{V}_m$, $(m, n) \in \mathbb{Z}^2$,
- (i) $\mathcal{V}_m \subset \mathcal{V}_{m+1}, m \in \mathbb{Z},$
- (ii) $\bigcap_{m\in\mathbb{Z}} \mathcal{V}_m = \{0\},\$
- (iii) $\overline{\bigcup}_{m\in\mathbb{Z}} \mathcal{V}_m = \mathcal{L}^2(\mathbb{R}).$

Then we also have

(2.7)
$$\mathcal{V}_{m+1} = \mathcal{V}_m \oplus \mathcal{W}_m(\psi), \quad m \in \mathbb{Z}.$$

This establishes relationship between the scaling function $\phi(\cdot)$ and the associated wavelet $\psi(\cdot)$. Note that in property (o), the functions $\phi((\cdot) - n)$, $n \in \mathbb{Z}$, are taken to be orthonormal.

The place where DiEq were born is in the "nested" property (i).

It follows from property (o) that

(2.8)
$$\mathcal{V}_m := \bigvee_{n \in \mathbb{Z}} D^m \phi((\cdot) - n), \quad m \in \mathbb{Z}.$$

Moreover, each V_m can also be "represented" in terms of the scale detail subspaces $W_{m'}(\psi)$, $-\infty < m' \le m-1$, as

(2.9)
$$\mathcal{V}_{m} = \bigoplus_{m'=-\infty}^{m-1} \mathcal{W}_{m'}(\psi), \quad m \in \mathbb{Z}.$$

This is a consequence of (2.7).

To distinguish between \mathcal{V}_m in (2.8) and its representation in (2.9) we denote the right hand side of (2.9) by $\mathcal{V}_m(\psi)$

(2.10)
$$\mathcal{V}_{m}(\psi) := \bigoplus_{m'=-\infty}^{m-1} \mathcal{W}_{m'}(\psi), \quad m \in \mathbb{Z},$$

to indicate that, since it depends on the wavelet functions $\psi_{m,n}(\cdot)$, it depends on the wavelet $\psi(\cdot)$ as well. Moreover, $\mathcal{V}_m(\psi)$, $m \in \mathbb{Z}$, automatically satisfy the MRA properties (i), (ii) and (iii).

It is evident that dyadic-scaling plays a central role while time-shifting is somewhat neglected! In other words, Wavelets and MRA are basically "scale-based" theories

An important fact which we feel has been "overlooked" is the fact that one can also construct "time-shift detail subspaces" $\mathcal{H}_n(\psi)$, $n \in \mathbb{Z}$, from the wavelet functions $\psi_{m,n}(\cdot)$, $(m,n) \in \mathbb{Z}^2$, as [6],

(2.11)
$$\mathcal{H}_n(\psi) := \bigvee_{m \in \mathbb{Z}} D^m \psi((\cdot) - n), \quad n \in \mathbb{Z}.$$

Moreover, these $\mathcal{H}_n(\psi)$ are also orthogonal and form a second o.s.b. for $\mathcal{L}^2(\mathbb{R})$. Consequently, we now have, in addition to (2.3), the time-shift orthogonal decomposition

(2.12)
$$\mathcal{L}^{2}(\mathbb{R}) = \bigoplus_{n \in \mathbb{Z}} \mathcal{H}_{n}(\psi).$$

This suggests that one ought to explore "time-shift-based" approach to Wavelets and MRA. Preliminary results along these lines were reported in [7, 8].

To derive the proposed TiEq we begin with the time-shift detail subspaces $\mathcal{G}_n(\psi)$ defined by

(2.13)
$$\mathcal{G}_n(\psi) := \bigoplus_{n'=-\infty}^{n-1} \mathcal{H}_{n'}(\psi), \quad n \in \mathbb{Z}.$$

These are simply a time-shift analog of the scale subspaces $\mathcal{V}_m(\psi)$. Moreover, it is a simple matter to verify that $\{\mathcal{G}_n(\psi)\}$ also satisfies the MRA properties (i), (ii) and (iii).

The difference between $\{\mathcal{V}_m(\psi)\}_{m\in\mathbb{Z}}$ and $\{\mathcal{G}_n(\psi)\}_{n\in\mathbb{Z}}$ is that the former consists of scale detail subspaces and it represents the original MRA $\{\mathcal{V}_m\}_{m\in\mathbb{Z}}$, while the latter consists of time-shift detail subspaces, hence it cannot represent the scaling subspaces $\{\mathcal{V}_m\}_{m\in\mathbb{Z}}$. This is also due in part to the fact that $\mathcal{G}_n(\psi)$ is D-reducing while \mathcal{V}_m is only D^* -invariant.

Suppose now that there is a function $\varphi(\cdot) \in \mathcal{L}^2(\mathbb{R})$ such that

(2.14)
$$\varphi((\cdot) - n) \perp D^m \varphi((\cdot) - n), \quad \forall (m, n) \in \mathbb{Z}^2.$$

Let the subspaces \mathcal{T}_n , $n \in \mathbb{Z}$, be defined by

(2.15)
$$\mathcal{T}_n := \bigvee_m D^m \varphi((\cdot) - n), \quad n \in \mathbb{Z},$$

and satisfy the following properties:

- (i) $\mathcal{T}_n \subset \mathcal{T}_{n+1}, n \in \mathbb{Z},$ (ii) $\bigcap_{n \in \mathbb{Z}} \mathcal{T}_n = \{0\},$
- (iii) $\overline{\bigcup}_{m\in\mathbb{Z}} \mathcal{T}_n = \mathcal{L}^2(\mathbb{R}).$

Moreover,

(2.16)
$$\mathcal{T}_{n+1} = \mathcal{T}_n \oplus \mathcal{H}_n(\psi), \quad n \in \mathbb{Z},$$

where $\mathcal{H}_n(\psi)$ is as previously defined. Then clearly \mathcal{T}_n also admits the representation

(2.17)
$$\mathcal{T}_n = \bigoplus_{n'=-\infty}^{n-1} \mathcal{H}_{n'}(\psi) := \mathcal{G}_n(\psi), \quad n \in \mathbb{Z}.$$

We note that \mathcal{T}_n as defined by (2.15) is *D*-reducing and so is $\mathcal{G}_n(\psi)$.

It follows from (2.15) and property (i) that

(2.18)
$$\mathcal{T}_0 := \bigvee_{m \in \mathbb{Z}} D^m \varphi(\cdot) \subset \mathcal{T}_1 := \bigvee_{m \in \mathbb{Z}} D^m \varphi((\cdot) - 1).$$

Therefore, since $\varphi(\cdot)$ also lives in \mathcal{T}_1 it can be represented in terms of the orthonormal functions $D^m \varphi((\cdot) - 1)$, $m \in \mathbb{Z}$ — spanning \mathcal{T}_1 — as

(2.19)
$$\varphi(\cdot) = \sum_{m \in \mathbb{Z}} \beta_m D^m \varphi((\cdot) - 1).$$

This is the basic Time-Shift Equation announced in (1.4). We also have, as in the case of the DiEq (1.1).

(2.20)
$$\int_{-\infty}^{\infty} \varphi(t) dt = 1 \implies \sum_{m \in \mathbb{Z}} \frac{\beta_m}{\sqrt{2}^m} = 1.$$

In general we have the TiEq

(2.21)
$$\varphi((\cdot) - n) = \sum_{m \in \mathbb{Z}} \beta_{m,n} D^m \varphi((\cdot) - (n+1)), \quad n \in \mathbb{Z}.$$

3. A CONNECTION BETWEEN TIEQ AND DIEQ

We close by showing that a TiEq can be converted — up to a unitary operator — into a DiEq and vice versa.

First, given a wavelet $\psi(\cdot) \in \mathcal{L}^2(\mathbb{R})$, then the space $\mathcal{L}^2(\mathbb{R})$ automatically admits the scale detail subspaces orthogonal decomposition (2.4)

(3.1)
$$\mathcal{L}^{2}(\mathbb{R}) = \bigoplus_{m \in \mathbb{Z}} \mathcal{W}_{m}(\psi) = \bigoplus_{m \in \mathbb{Z}} D^{m} \mathcal{W}_{0}(\psi) := \mathcal{L}^{2}(\mathbb{R}; D),$$

where $W_0(\psi)$ defined by (2.5)

$$\mathcal{W}_0(\psi) := \bigvee_{n \in \mathbb{Z}} \psi((\cdot) - n),$$

is a *D*-wandering generating subspace, and $\mathcal{L}^2(\mathbb{R}; D)$ indicates that (3.1) is a *D*-wandering subspaces representation of $\mathcal{L}^2(\mathbb{R})$.

For the unit time-shift operator T, unfortunately, there is no decomposition in terms of the wavelet functions $\psi_{m,n}(\cdot)$ — similar to (3.1). However, since T is also a bilateral shift of countably infinite multiplicity, the space $\mathcal{L}^2(\mathbb{R})$ can admit a T-wandering subspaces orthogonal representation of the form

(3.2)
$$\mathcal{L}^{2}(\mathbb{R}) = \bigoplus_{n \in \mathbb{Z}} T^{n} \mathcal{W}_{0,T} := \mathcal{L}^{2}(\mathbb{R}; T),$$

where $W_{0,T}$ is a T-wandering generating subspace.

It is well known that bilateral shifts of equal multiplicity are unitarily equivalent [13, Chapter 1]. This for the case of the bilateral shifts D and T can be seen as follows.

Next, let $f(\cdot) \in \mathcal{L}^2(\mathbb{R}; D)$ so we have the dyadic-scale orthogonal representation

$$(3.3) \ f(\cdot) = \sum_{m \in \mathbb{Z}} D^m w_m(\cdot), \quad w_m(\cdot) \in \mathcal{W}_0(\psi), \ m \in \mathbb{Z}, \ \text{and} \ \sum_{m \in \mathbb{Z}} \|w_m(\cdot)\|^2 = \|f(\cdot)\|^2.$$

Let

$$\omega \colon \mathcal{W}_0(\psi) \to \mathcal{W}_{0,T}$$

be a unitary operator sending $W_0(\psi)$ onto $W_{0,T}$. Then the operator

$$\Omega \colon \mathcal{L}^2(\mathbb{R}; D) \to \mathcal{L}^2(\mathbb{R}, T),$$

defined by

(3.4)
$$\Omega f(\cdot) := \sum_{m \in \mathbb{Z}} T^m \omega w_m(\cdot),$$

is clearly unitary. Moreover, it is easy to see that

$$(3.5) \Omega D = T \Omega,$$

that is, D and T are unitarily equivalent (both are bilateral shifts of the same cardinality).

We summarize the above in the next proposition.

Proposition 1. Let $\psi(\cdot) \in \mathcal{L}^2(\mathbb{R})$ be a wavelet then the space $\mathcal{L}^2(\mathbb{R})$ admits a dyadic-scaling representation $\mathcal{L}^2(\mathbb{R}; D)$ defined by the orthogonal decomposition (3.1), as well as a unit-time-shift representation $\mathcal{L}^2(\mathbb{R}; T)$ defined by (3.3). The former is unique while the latter needs not be.

Now, return to the basic TiEq (1.4)

(3.6)
$$\varphi(\cdot) = \sum_{m \in \mathbb{Z}} \beta_m D^m \varphi((\cdot) - 1) = \sum_{m \in \mathbb{Z}} \beta_m D^m T \varphi(\cdot),$$

which can be rewritten as

(3.7)
$$D^*\varphi(\cdot) = \sum_{m \in \mathbb{Z}} \beta_m D^{m-1} \varphi((\cdot) - 1).$$

Substituting for D from (3.5) we obtain

(3.8)
$$D^*\varphi(\cdot) = \sum_{n \in \mathbb{Z}} \beta_n \Omega^* T^{n-1} \Omega \varphi((\cdot) - 1),$$

where, since the right hand side is summing with respect to time-shifts, we have replaced m by n. Then, since Ω^* is also unitary, we can have

(3.9)
$$\Omega D^* \varphi(\cdot) = \sum_{n \in \mathbb{Z}} \beta_n T^{n-1} \Omega \varphi((\cdot) - 1).$$

This is clearly a Dilation-Type Equation. To see this, let us rewrite the basic DiEq (1.1) as

(3.10)
$$D^*\phi(\cdot) = \sum_{n \in \mathbb{Z}} c_n T^{n-1}\phi((\cdot) - 1),$$

which is simply equation (3.9) for $\Omega = I$, and in which $\varphi(\cdot)$ as well as β_n are replaced by $\phi(\cdot)$ and c_n . We have therefore shown that a TiEq of the form (3.8) is connected to a DiEq of the form (3.9) via the "Dilation-Type Equation" (3.10). In exactly the same way, a DiEq of the form (3.10) is connected to a TiEq of the form (3.7) via the "Time-Shift-Type Equation"

(3.11)
$$\Omega^* D^* \phi(\cdot) = \sum_{n \in \mathbb{Z}} c_n D^{n-1} \Omega^* \phi(\cdot) - 1.$$

This note is intended as a brief introduction to TiEq. Further work on these equations as well as on Time-Shift MRA will be reported elsewhere.

ACKNOWLEDGMENTS

Research supported in part by NASA grant NCC4-121 (for NL), and by Brazilian National Research Council (CNPq) (for CSK).

References

- I. Antoniou and K. Gustafson, Wavelets and stochastic processes, Math. Comput. Simulation 49 (1999), 81–104.
- T.N.T. Goodman, S.L. Lee and W.S. Tang, Wavelets in wandering subspaces, Trans. Amer. Math. Soc. 338 (1993), 639–654.
- 3. P.R. Halmos, Shifts on Hilbert spaces, J. Reine Angew. Math. 208 (1961), 102–112.
- 4. Fritz Keinert, Wavelets and Multiwavelets, Chapman & Hall/CRC, New York, 2004
- P.-G. Lemarié and Y. Meyer, Ondelettes et bases hilbertiennes, Rev. Mat. Iberoamericana, 2 (1986), 1–18.
- N. Levan and C.S. Kubrusly, A wavelet "time-shift-detail" decomposition, Math. Comput. Simulation 63 (2003), 73–78.
- N. Levan and C.S. Kubrusly, Time-shifts generalized multiresolution analysis over dyadicscaling reducing subspaces. Int. J. Wavelets Multiresolut. Inf. Process. 2 (2004), 237–248.
- 8. N. Levan and C.S. Kubrusly, Multiresolution approximation scale and time-shift subspaces, Multidimens. Syst. Signal Process. 17 (2006), 343–354.
- 9. S.G. Mallat, Multiresolution approximations and wavelet orthonormal bases of $L^2(\mathbb{R})$, Trans. Amer. Math. Soc. **315** (1989), 69–87.
- 10. S.G. Mallat, A Wavelet Tour of Signal Processing, Academic Press, New York, 1998.
- Y. Meyer, Ondelettes et functions splines, Séminaire sur les équations aux dérivées partielles, 1986–1987, Exp. No. VI, École Polytechnique, Palaiseau, 1987.
- G. Strang, Wavelets and dilation equations: A brief introduction, SIAM Review, 4, (1989), 614–627.
- B. Sz.-Nagy and C. Foias, Harmonic Analysis of Operators on Hilbert Space, North-Holland, Amsterdam, 1970.

Department of Electrical Engineering, University of California in Los Angeles, Los Angeles, CA 90024-1594, USA

E-mail address: levan@ee.ucla.edu

CATHOLIC UNIVERSITY OF RIO DE JANEIRO, 22453-900, RIO DE JANEIRO, RJ, BRAZIL *E-mail address*: carlos@ele.puc-rio.br